1
|
Camilli M, Maggio L, Tinti L, Torre I, Viscovo M, Viscovo M, Tamburrini G, Lombardo A, Cardinale DM, Minotti G, Rocca B. Cardio-oncology: Emerging Concepts in Cardiovascular Sequelae of Cancer Therapies, Translational Research and Reverse Cardio-oncology. Eur Cardiol 2025; 20:e05. [PMID: 40170756 PMCID: PMC11959581 DOI: 10.15420/ecr.2024.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 04/03/2025] Open
Abstract
Cardio-oncology was established with the aim of defining primary and secondary prevention approaches through surveillance and the use of tools to stratify and diminish the cardiovascular risk to cancer patients. This branch of medicine also contributes to establishing a new field in translational medicine for cardiovascular disease by focusing on the interplay between cancer and heart disease. In this first article in the new cardio-oncology section of the journal, we explore the main concepts of emerging anti-cancer therapies and their plausible cardiotoxic effects and we will describe advances and gaps in knowledge, highlighting how cardio-oncology is contributing to translational cardiology. We will speculate on the complex interplay between cancer and heart failure and discuss an emerging concept known as reverse cardio-oncology. We also present the perspective that cardio-oncology represents a promising platform area of research, allowing the discovery of novel pathways involved in cardiovascular disease through the identification of toxicities induced by targeted cancer therapies.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro CuoreRome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCSRome, Italy
| | - Luca Maggio
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro CuoreRome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCSRome, Italy
| | - Lorenzo Tinti
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro CuoreRome, Italy
| | - Ilaria Torre
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro CuoreRome, Italy
| | - Marcello Viscovo
- Department of Laboratory and Hematology Sciences, Fondazione Policlinico Universitario A Gemelli IRCCSRome, Italy
- Department of Radiology and Hematology Sciences, Università Cattolica del Sacro CuoreRome, Italy
| | - Marcello Viscovo
- Department of Laboratory and Hematology Sciences, Fondazione Policlinico Universitario A Gemelli IRCCSRome, Italy
- Department of Radiology and Hematology Sciences, Università Cattolica del Sacro CuoreRome, Italy
| | - Giulia Tamburrini
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro CuoreRome, Italy
| | - Antonella Lombardo
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro CuoreRome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCSRome, Italy
| | | | - Giorgio Minotti
- Unit of Drug Sciences, Fondazione Policlinico Universitario Campus Bio-MedicoRome, Italy
| | - Bianca Rocca
- Department of Medicine and Surgery, Libera Università MediterraneaBari, Italy
- Department of Safety and Bioethics, Università Cattolica del Sacro CuoreRome, Italy
| |
Collapse
|
2
|
Tsai CC, Wang CY, Chang HH, Chang PTS, Chang CH, Chu TY, Hsu PC, Kuo CY. Diagnostics and Therapy for Malignant Tumors. Biomedicines 2024; 12:2659. [PMID: 39767566 PMCID: PMC11726849 DOI: 10.3390/biomedicines12122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Malignant tumors remain one of the most significant global health challenges and contribute to high mortality rates across various cancer types. The complex nature of these tumors requires multifaceted diagnostic and therapeutic approaches. This review explores current advancements in diagnostic methods, including molecular imaging, biomarkers, and liquid biopsies. It also delves into the evolution of therapeutic strategies, including surgery, chemotherapy, radiation therapy, and novel targeted therapies such as immunotherapy and gene therapy. Although significant progress has been made in the understanding of cancer biology, the future of oncology lies in the integration of precision medicine, improved diagnostic tools, and personalized therapeutic approaches that address tumor heterogeneity. This review aims to provide a comprehensive overview of the current state of cancer diagnostics and treatments while highlighting emerging trends and challenges that lie ahead.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Chun-Yu Wang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Hsu-Hung Chang
- Division of Nephrology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan;
| | | | - Chuan-Hsin Chang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Tin Yi Chu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Po-Chih Hsu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Oral Medicine and Materials, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| |
Collapse
|
3
|
Wilcox NS, Amit U, Reibel JB, Berlin E, Howell K, Ky B. Cardiovascular disease and cancer: shared risk factors and mechanisms. Nat Rev Cardiol 2024; 21:617-631. [PMID: 38600368 PMCID: PMC11324377 DOI: 10.1038/s41569-024-01017-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Cardiovascular disease (CVD) and cancer are among the leading causes of morbidity and mortality globally, and these conditions are increasingly recognized to be fundamentally interconnected. In this Review, we present the current epidemiological data for each of the modifiable risk factors shared by the two diseases, including hypertension, hyperlipidaemia, diabetes mellitus, obesity, smoking, diet, physical activity and the social determinants of health. We then review the epidemiological data demonstrating the increased risk of CVD in patients with cancer, as well as the increased risk of cancer in patients with CVD. We also discuss the shared mechanisms implicated in the development of these conditions, highlighting their inherent bidirectional relationship. We conclude with a perspective on future research directions for the field of cardio-oncology to advance the care of patients with CVD and cancer.
