1
|
Liao TWE, Xu L, Khoshknab MP, Mather PJ, Bravo PE, Desjardins B, Nazarian S. Quantitative cardiac magnetic resonance standardized signal intensity comparison in dilated cardiomyopathy vs. cardiac sarcoidosis. J Interv Card Electrophysiol 2025:10.1007/s10840-025-02042-7. [PMID: 40327245 DOI: 10.1007/s10840-025-02042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/31/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) and cardiac sarcoidosis (CS) manifest unique late gadolinium enhancement (LGE) patterns on cardiac magnetic resonance (CMR), indicative of different myocardial scar distributions. However, the overlap in these patterns due to their lack of specificity complicates differentiation. This study introduces a novel quantitative method employing z-score analysis of LGE-CMR intensity to objectively compare the spatial distribution of LGE intensity between DCM and CS. METHODS This retrospective study included 22 NICM patients (13 DCM, 9 CS) who underwent CMR before electrophysiology study from November 2018 to May 2023. LGE images were delineated into sub-endocardial, mid-myocardial, and sub-epicardial layers across anterior, lateral, inferior, and septal walls using the AHA 17-segment model. CMR signal intensities were standardized to z-scores (z = (x - μ)/σ), with x as the signal intensity for a specific myocardial segment, and μ and σ as the mean and SD for all LV myocardial segments, to map regional intensity variations. RESULTS Compared to DCM, CS patients exhibited significantly higher CMR signal intensity z-scores in the septum (β = 0.32, p = 0.009), particularly in the endocardial third of the right ventricular (RV) side (β = 0.56, p = 0.001). A z-score greater than 0.40 in this area was associated with a CS diagnosis, with an area under the ROC curve of 0.692 in fivefold cross-validation. CONCLUSION Patients with CS exhibit higher affinity for contrast in the septum, particularly on the RV endocardium. Standardized analysis of CMR signal intensities provides a novel, quantitative method for distinguishing CS from DCM, with the former exhibiting higher CMR signal intensity z-scores in the septum.
Collapse
Affiliation(s)
- Ting-Wei Ernie Liao
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Lingyu Xu
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Mirmilad Pourmousavi Khoshknab
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Paul J Mather
- Section of Cardiomyopathy, Division of Cardiovascular Medicine, Department of Medicine , University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Paco E Bravo
- Section of Nuclear Cardiology and Cardiovascular Molecular Imaging, Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Benoit Desjardins
- Department of Radiology, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Saman Nazarian
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Section of Cardiac Electrophysiology, University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania Pavilion, Second Floor City Side, Office 6, One Convention Avenue, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Liuba I, Sroubek J, Santangeli P. Management of ventricular tachycardia in patients with advanced heart failure. Prog Cardiovasc Dis 2025:S0033-0620(25)00060-X. [PMID: 40319995 DOI: 10.1016/j.pcad.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Accepted: 04/12/2025] [Indexed: 05/07/2025]
Abstract
Ventricular arrhythmias (VAs) are highly prevalent in patients with advanced heart failure (AHF), a condition characterized by severe signs and symptoms despite conventional HF therapy. The management of VAs in this setting remains challenging. Antiarrhythmic drug therapy options are limited and only amiodarone has demonstrated effectiveness in suppressing VA, albeit this agent is associated with a substantial risk of cardiac and noncardiac adverse effects. Catheter ablation is effective for the reduction of VAs in patients with AHF. Identification of patients at high risk for periprocedural hemodynamic decompensation has important implications in terms of procedural planning and improving patient safety and procedural outcomes. Herein, we review the current state of scientific evidence for the management of VA in patients with AHF.
Collapse
Affiliation(s)
- Ioan Liuba
- Section of Cardiac Pacing and Electrophysiology, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jakub Sroubek
- Section of Cardiac Pacing and Electrophysiology, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Pasquale Santangeli
- Section of Cardiac Pacing and Electrophysiology, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
3
|
Ibrahim R, Abdelnabi M, Pathangey G, Farina J, Lester SJ, Ayoub C, Alsidawi S, Tamarappoo BK, Jokerst C, Arsanjani R. Utility of Cardiac CT for Cardiomyopathy Phenotyping. Tomography 2025; 11:39. [PMID: 40137579 PMCID: PMC11946596 DOI: 10.3390/tomography11030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiac computed tomography (CT) has rapidly advanced, becoming an invaluable tool for diagnosing and prognosticating various cardiovascular diseases. While echocardiography and cardiac magnetic resonance imaging (CMR) remain the gold standards for myocardial assessment, modern CT technologies offer enhanced spatial resolution, making it an essential tool in clinical practice. Cardiac CT has expanded beyond coronary artery disease evaluation, now playing a key role in assessing cardiomyopathies and structural heart diseases. Innovations like photon-counting CT enable precise estimation of myocardial extracellular volume, facilitating the detection of infiltrative disorders and myocardial fibrosis. Additionally, CT-based myocardial strain analysis allows for the classification of impaired myocardial contractility, while quantifying cardiac volumes and function remains crucial in cardiomyopathy evaluation. This review explores the emerging role of cardiac CT in cardiomyopathy phenotyping, emphasizing recent technological advancements.
