1
|
Li W, Li H, Lu C, Zhao J, Xu H, Xu Z, Mitchell B, Jiang Y, Gu HQ, Xu Q, Wang A, Meng X, Lin J, Jing J, Li Z, Zhu W, Liang Z, Wang M, Wang Y. Neglected Mendelian causes of stroke in adult Chinese patients who had an ischaemic stroke or transient ischaemic attack. Stroke Vasc Neurol 2024; 9:194-201. [PMID: 37495379 PMCID: PMC11221298 DOI: 10.1136/svn-2022-002158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Multiple factors play important roles in the occurrence and prognosis of stroke. However, the roles of monogenic variants in all-cause ischaemic stroke have not been systematically investigated. We aim to identify underdiagnosed monogenic stroke in an adult ischaemic stroke/transient ischaemic attack (TIA) cohort (the Third China National Stroke Registry, CNSR-III). METHODS Targeted next-generation sequencing for 181 genes associated with stroke was conducted on DNA samples from 10 428 patients recruited through CNSR-III. The genetic and clinical data from electronic health records (EHRs) were reviewed for completion of the diagnostic process. We assessed the percentages of individuals with pathogenic or likely pathogenic (P/LP) variants, and the diagnostic yield of pathogenic variants in known monogenic disease genes with associated phenotypes. RESULTS In total, 1953 individuals harboured at least one P/LP variant out of 10 428 patients. Then, 792 (7.6%) individuals (comprising 759 individuals harbouring one P/LP variant in one gene, 29 individuals harbouring two or more P/LP variants in different genes and 4 individuals with two P/LP variants in ABCC6) were predicted to be at risk for one or more monogenic diseases based on the inheritance pattern. Finally, 230 of 792 individuals manifested a clinical phenotype in the EHR data to support the diagnosis of stroke with a monogenic cause. The most diagnosed Mendelian cause of stroke in the cohort was cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. There were no relationships between age or family history and the incidence of first symptomatic monogenic stroke in patients. CONCLUSION The rate of monogenic cause of stroke was 2.2% after reviewing the clinical phenotype. Possible reasons that Mendelian causes of stroke may be missed in adult patients who had an ischaemic stroke/TIA include a late onset of stroke symptoms, combination with common vascular risks and the absence of a prominent family history.
Collapse
Affiliation(s)
- Wei Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chaoxia Lu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jialu Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhe Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Braxton Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yong Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong-Qiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qin Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinxi Lin
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Jing
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wanlin Zhu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhigang Liang
- Department of Neurology, Qindao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Mengxing Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Stroke Genomics: Current Knowledge, Clinical Applications and Future Possibilities. Brain Sci 2022; 12:brainsci12030302. [PMID: 35326259 PMCID: PMC8946102 DOI: 10.3390/brainsci12030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022] Open
Abstract
The pathophysiology of stoke involves many complex pathways and risk factors. Though there are several ongoing studies on stroke, treatment options are limited, and the prevalence of stroke is continuing to increase. Understanding the genomic variants and biological pathways associated with stroke could offer novel therapeutic alternatives in terms of drug targets and receptor modulations for newer treatment methods. It is challenging to identify individual causative mutations in a single gene because many alleles are responsible for minor effects. Therefore, multiple factorial analyses using single nucleotide polymorphisms (SNPs) could be used to gain new insight by identifying potential genetic risk factors. There are many studies, such as Genome-Wide Association Studies (GWAS) and Phenome-Wide Association Studies (PheWAS) which have identified numerous independent loci associated with stroke, which could be instrumental in developing newer drug targets and novel therapies. Additionally, using analytical techniques, such as meta-analysis and Mendelian randomization could help in evaluating stroke risk factors and determining treatment priorities. Combining SNPs into polygenic risk scores and lifestyle risk factors could detect stroke risk at a very young age and help in administering preventive interventions.