Collapse
Affiliation(s)
- Nicholas S Wilcox
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Uri Amit
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob B Reibel
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eva Berlin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kendyl Howell
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bonnie Ky
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Logotheti S, Pavlopoulou A, Rudsari HK, Galow AM, Kafalı Y, Kyrodimos E, Giotakis AI, Marquardt S, Velalopoulou A, Verginadis II, Koumenis C, Stiewe T, Zoidakis J, Balasingham I, David R, Georgakilas AG. Intercellular pathways of cancer treatment-related cardiotoxicity and their therapeutic implications: the paradigm of radiotherapy. Pharmacol Ther 2024; 260:108670. [PMID: 38823489 DOI: 10.1016/j.pharmthera.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Advances in cancer therapeutics have improved patient survival rates. However, cancer survivors may suffer from adverse events either at the time of therapy or later in life. Cardiovascular diseases (CVD) represent a clinically important, but mechanistically understudied complication, which interfere with the continuation of best-possible care, induce life-threatening risks, and/or lead to long-term morbidity. These concerns are exacerbated by the fact that targeted therapies and immunotherapies are frequently combined with radiotherapy, which induces durable inflammatory and immunogenic responses, thereby providing a fertile ground for the development of CVDs. Stressed and dying irradiated cells produce 'danger' signals including, but not limited to, major histocompatibility complexes, cell-adhesion molecules, proinflammatory cytokines, and damage-associated molecular patterns. These factors activate intercellular signaling pathways which have potentially detrimental effects on the heart tissue homeostasis. Herein, we present the clinical crosstalk between cancer and heart diseases, describe how it is potentiated by cancer therapies, and highlight the multifactorial nature of the underlying mechanisms. We particularly focus on radiotherapy, as a case known to often induce cardiovascular complications even decades after treatment. We provide evidence that the secretome of irradiated tumors entails factors that exert systemic, remote effects on the cardiac tissue, potentially predisposing it to CVDs. We suggest how diverse disciplines can utilize pertinent state-of-the-art methods in feasible experimental workflows, to shed light on the molecular mechanisms of radiotherapy-related cardiotoxicity at the organismal level and untangle the desirable immunogenic properties of cancer therapies from their detrimental effects on heart tissue. Results of such highly collaborative efforts hold promise to be translated to next-generation regimens that maximize tumor control, minimize cardiovascular complications, and support quality of life in cancer survivors.
Collapse
Affiliation(s)
- Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece; Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | - Anne-Marie Galow
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Yağmur Kafalı
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Efthymios Kyrodimos
- First Department of Otorhinolaryngology, Head and Neck Surgery, Hippocrateion General Hospital Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Aris I Giotakis
- First Department of Otorhinolaryngology, Head and Neck Surgery, Hippocrateion General Hospital Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephan Marquardt
- Institute of Translational Medicine for Health Care Systems, Medical School Berlin, Hochschule Für Gesundheit Und Medizin, 14197 Berlin, Germany
| | - Anastasia Velalopoulou
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35043 Marburg, Germany; German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany; Genomics Core Facility, Philipps-University, 35043 Marburg, Germany; Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece; Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, 18057 Rostock, Germany; Department of Life, Light & Matter, Interdisciplinary Faculty, Rostock University, 18059 Rostock, Germany
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece.
| |
Collapse
|
5
|
Kang X, Lau HCH, Yu J. Modulating gut microbiome in cancer immunotherapy: Harnessing microbes to enhance treatment efficacy. Cell Rep Med 2024; 5:101478. [PMID: 38631285 PMCID: PMC11031381 DOI: 10.1016/j.xcrm.2024.101478] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 04/19/2024]
Abstract
Immunotherapy has emerged as a robust approach against cancer, yet its efficacy has varied among individuals, accompanied by the occurrence of immune-related adverse events. As a result, the efficacy of immunotherapy is far from satisfactory, and enormous efforts have been invested to develop strategies to improve patient outcomes. The gut microbiome is now well acknowledged for its critical role in immunotherapy, with better understanding on host-microbes interaction in the context of cancer treatment. Also, an increasing number of trials have been conducted to evaluate the potential and feasibility of microbiome-targeting approaches to enhance efficacy of cancer treatment in patients. Here, the role of the gut microbiome and metabolites (e.g., short-chain fatty acids, tryptophan metabolites) in immunotherapy and the underlying mechanisms are explored. The application of microbiome-targeting approaches that aim to improve immunotherapy efficacy (e.g., fecal microbiota transplantation, probiotics, dietary intervention) is also elaborated, with further discussion on current challenges and suggestions for future research.