Collapse
Affiliation(s)
- Ramzi Ibrahim
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (R.I.); (M.A.); (G.P.); (J.F.); (S.J.L.); (C.A.); (S.A.); (B.K.T.)
| | - Mahmoud Abdelnabi
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (R.I.); (M.A.); (G.P.); (J.F.); (S.J.L.); (C.A.); (S.A.); (B.K.T.)
| | - Girish Pathangey
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (R.I.); (M.A.); (G.P.); (J.F.); (S.J.L.); (C.A.); (S.A.); (B.K.T.)
| | - Juan Farina
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (R.I.); (M.A.); (G.P.); (J.F.); (S.J.L.); (C.A.); (S.A.); (B.K.T.)
| | - Steven J. Lester
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (R.I.); (M.A.); (G.P.); (J.F.); (S.J.L.); (C.A.); (S.A.); (B.K.T.)
| | - Chadi Ayoub
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (R.I.); (M.A.); (G.P.); (J.F.); (S.J.L.); (C.A.); (S.A.); (B.K.T.)
| | - Said Alsidawi
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (R.I.); (M.A.); (G.P.); (J.F.); (S.J.L.); (C.A.); (S.A.); (B.K.T.)
| | - Balaji K. Tamarappoo
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (R.I.); (M.A.); (G.P.); (J.F.); (S.J.L.); (C.A.); (S.A.); (B.K.T.)
| | - Clinton Jokerst
- Department of Radiology, Mayo Clinic, Scottsdale, AZ 85054, USA;
| | - Reza Arsanjani
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (R.I.); (M.A.); (G.P.); (J.F.); (S.J.L.); (C.A.); (S.A.); (B.K.T.)
| |
Collapse
|
4
|
Kolk MZH, Ruipérez-Campillo S, Wilde AAM, Knops RE, Narayan SM, Tjong FVY. Prediction of sudden cardiac death using artificial intelligence: Current status and future directions. Heart Rhythm 2025; 22:756-766. [PMID: 39245250 PMCID: PMC12057726 DOI: 10.1016/j.hrthm.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Sudden cardiac death (SCD) remains a pressing health issue, affecting hundreds of thousands each year globally. The heterogeneity among people who suffer a SCD, ranging from individuals with severe heart failure to seemingly healthy individuals, poses a significant challenge for effective risk assessment. Conventional risk stratification, which primarily relies on left ventricular ejection fraction, has resulted in only modest efficacy of implantable cardioverter-defibrillators for SCD prevention. In response, artificial intelligence (AI) holds promise for personalized SCD risk prediction and tailoring preventive strategies to the unique profiles of individual patients. Machine and deep learning algorithms have the capability to learn intricate nonlinear patterns between complex data and defined end points, and leverage these to identify subtle indicators and predictors of SCD that may not be apparent through traditional statistical analysis. However, despite the potential of AI to improve SCD risk stratification, there are important limitations that need to be addressed. We aim to provide an overview of the current state-of-the-art of AI prediction models for SCD, highlight the opportunities for these models in clinical practice, and identify the key challenges hindering widespread adoption.
Collapse
Affiliation(s)
- Maarten Z H Kolk
- Department of Clinical and Experimental Cardiology, Amsterdam UMC Location University of Amsterdam, Heart Center, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | | | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Amsterdam UMC Location University of Amsterdam, Heart Center, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Reinoud E Knops
- Department of Clinical and Experimental Cardiology, Amsterdam UMC Location University of Amsterdam, Heart Center, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Sanjiv M Narayan
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, California
| | - Fleur V Y Tjong
- Department of Clinical and Experimental Cardiology, Amsterdam UMC Location University of Amsterdam, Heart Center, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Chaumont C, Peyster EG, Siontis KC, Muser D, Kapa S, Markman TM, Pathak RK, Oraii A, Rodriguez-Queralto O, Anselme F, Margulies KB, Marchlinski FE, Frankel DS. Unipolar Voltage Mapping to Predict Recovery of Left Ventricular Ejection Fraction in Patients With Recent-Onset Nonischemic Cardiomyopathy. Circulation 2025; 151:368-378. [PMID: 39540275 DOI: 10.1161/circulationaha.124.070501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The ability to predict recovery of left ventricular ejection fraction (LVEF) in response to guideline-directed therapy among patients with nonischemic cardiomyopathy is desired. We sought to determine whether left ventricular endocardial unipolar voltage measured during invasive electroanatomic mapping could be used to predict LVEF recovery among those with recent-onset nonischemic cardiomyopathy. METHODS We analyzed the left ventricular voltage maps of patients included in the eMAP trial (Electrogram-Guided Myocardial Advanced Phenotyping; NCT03293381), a prospective, nonrandomized, interventional trial conducted at 2 institutions between 2017 and 2020. Patients had recent-onset nonischemic cardiomyopathy defined by LVEF ≤45% and development of symptoms or signs of heart failure within the past 6 months. Detailed voltage maps of the left ventricular endocardium were generated using the Carto electroanatomic mapping system. Abnormal unipolar amplitude was defined as <8.27 mV. The primary end point was recovery of LVEF (Recovery) defined by a 1-year LVEF ≥50% or ≥45% with ≥10% increase from baseline. RESULTS Of the 29 enrolled patients (median age, 49 years [25th percentile, 39; 75th percentile, 59], 8 females [27.6%]), LVEF recovered in 13 (44.8%) by 1-year follow-up. The percentage of total endocardial surface area with unipolar voltage abnormality (AUA) was significantly lower among Recovery patients than No Recovery patients (18.2% [25th percentile, 6.4; 75th percentile, 22.4] versus 80.0% [25th percentile, 29.5; 75th percentile, 90.9]; P=0.004). Percent AUA was associated with lower likelihood of Recovery (odds ratio, 0.64 per 10% increase in AUA; 95% CI, 0.47-0.88; P=0.006). A 28% cutoff value for percent AUA was 92% sensitive and 75% specific with an area under the receiver operating characteristic curve of 0.81 (95% CI, 0.63-0.99; P=0.001) for predicting recovery versus no recovery. The majority of patients (12 of 13; 92.3%) with a percent AUA >28% did not recover. CONCLUSIONS Left ventricular unipolar voltage abnormality is a potent predictor of LVEF recovery among patients recently diagnosed with nonischemic cardiomyopathy. Detailed left ventricular unipolar voltage mapping could therefore be used as a valuable prognostic tool in guiding treatment decisions.