Collapse
|
3
|
Yang X, Xu H, Liu D, Ma R, Zhang Y, Wang G. Association between Histone Deacetylase 9 Gene Polymorphism and Stroke in Chinese Han Population. J Korean Neurosurg Soc 2020; 64:309-315. [PMID: 33227180 PMCID: PMC7969036 DOI: 10.3340/jkns.2020.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/14/2020] [Indexed: 11/27/2022] Open
Abstract
Objective To explore the correlation between the polymorphism of histone deacetylase 9 gene (rs1060499865, rs723296, rs957960) and ischemic stroke (IS) in Chinese Han population in Dali region.
Methods This study included 155 IS patients and 128 healthy physical examinees. TaqMan-polymerase chain reaction technology and multivariate logistic regression were performed.
Results In the case group, there was no polymorphism of rs1060499865 observed in the two groups; whereas on the rs723296 locus the frequencies of C allele and TC genotype were significantly higher than that in the control group, alleles C and T were associated with a 2.158-fold increase in IS risk, and genotypes TC and TT were associated with a 2.269-fold increase in IS risk. The locus rs957960 exhibited no significant difference between the two groups.
Conclusion An association between rs723296 and the risk of IS was found in the Chinese Han population in Dali region. No significant association was found between rs1060499865, rs957960 and IS in the Chinese Han population in Dali region.
Collapse
Affiliation(s)
- Xitong Yang
- Genetic Testing Center, The First Affiliated hospital of Dali University, Dali, China
| | - Hongyang Xu
- Deparment of Encephalopathy, Hospital of Traditional Chinese Medicine, Guangde, China
| | - Dan Liu
- Genetic Testing Center, The First Affiliated hospital of Dali University, Dali, China
| | - Rong Ma
- Genetic Testing Center, The First Affiliated hospital of Dali University, Dali, China
| | - Yuanyuan Zhang
- Genetic Testing Center, The First Affiliated hospital of Dali University, Dali, China
| | - Guangming Wang
- Genetic Testing Center, The First Affiliated hospital of Dali University, Dali, China
| |
Collapse
|
4
|
Müller SJ, Khadhraoui E, Allam I, Argyriou L, Hehr U, Liman J, Hasenfuß G, Bähr M, Riedel CH, Koch JC. CARASIL with coronary artery disease and distinct cerebral microhemorrhage: A case report and literature review. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2020. [DOI: 10.1177/2514183x20914182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cerebral Autosomal Recessive Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CARASIL, Maeda syndrome) is an extremely rare autosomal-recessive genetic disorder with a serious arteriopathy causing subcortical infarcts and leukoencephalopathy. In less than 20 cases, a genetic mutation was proven. Patients suffer from alopecia, disc herniations, and spondylosis. Between the age of 30 and 40, the patients typically develop severe cerebral infarcts. Clinical symptoms, genetic study, magnetic resonance imaging (MRI), and coronary angiography of a patient with proven CARASIL are presented. The patient showed the typical phenotype with cerebral small-vessel disease, cerebral infarcts, spondylosis, and abnormal hair loss. Additionally, distinct cerebral microhemorrhage and a severe coronary artery disease (CAD) were found, which have not been reported before for CARASIL. Mutation screening revealed the presence of a homozygous c.1022G > T substitution in the HTRA1 gene. Evidence from other publications supports a pathogenetic link between the HTRA1 mutation and CAD as a new feature of CARASIL. This is the first report about CARASIL with a concomitant severe CAD. Thus, in patients with CARASIL, other vessel diseases should also be considered.