Collapse
Affiliation(s)
- Xing Kang
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
6
|
Ye X. Quantitative Membrane Proteomics for Discovery of Actionable Drug Targets at the Surface of RAS-Driven Human Cancer Cells. Methods Mol Biol 2024; 2823:27-46. [PMID: 39052212 DOI: 10.1007/978-1-0716-3922-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
With the advent of promising lung cancer immunotherapies targeting proteins at the cell surface of RAS-driven human cancers, the mass spectrometry (MS)-based surfaceomics remains a feasible strategy for therapeutic target discovery. This chapter describes a protocol for discovery of druggable protein targets at the surface of RAS-driven human cancer cells. This method relies on bottom-up MS-based quantitative surfaceomics that employs in parallel, targeted hydrazide-based cell-surface glycoproteomics and global shotgun membrane proteomics to enable unbiased quantitative profiling of thousands of cell surface membrane proteins. A large-scale molecular map of the KRASG12V surface was attained, resulting in confident detection and quantitation of more than 500 cell surface membrane proteins that were found to be unique or upregulated at the surface of cells harboring the KRASG12V mutant. A multistep bioinformatic progression revealed a subset of unique and/or significantly upregulated proteins as priority drug targets selected for orthogonal cross-validation using immunofluorescence, structured illumination microscopy, and western blotting. Among cross-validated targets, CUB domain containing protein 1 (CDCP1) and basigin (BSG-CD147) were selected as leading targets due to their involvement in cell adhesion and migration, consistent with the KRASG12V malignant phenotype as revealed by scanning electron microscopy and phenotypic cancer cell assays. Follow-up studies confirmed CDCP1 as an actionable therapeutic target, resulting in development of recombinant antibodies capable of killing KRAS-transformed cancer cells in preclinical setting. The present MS-based surfaceomics workflow represents a powerful drug target discovery platform that enables development of innovative immunotherapeutics (e.g., antibody drug conjugate against CDCP1) for attacking oncogenic RAS-driven cancers at the cell surface.
Collapse
Affiliation(s)
- Xiaoying Ye
- Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
7
|
Kashyap MK, Mangrulkar SV, Kushwaha S, Ved A, Kale MB, Wankhede NL, Taksande BG, Upaganlawar AB, Umekar MJ, Koppula S, Kopalli SR. Recent Perspectives on Cardiovascular Toxicity Associated with Colorectal Cancer Drug Therapy. Pharmaceuticals (Basel) 2023; 16:1441. [PMID: 37895912 PMCID: PMC10610064 DOI: 10.3390/ph16101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiotoxicity is a well-known adverse effect of cancer-related therapy that has a significant influence on patient outcomes and quality of life. The use of antineoplastic drugs to treat colorectal cancers (CRCs) is associated with a number of undesirable side effects including cardiac complications. For both sexes, CRC ranks second and accounts for four out of every ten cancer deaths. According to the reports, almost 39% of patients with colorectal cancer who underwent first-line chemotherapy suffered cardiovascular impairment. Although 5-fluorouracil is still the backbone of chemotherapy regimen for colorectal, gastric, and breast cancers, cardiotoxicity caused by 5-fluorouracil might affect anywhere from 1.5% to 18% of patients. The precise mechanisms underlying cardiotoxicity associated with CRC treatment are complex and may involve the modulation of various signaling pathways crucial for maintaining cardiac health including TKI ErbB2 or NRG-1, VEGF, PDGF, BRAF/Ras/Raf/MEK/ERK, and the PI3/ERK/AMPK/mTOR pathway, resulting in oxidative stress, mitochondrial dysfunction, inflammation, and apoptosis, ultimately damaging cardiac tissue. Thus, the identification and management of cardiotoxicity associated with CRC drug therapy while minimizing the negative impact have become increasingly important. The purpose of this review is to catalog the potential cardiotoxicities caused by anticancer drugs and targeted therapy used to treat colorectal cancer as well as strategies focused on early diagnosing, prevention, and treatment of cardiotoxicity associated with anticancer drugs used in CRC therapy.
Collapse
Affiliation(s)
- Monu Kumar Kashyap
- Goel Institute of Pharmaceutical Sciences, Faizabad Road, Lucknow 226028, Uttar Pradesh, India;
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow 222001, Uttar Pradesh, India;
| | - Shubhada V. Mangrulkar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Sapana Kushwaha
- National Institute of Pharmaceutical Education and Research, Raebareli 229010, Uttar Pradesh, India
| | - Akash Ved
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow 222001, Uttar Pradesh, India;
| | - Mayur B. Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Nitu L. Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Brijesh G. Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Aman B. Upaganlawar
- SNJB’s Shriman Sureshdada Jain Collge of Pharmacy, Neminagar, Chandwad, Nadik 423101, Maharashtra, India;
| | - Milind J. Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si 27478, Chungcheongbuk Do, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|