Collapse
Affiliation(s)
- Corentin Chaumont
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (C.C., E.G.P., T.M.M., R.K.P., A.O., O.R.-Q., K.B.M., F.E.M., D.S.F.)
- Cardiology Department, Rouen University Hospital, France (C.C., F.A.)
| | - Eliot G Peyster
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (C.C., E.G.P., T.M.M., R.K.P., A.O., O.R.-Q., K.B.M., F.E.M., D.S.F.)
| | | | - Daniele Muser
- Cardiac Electrophysiology, Department of Biomedical Sciences, Humanitas University, Milan, Italy (D.M.)
| | - Suraj Kapa
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (K.C.S., S.K.)
| | - Timothy M Markman
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (C.C., E.G.P., T.M.M., R.K.P., A.O., O.R.-Q., K.B.M., F.E.M., D.S.F.)
| | - Rajeev K Pathak
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (C.C., E.G.P., T.M.M., R.K.P., A.O., O.R.-Q., K.B.M., F.E.M., D.S.F.)
| | - Alireza Oraii
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (C.C., E.G.P., T.M.M., R.K.P., A.O., O.R.-Q., K.B.M., F.E.M., D.S.F.)
| | - Oriol Rodriguez-Queralto
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (C.C., E.G.P., T.M.M., R.K.P., A.O., O.R.-Q., K.B.M., F.E.M., D.S.F.)
| | - Frederic Anselme
- Cardiology Department, Rouen University Hospital, France (C.C., F.A.)
| | - Kenneth B Margulies
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (C.C., E.G.P., T.M.M., R.K.P., A.O., O.R.-Q., K.B.M., F.E.M., D.S.F.)
| | - Francis E Marchlinski
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (C.C., E.G.P., T.M.M., R.K.P., A.O., O.R.-Q., K.B.M., F.E.M., D.S.F.)
| | - David S Frankel
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (C.C., E.G.P., T.M.M., R.K.P., A.O., O.R.-Q., K.B.M., F.E.M., D.S.F.)
| |
Collapse
|
6
|
Leo I, Figliozzi S, Ielapi J, Sicilia F, Torella D, Dellegrottaglie S, Baritussio A, Bucciarelli-Ducci C. Feasibility and Role of Cardiac Magnetic Resonance in Intensive and Acute Cardiovascular Care. J Clin Med 2025; 14:1112. [PMID: 40004642 PMCID: PMC11856486 DOI: 10.3390/jcm14041112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiac magnetic resonance (CMR) is established as a key imaging modality in a wide range of cardiovascular diseases and has an emerging diagnostic and prognostic role in selected patients presenting acutely. Recent technical advancements have improved the versatility of this imaging technique, which has become quicker and more detailed in both functional and tissue characterization assessments. Information derived from this test has the potential to change clinical management, guide therapeutic decisions, and provide risk stratification. This review aims to highlight the evolving diagnostic and prognostic role of CMR in this setting, whilst also providing practical guidance on which patients can benefit the most from CMR and which information can be derived from this test that will impact clinical management.
Collapse
Affiliation(s)
- Isabella Leo
- Royal Brompton and Harefield Hospitals, Guys and St Thomas NHS Foundation Trust, London SW3 6NP, UK;
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy (F.S.); (D.T.)
| | - Stefano Figliozzi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 80131 Napoli, Italy
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK
| | - Jessica Ielapi
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy (F.S.); (D.T.)
| | - Federico Sicilia
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy (F.S.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy (F.S.); (D.T.)
| | | | - Anna Baritussio
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua University Hospital, 35128 Padua, Italy
| | - Chiara Bucciarelli-Ducci
- Royal Brompton and Harefield Hospitals, Guys and St Thomas NHS Foundation Trust, London SW3 6NP, UK;
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
7
|
Raja DC, Shroff J, Nair A, Abhilash SP, Tuan LQ, Mehta A, Abhayaratna WP, Sanders P, Frankel DS, Marchlinski FE, Pathak RK. Correlation of extent of left ventricular endocardial unipolar low-voltage zones with ventricular tachycardia in nonischemic cardiomyopathy. Heart Rhythm 2024; 21:1970-1977. [PMID: 38636932 DOI: 10.1016/j.hrthm.2024.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Endocardial electrogram (EGM) characteristics in nonischemic cardiomyopathy (NICM) have not been explored adequately for prognostication. OBJECTIVE We aimed to study correlation of bipolar and unipolar EGM characteristics with left ventricular ejection fraction (LVEF) and ventricular tachycardia (VT) in NICM. METHODS Electroanatomic mapping of the left ventricle was performed. EGM characteristics were correlated with LVEF. Differences between groups with and without VT and predictors of VT were studied. RESULTS In 43 patients, unipolar EGM variables had better correlation with baseline LVEF than bipolar EGM variables: unipolar voltage (r = +0.36), peak negative unipolar voltage (r = -0.42), peak positive unipolar voltage (r = +0.38), and percentage area of unipolar low-voltage zone (LVZ; r = -0.41). Global mean unipolar voltage (hazard ratio [HR], 0.4; 95% confidence interval [CI], 0.2-0.8), extent of unipolar LVZ (HR, 1.6; 95% CI, 1.1-2.3), and percentage area of unipolar LVZ (HR, 1.6; 95% CI, 1.1-2.3) were significant predictors of VT. For classification of patients with VT, extent of unipolar LVZ had an area under the curve of 0.82 (95% CI, 0.69-0.95; P < .001), and percentage area of unipolar LVZ had an area under the curve of 0.83 (95% CI, 0.71-0.96; P = .01). Cutoff of >3 segments for extent of unipolar LVZ had the best diagnostic accuracy (sensitivity, 90%; specificity, 67%) and cutoff of 33% for percentage area of unipolar LVZ had the best diagnostic accuracy (sensitivity, 95%; specificity, 60%) for VT. CONCLUSION In NICM, extent and percentage area of unipolar LVZs are significant predictors of VT. Cutoffs of >3 segments of unipolar LVZ and >33% area of unipolar LVZ have good diagnostic accuracies for association with VT.