Collapse
Affiliation(s)
- Sebastian J Müller
- Institute of Neuroradiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Eya Khadhraoui
- Institute of Neuroradiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Ibrahim Allam
- Department of Neurology, Georg-August-University Göttingen, Göttingen, Germany
| | - Loukas Argyriou
- Institute of Human Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Ute Hehr
- Center for Human Genetics Regensburg, Regensburg, Germany
| | - Jan Liman
- Department of Neurology, Georg-August-University Göttingen, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, Georg-August-University Göttingen, Göttingen, Germany
| | - Christian H Riedel
- Institute of Neuroradiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Jan C Koch
- Department of Neurology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Barone FC, Gustafson D, Crystal HA, Moreno H, Adamski MG, Arai K, Baird AE, Balucani C, Brickman AM, Cechetto D, Gorelick P, Biessels GJ, Kiliaan A, Launer L, Schneider J, Sorond FA, Whitmer R, Wright C, Zhang ZG. First translational 'Think Tank' on cerebrovascular disease, cognitive impairment and dementia. J Transl Med 2016; 14:50. [PMID: 26873444 PMCID: PMC4752794 DOI: 10.1186/s12967-016-0806-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 01/22/2016] [Indexed: 01/12/2023] Open
Abstract
As the human population continues to age, an increasing number of people will exhibit significant deficits in cognitive function and dementia. It is now recognized that cerebrovascular, metabolic and neurodegenerative diseases all play major roles in the evolution of cognitive impairment and dementia. Thus with our more recent recognition of these relationships and our need to understand and more positively impact on this world health problem, "The Leo and Anne Albert Charitable Trust" (Gene Pranzo, Trustee with significant support from Susan Brogan, Meeting Planner) provided generous support for this inaugural international workshop that was held from April 13-16, 2015 at the beautiful Ritz Carlton Golf Resort in North Naples, Florida. Researchers from SUNY Downstate Medical Center, Brooklyn, NY organized the event by selecting the present group of translationally inclined preclinical, clinical and population scientists focused on cerebrovascular disease (CVD) risk and its progression to vascular cognitive impairment (VCI) and dementia. Participants at the workshop addressed important issues related to aging, cognition and dementia by: (1) sharing new data, information and perspectives that intersect vascular, metabolic and neurodegenerative diseases, (2) discussing gaps in translating population risk, clinical and preclinical information to the progression of cognitive loss, and (3) debating new approaches and methods to fill these gaps that can translate into future therapeutic interventions. Participants agreed on topics for group discussion prior to the meeting and focused on specific translational goals that included promoting better understanding of dementia mechanisms, the identification of potential therapeutic targets for intervention, and discussed/debated the potential utility of diagnostic/prognostic markers. Below summarizes the new data-presentations, concepts, novel directions and specific discussion topics addressed by this international translational team at our "First Leo and Anne Albert Charitable Trust 'Think Tank' VCI workshop".
Collapse
Affiliation(s)
- Frank C Barone
- Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA.
- Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA.
| | - Deborah Gustafson
- Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA.
- Section Neuroepidemiology, SUNY Downstate Medical Center, Brooklyn, NY, USA.
| | - Howard A Crystal
- Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA.
- Pathology, SUNY Downstate Medical Center, Brooklyn, NY, USA.
| | - Herman Moreno
- Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA.
- Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA.
| | - Mateusz G Adamski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland.
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, CharlesTown, Boston, MA, USA.
| | - Alison E Baird
- Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA.
- Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA.
| | | | - Adam M Brickman
- Taub Institute for Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA.
| | - David Cechetto
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Philip Gorelick
- Translational Science and Molecular Medicine, Michigan State University College of Human Medicine, Mercy Health Hauenstein Neurosciences, Grand Rapids, MI, USA.
| | - Geert Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Amanda Kiliaan
- Department of Anatomy, Preclinical Imaging Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands.
| | - Lenore Launer
- Neuroepidemiology Section, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Julie Schneider
- Pathology (Neuropathology) and Neurological Sciences, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
| | - Farzaneh A Sorond
- Department of Neurology, Stroke Division, Brigham and Women's Hospital, Boston, MA, USA.
| | - Rachel Whitmer
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.
| | - Clinton Wright
- McKnight Brain Institute, Division of Cognitive Disorders, Neurology, Public Health Sciences and Neuroscience, University of Miami, Miami, FL, USA.