Collapse
Affiliation(s)
- Deep Chandh Raja
- The Australian National University, Australian Capital Territory, Australia; Canberra Heart Rhythm Centre, Australian Capital Territory, Australia
| | - Jenish Shroff
- The Australian National University, Australian Capital Territory, Australia; Canberra Heart Rhythm Centre, Australian Capital Territory, Australia
| | - Anugrah Nair
- The Australian National University, Australian Capital Territory, Australia; Canberra Heart Rhythm Centre, Australian Capital Territory, Australia
| | - Sreevilasam P Abhilash
- The Australian National University, Australian Capital Territory, Australia; Canberra Heart Rhythm Centre, Australian Capital Territory, Australia
| | - Lukah Q Tuan
- The Australian National University, Australian Capital Territory, Australia; Canberra Heart Rhythm Centre, Australian Capital Territory, Australia
| | - Abhinav Mehta
- The Australian National University, Australian Capital Territory, Australia
| | | | - Prashanthan Sanders
- Center for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - David S Frankel
- Section of Cardiac Electrophysiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Francis E Marchlinski
- Section of Cardiac Electrophysiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rajeev Kumar Pathak
- The Australian National University, Australian Capital Territory, Australia; Canberra Heart Rhythm Centre, Australian Capital Territory, Australia.
| |
Collapse
|
8
|
Muser D, Chahal AA, Selvanayagam JB, Nucifora G. Clinical Applications of Cardiac Magnetic Resonance Parametric Mapping. Diagnostics (Basel) 2024; 14:1816. [PMID: 39202304 PMCID: PMC11353869 DOI: 10.3390/diagnostics14161816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 09/03/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is widely regarded as the gold-standard technique for myocardial tissue characterization, allowing for the detection of structural abnormalities such as myocardial fatty replacement, myocardial edema, myocardial necrosis, and/or fibrosis. Historically, the identification of abnormal myocardial regions relied on variations in tissue signal intensity, often necessitating the use of exogenous contrast agents. However, over the past two decades, innovative parametric mapping techniques have emerged, enabling the direct quantitative assessment of tissue magnetic resonance (MR) properties on a voxel-by-voxel basis. These mapping techniques offer significant advantages by providing comprehensive and precise information that can be translated into color-coded maps, facilitating the identification of subtle or diffuse myocardial abnormalities. As unlikely conventional methods, these techniques do not require a substantial amount of structurally altered tissue to be visually identifiable as an area of abnormal signal intensity, eliminating the reliance on contrast agents. Moreover, these parametric mapping techniques, such as T1, T2, and T2* mapping, have transitioned from being primarily research tools to becoming valuable assets in the clinical diagnosis and risk stratification of various cardiac disorders. In this review, we aim to elucidate the underlying physical principles of CMR parametric mapping, explore its current clinical applications, address potential pitfalls, and outline future directions for research and development in this field.
Collapse
Affiliation(s)
- Daniele Muser
- Cardiac Electrophysiology Unit, Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy;
- Cardiac Electrophysiology, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anwar A. Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA 17601, USA;
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London E1 1BB, UK
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph B. Selvanayagam
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA 5042, Australia;
| | - Gaetano Nucifora
- Cardiac Imaging Unit, NorthWest Heart Centre, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
9
|
Burger JC, Hopman LHGA, Kemme MJB, Hoeksema W, Takx RAP, Figueras I Ventura RM, Campos FO, Plank G, Planken RN, Allaart CP, van Halm VP, Postema PG, Götte MJW, Bishop MJ, Bhagirath P. Optimizing ventricular tachycardia ablation through imaging-based assessment of arrhythmic substrate: A comprehensive review and roadmap for the future. Heart Rhythm O2 2024; 5:561-572. [PMID: 39263615 PMCID: PMC11385403 DOI: 10.1016/j.hroo.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Ventricular tachycardia (VT) is a life-threatening heart rhythm and has long posed a complex challenge in the field of cardiology. Recent developments in advanced imaging modalities have aimed to improve comprehension of underlying arrhythmic substrate for VT. To this extent, high-resolution cardiac magnetic resonance (CMR) and cardiac computed tomography (CCT) have emerged as tools for accurately visualizing and characterizing scar tissue, fibrosis, and other critical structural abnormalities within the heart, providing novel insights into VT triggers and substrate. However, clinical implementation of knowledge derived from these advanced imaging techniques in improving VT treatment and guiding invasive therapeutic strategies continues to pose significant challenges. A pivotal concern lies in the absence of standardized imaging protocols and analysis methodologies, resulting in a large variance in data quality and consistency. Furthermore, the clinical significance and outcomes associated with VT substrate characterization through CMR and CCT remain dynamic and subject to ongoing evolution. This highlights the need for refinement of these techniques before their reliable integration into routine patient care can be realized. The primary objectives of this study are twofold: firstly, to provide a comprehensive overview of the studies conducted over the last 15 years, summarizing the current available literature on imaging-based assessment of VT substrate. Secondly, to critically analyze and evaluate the selected studies, with the aim of providing valuable insights that can inform current clinical practice and future research.
Collapse
Affiliation(s)
- Janneke C Burger
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Luuk H G A Hopman
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Michiel J B Kemme
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Wiert Hoeksema
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Richard A P Takx
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Fernando O Campos
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - R Nils Planken
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Vokko P van Halm
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Pieter G Postema
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Marco J W Götte
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Pranav Bhagirath
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Deneke T, Kutyifa V, Hindricks G, Sommer P, Zeppenfeld K, Carbucicchio C, Pürerfellner H, Heinzel FR, Traykov VB, De Riva M, Pontone G, Lehmkuhl L, Haugaa K. Pre- and post-procedural cardiac imaging (computed tomography and magnetic resonance imaging) in electrophysiology: a clinical consensus statement of the European Heart Rhythm Association and European Association of Cardiovascular Imaging of the European Society of Cardiology. Europace 2024; 26:euae108. [PMID: 38743765 PMCID: PMC11104536 DOI: 10.1093/europace/euae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Imaging using cardiac computed tomography (CT) or magnetic resonance (MR) imaging has become an important option for anatomic and substrate delineation in complex atrial fibrillation (AF) and ventricular tachycardia (VT) ablation procedures. Computed tomography more common than MR has been used to detect procedure-associated complications such as oesophageal, cerebral, and vascular injury. This clinical consensus statement summarizes the current knowledge of CT and MR to facilitate electrophysiological procedures, the current value of real-time integration of imaging-derived anatomy, and substrate information during the procedure and the current role of CT and MR in diagnosing relevant procedure-related complications. Practical advice on potential advantages of one imaging modality over the other is discussed for patients with implanted cardiac rhythm devices as well as for planning, intraprocedural integration, and post-interventional management in AF and VT ablation patients. Establishing a team of electrophysiologists and cardiac imaging specialists working on specific details of imaging for complex ablation procedures is key. Cardiac magnetic resonance (CMR) can safely be performed in most patients with implanted active cardiac devices. Standard procedures for pre- and post-scanning management of the device and potential CMR-associated device malfunctions need to be in place. In VT patients, imaging-specifically MR-may help to determine scar location and mural distribution in patients with ischaemic and non-ischaemic cardiomyopathy beyond evaluating the underlying structural heart disease. Future directions in imaging may include the ability to register multiple imaging modalities and novel high-resolution modalities, but also refinements of imaging-guided ablation strategies are expected.
Collapse
Affiliation(s)
- Thomas Deneke
- Clinic for Rhythmology at Klinikum Nürnberg Campus Süd, University Hospital of the Paracelsus Medical University, Nuremberg, Germany
| | | | | | | | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Helmut Pürerfellner
- Department of Clinical Electrophysiology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Frank R Heinzel
- Städtisches Klinikum Dresden, Department of Cardiology, Angiology and Intensive Care Medicine, Dresden, Germany
| | - Vassil B Traykov
- Department of Invasive Electrophysiology and Cardiac Pacing, Acibadem City Clinic Tokuda Hospital, Sofia, Bulgaria
| | - Marta De Riva
- Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Lukas Lehmkuhl
- Department of Radiology, Heart Center RHÖN-KLINIKUM Campus Bad Neustadt, Germany
| | | |
Collapse
|
11
|
Raja DC, Samarawickrema I, Srinivasan JR, Menon S, Das SK, Jain S, Tuan LQ, Desjardins B, Marchlinski FE, Abhayaratna WP, Sanders P, Pathak RK. Correlation of myocardial strain by CMR-feature tracking with substrate abnormalities detected by electro-anatomical mapping in patients with nonischemic cardiomyopathy. J Interv Card Electrophysiol 2023; 66:2113-2123. [PMID: 37129791 PMCID: PMC10694091 DOI: 10.1007/s10840-023-01553-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Late gadolinium enhancement (LGE) detected by cardiac MRI (CMR) has low correlation with low voltage zones (LVZs) detected by electroanatomical mapping (EAM). We aim to study correlation of myocardial strain by CMR- Feature Tracking (FT) alongside LGE with LVZs detected by EAM. METHODS Nineteen consecutive CMRs of patients with EAM were analyzed offline by CMR-FT. Peak value of circumferential strain (CS), longitudinal strain (LS), and LGE was measured in each segment of the left ventricle (17-segment model). The percentage of myocardial segments with CS and LS > -17% was determined. Percentage area of LGE-scar was calculated. Global and segment-wise bipolar and unipolar voltage was collected. Percentage area of bipolar LVZ (<1.5 mV) and unipolar LVZ (<8.3 mV) was calculated. RESULTS Mean age was 62±11 years. Mean LVEF was 37±13%. Mean global CS was -11.8±5%. Mean global LS was -11.2±4%. LGE-scar was noted in 74% of the patients. Mean percentage area of LGE-scar was 5%. There was significant correlation between percentage abnormality detected by LS with percentage bipolar LVZ (r = +0.5, p = 0.03) and combined percentage CS+LS abnormality with percentage unipolar LVZ (r = +0.5, p = 0.02). Per-unit increase in CS increased the percentage area of unipolar LVZ by 2.09 (p = 0.07) and per-unit increase in LS increased the percentage area of unipolar LVZ by 2.49 (p = 0.06). The concordance rates between CS and LS to localize segments with bipolar/unipolar LVZ were 79% and 95% compared to 63% with LGE. CONCLUSIONS Myocardial strain detected by CMR-FT has a better correlation with electrical low voltage zones than the conventional LGE.