| | | |
Collapse
|
6
|
Polymorphisms in the Promoters of the MMP-2 and TIMP-2 Genes Are Associated with Spontaneous Deep Intracerebral Hemorrhage in the Taiwan Population. PLoS One 2015; 10:e0142482. [PMID: 26551785 PMCID: PMC4638341 DOI: 10.1371/journal.pone.0142482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/22/2015] [Indexed: 01/18/2023] Open
Abstract
Background Spontaneous intracerebral hemorrhage (ICH) is a devastating stroke subtype. Matrix metalloproteinases (MMPs) function in the degradation of extracellular matrix and the activities of MMPs are modulated by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). This study aimed to discuss relationship of MMP-2 and TIMP-2 to spontaneous deep ICH (SDICH) susceptibility and hematoma size. Methods Associations were tested by logistic regression and general linear models (GLM) where appropriate, adjusting with covariables of age, sex, hypertension, diabetes mellitus, smoking, and alcohol consumption. Association analyses were performed first by stratification of genders and then by the age of 65 years old (y/o). Elder population was defined as subjects who were older than 65 y/o. Results There were 396 SDICH patients and 376 control subjects in this study. In the elder group, rs7503607 C>A variant in TIMP-2 was associated with SDICH in male and overall patients (OR = 3.49, 95% CI 1.45 to 8.40, P = 0.005 and OR = 2.45, 95% CI 1.37 to 4.38, P = 0.003, respectively) in additive genetic model. In recessive genetic model, rs2285053 TT genotype in MMP-2 was correlated to SDICH in male patients and overall elder group (OR = 7.30, 95% CI 1.3 to 40, P = 0.02 and OR = 2.91, 95% CI 1.02 to 8.31, P = 0.046, respectively), and rs7503726 AA genotype in TIMP-2 was associated with SDICH in female patients (OR = 0.29, 95% CI 0.1 to 0.84, P = 0.02). In younger male and overall younger patients, SDICH patients who had supratentorial hemorrhage had significantly lower frequency of AA genotypes in rs7503726 than those with infratentorial hemorrhage (OR = 0.36, 95% CI 0.17 to 0.75, P = 0.006 and OR = 0.43, 95% CI 0.22 to 0.84, P = 0.014, respectively). Hemorrhage size increased by 9.7 (95% CI 2.1 to 43, P = 0.004) cm3 per minor allele (A) of the rs7503607 variant in the elder female patients and increased by 4.3 (95% CI 1.4 to 12.9, P = 0.009) cm3 per minor allele (A) in all elder patients. In younger patients, the hemorrhage size decreased by 3.3 (95% CI 1.2 to 9.5, P = 0.03) cm3 per minor allele of the s7503726 variant in the female patients. Conclusions This study showed a significant association between the variants of MMP-2 and TIMP-2 promoters and SDICH susceptibility with significant age and gender differences. Hemorrhage location and size might be affected by TIMP-2 promoter variants in the SDICH patients.
Collapse
|
7
|
Wolf BJ, Hill EG, Slate EH, Neumann CA, Kistner-Griffin E. LBoost: A boosting algorithm with application for epistasis discovery. PLoS One 2012; 7:e47281. [PMID: 23144812 PMCID: PMC3493573 DOI: 10.1371/journal.pone.0047281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 09/14/2012] [Indexed: 11/19/2022] Open
Abstract
Many human diseases are attributable to complex interactions among genetic and environmental factors. Statistical tools capable of modeling such complex interactions are necessary to improve identification of genetic factors that increase a patient's risk of disease. Logic Forest (LF), a bagging ensemble algorithm based on logic regression (LR), is able to discover interactions among binary variables predictive of response such as the biologic interactions that predispose individuals to disease. However, LF's ability to recover interactions degrades for more infrequently occurring interactions. A rare genetic interaction may occur if, for example, the interaction increases disease risk in a patient subpopulation that represents only a small proportion of the overall patient population. We present an alternative ensemble adaptation of LR based on boosting rather than bagging called LBoost. We compare the ability of LBoost and LF to identify variable interactions in simulation studies. Results indicate that LBoost is superior to LF for identifying genetic interactions associated with disease that are infrequent in the population. We apply LBoost to a subset of single nucleotide polymorphisms on the PRDX genes from the Cancer Genetic Markers of Susceptibility Breast Cancer Scan to investigate genetic risk for breast cancer. LBoost is publicly available on CRAN as part of the LogicForest package, http://cran.r-project.org/.