Collapse
Affiliation(s)
- Deep Chandh Raja
- ANU School of Medicine and Psychology, Australian National University, 54 Mills Road, Acton, 2601, ACT, Australia
- Canberra Health Services, 2 Garran place, Garran, Canberra, 2605, Australia
- Canberra Heart Rhythm, 2 Garran Place, Garran, 2605, Australia
| | | | | | - SaratKrishna Menon
- University of Newcastle, Newcastle, NSW, Australia
- Canberra Heart Rhythm, 2 Garran Place, Garran, 2605, Australia
| | - Souvik Kumar Das
- Canberra Health Services, 2 Garran place, Garran, Canberra, 2605, Australia
| | - Sanjiv Jain
- Canberra Health Services, 2 Garran place, Garran, Canberra, 2605, Australia
| | - Lukah Q Tuan
- ANU School of Medicine and Psychology, Australian National University, 54 Mills Road, Acton, 2601, ACT, Australia
- Canberra Heart Rhythm, 2 Garran Place, Garran, 2605, Australia
| | - Benoit Desjardins
- Electrophysiology Section, Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Francis E Marchlinski
- Electrophysiology Section, Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Walter P Abhayaratna
- ANU School of Medicine and Psychology, Australian National University, 54 Mills Road, Acton, 2601, ACT, Australia
- Canberra Health Services, 2 Garran place, Garran, Canberra, 2605, Australia
| | - Prashanthan Sanders
- Center for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Rajeev K Pathak
- ANU School of Medicine and Psychology, Australian National University, 54 Mills Road, Acton, 2601, ACT, Australia.
- Canberra Health Services, 2 Garran place, Garran, Canberra, 2605, Australia.
- Canberra Heart Rhythm, 2 Garran Place, Garran, 2605, Australia.
| |
Collapse
|
12
|
Di Marco A, Claver E, Anguera I. Impact of Cardiac Magnetic Resonance to Arrhythmic Risk Stratification in Nonischemic Cardiomyopathy. Card Electrophysiol Clin 2023; 15:379-390. [PMID: 37558307 DOI: 10.1016/j.ccep.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Left ventricular ejection fraction-based arrhythmic risk stratification in nonischemic cardiomyopathy (NICM) is insufficient and has led to the failure of primary prevention implantable cardioverter defibrillator trials, mainly due to the inability of selecting patients at high risk for sudden cardiac death (SCD). Cardiac magnetic resonance offers unique opportunities for tissue characterization and has gained a central role in arrhythmic risk stratification in NICM. The presence of myocardial scar, denoted by late gadolinium enhancement, is a significant, independent, and strong predictor of ventricular arrhythmias and SCD with high negative predictive value. T1 maps and extracellular volume fraction, which are able to quantify diffuse fibrosis, hold promise as complementary tools but need confirmatory results from large studies.
Collapse
Affiliation(s)
- Andrea Di Marco
- Department of Cardiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Bioheart-Cardiovascular Diseases Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | - Eduard Claver
- Department of Cardiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Bioheart-Cardiovascular Diseases Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ignasi Anguera
- Department of Cardiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Bioheart-Cardiovascular Diseases Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
13
|
Berruezo A, Penela D, Jáuregui B, de Asmundis C, Peretto G, Marrouche N, Trayanova N, de Chillou C. Twenty-five years of research in cardiac imaging in electrophysiology procedures for atrial and ventricular arrhythmias. Europace 2023; 25:euad183. [PMID: 37622578 PMCID: PMC10450789 DOI: 10.1093/europace/euad183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 08/26/2023] Open
Abstract
Catheter ablation is nowadays considered the treatment of choice for numerous cardiac arrhythmias in different clinical scenarios. Fluoroscopy has traditionally been the primary imaging modality for catheter ablation, providing real-time visualization of catheter navigation. However, its limitations, such as inadequate soft tissue visualization and exposure to ionizing radiation, have prompted the integration of alternative imaging modalities. Over the years, advancements in imaging techniques have played a pivotal role in enhancing the safety, efficacy, and efficiency of catheter ablation procedures. This manuscript aims to explore the utility of imaging, including electroanatomical mapping, cardiac computed tomography, echocardiography, cardiac magnetic resonance, and nuclear cardiology exams, in helping electrophysiology procedures. These techniques enable accurate anatomical guidance, identification of critical structures and substrates, and real-time monitoring of complications, ultimately enhancing procedural safety and success rates. Incorporating advanced imaging technologies into routine clinical practice has the potential to further improve clinical outcomes of catheter ablation procedures and pave the way for more personalized and precise ablation therapies in the future.
Collapse
Affiliation(s)
- Antonio Berruezo
- Arrhythmia Unit, Teknon Medical Centre, Carrer de Vilana, 12, 08022 Barcelona, Spain
| | - Diego Penela
- Arrhythmia Unit, Humanitas Research Hospital, Via Alessandro Manzoni, 56, 20089 Rozzano Milan, Italy
| | - Beatriz Jáuregui
- Arrhythmia Unit - Miguel Servet University Hospital, P.º de Isabel la Católica, 1-3, 50009 Zaragoza, Spain
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Blvd Géneral Jacques 137, 1050 Ixelles, Brussels, Belgium
| | - Giovanni Peretto
- Arrhythmia Unit, Ospedale San Raffaele Hospital, Via Olgettina, 60, 20132 Milan, Italy
| | - Nassir Marrouche
- Department of Cardiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Natalia Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Applied Math and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christian de Chillou
- INSERM IADI U1254, University Hospital Nancy, University of Lorraine, 29 Av. du Maréchal de Lattre de Tassigny, 54000 Nancy, France
| |
Collapse
|
14
|
Di Marco A, Brown PF, Bradley J, Nucifora G, Anguera I, Miller CA, Schmitt M. Extracellular volume fraction improves risk-stratification for ventricular arrhythmias and sudden death in non-ischaemic cardiomyopathy. Eur Heart J Cardiovasc Imaging 2023; 24:512-521. [PMID: 35877070 DOI: 10.1093/ehjci/jeac142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS To evaluate whether cardiac magnetic resonance (CMR)-based parametric mapping and strain analysis can improve the risk-stratification for ventricular arrhythmias (VA) and sudden death (SD) in non-ischaemic cardiomyopathy (NICM). METHODS AND RESULTS Secondary analysis of a prospective single-centre-registry (NCT02326324), including 703 consecutive NICM patients, 618 with extracellular volume (ECV) available. The combined primary endpoint included appropriate implantable cardioverter defibrillator therapies, sustained ventricular tachycardia, resuscitated cardiac arrest and SD. During a median follow-up of 21 months, 14 patients (2%) experienced the primary endpoint. Native T1 was not associated with the primary endpoint. Left ventricular global longitudinal strain lost its significant association after adjustment for left ventricular ejection fraction (LVEF). Among patients with ECV available, 11 (2%) reached the primary endpoint. Mean ECV was significantly associated with the primary endpoint and the best cut-off was 30%. ECV ≥ 30% was the strongest independent predictor of the primary endpoint (hazard ratio 14.1, P = 0.01) after adjustment for late gadolinium enhancement (LGE) and LVEF. ECV ≥ 30% discriminated the arrhythmic risk among LGE+ cases and among those with LVEF ≤ 35%. A simple clinical risk-stratification model, based on LGE, LVEF ≤ 35% and ECV ≥ 30%, achieved an excellent predictive ability (Harrell's C 0.82) and reclassified the risk of 32% of the study population as compared to LVEF ≤ 35% alone. CONCLUSIONS Comprehensive CMR evaluation in NICM showed that ECV was the only parameter with an independent and strong predictive value for VA/SD, on top of LGE and LVEF. A risk-stratification model based on LGE, LVEF ≤ 35% and ECV ≥ 30% achieved an excellent predictive ability for VA/SD. CLINICAL TRIAL REGISTRATION UHSM CMR study (NCT02326324) https://clinicaltrials.gov/ct2/show/NCT02326324.
Collapse
Affiliation(s)
- Andrea Di Marco
- Department of Cardiology, Hospital Universitari de Bellvitge, Calle feixa llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Bioheart-Cardiovascular Diseases Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Pamela F Brown
- Manchester University Foundation Trust-Wythenshawe Site, Southmoor Road, Wythenshawe, Manchester M239LT, UK
| | - Joshua Bradley
- Manchester University Foundation Trust-Wythenshawe Site, Southmoor Road, Wythenshawe, Manchester M239LT, UK
| | - Gaetano Nucifora
- Manchester University Foundation Trust-Wythenshawe Site, Southmoor Road, Wythenshawe, Manchester M239LT, UK
| | - Ignasi Anguera
- Department of Cardiology, Hospital Universitari de Bellvitge, Calle feixa llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Bioheart-Cardiovascular Diseases Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Christopher A Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9NQ, UK
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Matthias Schmitt
- Manchester University Foundation Trust-Wythenshawe Site, Southmoor Road, Wythenshawe, Manchester M239LT, UK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9NQ, UK
| |
Collapse
|
15
|
Atreya AR, Yalagudri SD, Subramanian M, Rangaswamy VV, Saggu DK, Narasimhan C. Best Practices for the Catheter Ablation of Ventricular Arrhythmias. Card Electrophysiol Clin 2022; 14:571-607. [PMID: 36396179 DOI: 10.1016/j.ccep.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Techniques for catheter ablation have evolved to effectively treat a range of ventricular arrhythmias. Pre-operative electrocardiographic and cardiac imaging data are very useful in understanding the arrhythmogenic substrate and can guide mapping and ablation. In this review, we focus on best practices for catheter ablation, with emphasis on tailoring ablation strategies, based on the presence or absence of structural heart disease, underlying clinical status, and hemodynamic stability of the ventricular arrhythmia. We discuss steps to make ablation safe and prevent complications, and techniques to improve the efficacy of ablation, including optimal use of electroanatomical mapping algorithms, energy delivery, intracardiac echocardiography, and selective use of mechanical circulatory support.
Collapse
Affiliation(s)
- Auras R Atreya
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India; Division of Cardiovascular Medicine, Electrophysiology Section, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sachin D Yalagudri
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India
| | - Muthiah Subramanian
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India
| | | | - Daljeet Kaur Saggu
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India
| | - Calambur Narasimhan
- Electrophysiology Section, AIG Hospitals Institute of Cardiac Sciences and Research, Hyderabad, India.
| |
Collapse
|
16
|
Ghannam M, Bogun F. Improving Outcomes in Ventricular Tachycardia Ablation Using Imaging to Identify Arrhythmic Substrates. Card Electrophysiol Clin 2022; 14:609-620. [PMID: 36396180 DOI: 10.1016/j.ccep.2022.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ventricular tachycardia (VT) ablation is limited by modest acute and long-term success rates, in part due to the challenges in accurately identifying the arrhythmogenic substrate. The combination of multimodality imaging along with information from electroanatomic mapping allows for a more comprehensive assessment of the arrhythmogenic substrate which facilitates VT ablation, and the use of preprocedural imaging has been shown to improve long-term ablation outcomes. Beyond regional recognition of the arrhythmogenic substrate, advanced imaging techniques can be used to create tailored ablation strategies preprocedurally. This review will focus on how imaging can be used to guide ablation planning and execution with a focus on clinical applications aimed at improving the outcome of VT ablation procedures.