Collapse
Affiliation(s)
- Bethany J Wolf
- Division of Biostatistics and Epidemiology, Medical University of South Carolina, Charleston, South Carolina, United States of America.
| | | | | | | | | |
Collapse
|
8
|
Della-Morte D, Guadagni F, Palmirotta R, Testa G, Caso V, Paciaroni M, Abete P, Rengo F, Ferroni P, Sacco RL, Rundek T. Genetics of ischemic stroke, stroke-related risk factors, stroke precursors and treatments. Pharmacogenomics 2012; 13:595-613. [PMID: 22462751 DOI: 10.2217/pgs.12.14] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stroke remains a leading cause of death worldwide and the first cause of disability in the western world. Ischemic stroke (IS) accounts for almost 80% of the total cases of strokes and is a complex and multifactorial disease caused by the combination of vascular risk factors, environment and genetic factors. Investigations of the genetics of atherosclerosis and IS has greatly enhanced our knowledge of this complex multifactorial disease. In this article we sought to review common single-gene disorders relevant to IS, summarize candidate gene and genome-wide studies aimed at discovering genetic stroke risk factors and subclinical phenotypes, and to briefly discuss pharmacogenetics related to stroke treatments. Genetics of IS is, in fact, one of the most promising research frontiers and genetic testing may be helpful for novel drug discoveries as well as for appropriate drug and dose selection for treatment of patients with cerebrovascular disease.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Reyes S, Kurtz A, Hervé D, Tournier-Lasserve E, Chabriat H. Presymptomatic genetic testing in CADASIL. J Neurol 2012; 259:2131-6. [PMID: 22418996 DOI: 10.1007/s00415-012-6468-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/22/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
Genetic counselling has been poorly investigated in cerebrovascular diseases. Characteristics, motivations and long-term outcome of presymptomatic tests (PT) in subjects at risk of CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) were investigated at the National Centre for Rare Vascular Diseases of the Brain and/or Retina (CERVCO). Sociodemographic, motivational and psychological variables were collected between 2003 and 2010 for PT applicants. Multidisciplinary consultations (with a geneticist, neurologist and psychologist) were proposed over a 6 month period. When PT showed a deleterious mutation of the NOTCH3 gene, cognitive performances, mood, autonomy and quality of life were also assessed. Over 7 years, only 33 subjects asked for a PT of CADASIL. They were predominantly women, lived as a couple, had children and were of high sociocultural level. The dropout rate after the first step of the procedure was 63%. The characteristics of the 11 subjects who reached the end of the procedure did not differ from the 22 who dropped out. Six were carriers of the deleterious mutation and were still asymptomatic after a mean follow-up of 19 months. They did not experience any particular negative event and all of them indicated a high score of overall quality of life. Indeed, two carriers gave birth to their first child. These initial data in CADASIL show that PT is rarely requested and that there is a high dropout rate. Our study also highlights that a multidisciplinary and multistep procedure in genetic counselling testing appears useful to obtain minimal harmful consequences of genetic testing.
Collapse
Affiliation(s)
- S Reyes
- Department of Neurology and CERVCO, GH Saint-Louis-Lariboisière-Fernand Widal, APHP et Université Paris, 7 Denis Diderot, Paris, France
| | | | | | | | | |
Collapse
|
10
|
Kennedy RE, Howard G, Go RC, Rothwell PM, Tiwari HK, Feng R, McClure LA, Prineas RJ, Banerjee A, Arnett DK. Association between family risk of stroke and myocardial infarction with prevalent risk factors and coexisting diseases. Stroke 2012; 43:974-9. [PMID: 22328552 DOI: 10.1161/strokeaha.111.645044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Familial transmission of stroke and myocardial infarction (MI) is partially mediated by transmission of cerebrovascular and cardiovascular risk factors. We examined relationships between family risk of stroke and MI with risk factors for these phenotypes. METHODS A cross-sectional association between the stratified log-rank family score for stroke and MI with prevalent risk factors was assessed in the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort. RESULTS Individuals in the fourth quartile of stratified log-rank family scores for stroke were more likely to have prevalent risk factors including hypertension (OR, 1.43; 95% CI, 1.30-1.58), left ventricular hypertrophy (OR, 1.42; 95% CI, 1.16-1.42), diabetes (OR, 1.26; 95% CI, 1.12-1.43), and atrial fibrillation (OR, 1.23; 95% CI, 1.03-1.45) compared with individuals in the first quartile. Likewise, individuals in the fourth quartile of stratified log-rank family scores for MI were more likely to have prevalent risk factors including hypertension (OR, 1.57; 95% CI, 1.27-1.94) and diabetes (OR, 1.29; 95% CI, 1.12-1.43) than the first quartile. In contrast to stroke, the family risk score for MI was associated with dyslipidemia (OR, 1.38; 95% CI, 1.23-1.55) and overweight/obesity (OR, 1.22; 95% CI, 1.10-1.37). CONCLUSIONS Family risk of stroke and MI is strongly associated with the majority of risk factors associated with each disease. Family history and genetic studies separating nonspecific contributions of intermediate phenotypes from specific contributions to the disease phenotype may lead to a more thorough understanding of transmission for these complex disorders.
Collapse
Affiliation(s)
- Richard E Kennedy
- Department of Biostatistics, School of Public Health, 1665 University Boulevard, University of Alabama at Birmingham, Birmingham, AL 35294-0022, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Although stroke remains a leading cause of disability and mortality worldwide, recently there have been significant advances related to our understanding of the genetic basis of stroke. Ongoing research efforts put us on the cusp for major breakthroughs in the field. In this review, we present the substantial evidence for the contribution of genetic variation to the development of stroke, and the difficulties posed in the study of stroke given the numerous genetically driven risk factors and stroke subtypes. We emphasize recent findings implementing candidate gene and genome-wide association approaches. We then discuss how emerging knowledge is informing and reshaping our understanding of stroke biology and how, in the near term, genetics may be used clinically to identify individuals who are at risk of disease or who may derive benefit from specific treatment modalities. Lastly, we address ongoing and future approaches that will continue to improve our understanding of stroke genetics.
Collapse
|
12
|
Biomarkers for Stroke: In Search of Fingerprints. J Stroke Cerebrovasc Dis 2011; 20:173-6. [DOI: 10.1016/j.jstrokecerebrovasdis.2011.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 11/23/2022] Open
|
13
|
DeMaria AN, Bax JJ, Ben-Yehuda O, Feld GK, Greenberg BH, Hall J, Hlatky M, Lew WY, Lima JA, Maisel AS, Narayan SM, Nissen S, Sahn DJ, Tsimikas S. Highlights of the Year in JACC 2010. J Am Coll Cardiol 2011; 57:480-514. [DOI: 10.1016/j.jacc.2010.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Ali YO, Kitay BM, Zhai RG. Dealing with misfolded proteins: examining the neuroprotective role of molecular chaperones in neurodegeneration. Molecules 2010; 15:6859-87. [PMID: 20938400 PMCID: PMC3133442 DOI: 10.3390/molecules15106859] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 01/19/2023] Open
Abstract
Human neurodegenerative diseases arise from a wide array of genetic and environmental factors. Despite the diversity in etiology, many of these diseases are considered "conformational" in nature, characterized by the accumulation of pathological, misfolded proteins. These misfolded proteins can induce cellular stress by overloading the proteolytic machinery, ultimately resulting in the accumulation and deposition of aggregated protein species that are cytotoxic. Misfolded proteins may also form aberrant, non-physiological protein-protein interactions leading to the sequestration of other normal proteins essential for cellular functions. The progression of such disease may therefore be viewed as a failure of normal protein homeostasis, a process that involves a network of molecules regulating the synthesis, folding, translocation and clearance of proteins. Molecular chaperones are highly conserved proteins involved in the folding of nascent proteins, and the repair of proteins that have lost their typical conformations. These functions have therefore made molecular chaperones an active area of investigation within the field of conformational diseases. This review will discuss the role of molecular chaperones in neurodegenerative diseases, highlighting their functional classification, regulation, and therapeutic potential for such diseases.
Collapse
Affiliation(s)
- Yousuf O. Ali
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Brandon M. Kitay
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Graduate Program, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - R. Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Graduate Program, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|