Collapse
Affiliation(s)
- Michael Ghannam
- Division of Cardiovascular Medicine, University of Michigan, 1500 E. Medical Center Dr., SPC5853, Ann Arbor, Michigan 48109-5853, USA.
| | - Frank Bogun
- Division of Cardiovascular Medicine, University of Michigan, 1500 E. Medical Center Dr., SPC5853, Ann Arbor, Michigan 48109-5853, USA
| |
Collapse
|
17
|
Morris MF, Carlson C, Bhagat A. Role of advanced imaging with cardiac computed tomography and MRI in atrial and ventricular ablation. Curr Opin Cardiol 2022; 37:431-438. [PMID: 35880445 DOI: 10.1097/hco.0000000000000986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Increasing evidence supports the use of advanced imaging with cardiac computed tomography (CCT) and cardiac magnetic resonance (CMR) in the work-up of patients with arrythmias being considered for ablation. RECENT FINDINGS Advances in imaging technology and postprocessing are facilitating the use of advanced imaging before, during and after ablation in patients with both atrial and ventricular arrhythmias.In atrial arrythmias, quantitative assessment of left atrial wall thickness on CCT and quantification of late gadolinium enhancement (LGE) on CMR identify patients more likely to develop recurrent atrial arrythmias following ablation. In addition, in patients with recurrent arrythmia post ablation, LGE CMR can potentially identify targets for repeat ablation.In ventricular arrythmias, qualitative assessment of LGE can aide in determining the optimal ablation approach and predicts likelihood of ventricular arrythmias inducibility. Quantitative assessment of LGE can identify conduction channels that can be targeted for ablation. On CCT, quantitative assessment of left ventricular wall thickness can demonstrate myocardial ridges associated with re-entrant circuits for ablation. SUMMARY This review focuses on the utility of CCT and CMR in identifying key anatomical components and arrhythmogenic substrate contributing to both atrial and ventricular arrhythmias in patients being considered for ablation. Advanced imaging has the potential to improve procedural outcomes, decrease complications and shorten procedural time.
Collapse
Affiliation(s)
| | - Chelsea Carlson
- Department of Medicine, Banner University Medical Center Phoenix, Phoenix, Arizona, USA
| | | |
Collapse
|
18
|
van der Bijl P, Bax JJ. Imaging for risk stratification of sudden cardiac death. Herzschrittmacherther Elektrophysiol 2022; 33:261-267. [PMID: 35841401 PMCID: PMC9411093 DOI: 10.1007/s00399-022-00884-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/12/2023]
Abstract
Sudden cardiac death (SCD) can be effectively prevented with the use of implantable cardioverter-defibrillator (ICD). Current guidelines advocate an ICD for primary prevention in the presence of an left ventricular ejection fraction (LVEF) ≤ 35%. The majority of individuals that experience SCD, however, have an LVEF > 35%. Multimodality cardiac imaging has the ability to visualize the three factors responsible for arrhythmia-mediated SCD, namely substrate, trigger and modulator. Advances in cardiac imaging techniques have allowed improved SCD risk stratification, especially in the group of patients with an LVEF > 35%. However, clinical integration of cardiac imaging for SCD risk stratification will require more comparative data between modalities and parameters, as well as evidence of an impact on outcomes. The current review represents an update on the use of multimodality imaging techniques for SCD risk stratification.
Collapse
Affiliation(s)
- Pieter van der Bijl
- Department of Cardiology, Heart Lung Centre, Leiden University Medical Centre, Albinusdreef 2, 2300, RC, Leiden, The Netherlands
| | - Jeroen J Bax
- Department of Cardiology, Heart Lung Centre, Leiden University Medical Centre, Albinusdreef 2, 2300, RC, Leiden, The Netherlands. .,Turku Heart Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.
| |
Collapse
|
19
|
Lukas Laws J, Lancaster MC, Ben Shoemaker M, Stevenson WG, Hung RR, Wells Q, Marshall Brinkley D, Hughes S, Anderson K, Roden D, Stevenson LW. Arrhythmias as Presentation of Genetic Cardiomyopathy. Circ Res 2022; 130:1698-1722. [PMID: 35617362 PMCID: PMC9205615 DOI: 10.1161/circresaha.122.319835] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is increasing evidence regarding the prevalence of genetic cardiomyopathies, for which arrhythmias may be the first presentation. Ventricular and atrial arrhythmias presenting in the absence of known myocardial disease are often labelled as idiopathic, or lone. While ventricular arrhythmias are well-recognized as presentation for arrhythmogenic cardiomyopathy in the right ventricle, the scope of arrhythmogenic cardiomyopathy has broadened to include those with dominant left ventricular involvement, usually with a phenotype of dilated cardiomyopathy. In addition, careful evaluation for genetic cardiomyopathy is also warranted for patients presenting with frequent premature ventricular contractions, conduction system disease, and early onset atrial fibrillation, in which most detected genes are in the cardiomyopathy panels. Sudden death can occur early in the course of these genetic cardiomyopathies, for which risk is not adequately tracked by left ventricular ejection fraction. Only a few of the cardiomyopathy genotypes implicated in early sudden death are recognized in current indications for implantable cardioverter defibrillators which otherwise rely upon a left ventricular ejection fraction ≤0.35 in dilated cardiomyopathy. The genetic diagnoses impact other aspects of clinical management such as exercise prescription and pharmacological therapy of arrhythmias, and new therapies are coming into clinical investigation for specific genetic cardiomyopathies. The expansion of available genetic information and implications raises new challenges for genetic counseling, particularly with the family member who has no evidence of a cardiomyopathy phenotype and may face a potentially negative impact of a genetic diagnosis. Discussions of risk for both probands and relatives need to be tailored to their numeric literacy during shared decision-making. For patients presenting with arrhythmias or cardiomyopathy, extension of genetic testing and its implications will enable cascade screening, intervention to change the trajectory for specific genotype-phenotype profiles, and enable further development and evaluation of emerging targeted therapies.
Collapse
Affiliation(s)
- J Lukas Laws
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Megan C Lancaster
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - M Ben Shoemaker
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - William G Stevenson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Rebecca R Hung
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Quinn Wells
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - D Marshall Brinkley
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Sean Hughes
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Katherine Anderson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Dan Roden
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Lynne W Stevenson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
20
|
Arcari L, Camastra G, Ciolina F, Danti M, Cacciotti L. T1 and T2 Mapping in Uremic Cardiomyopathy: An Update. Card Fail Rev 2022; 8:e02. [PMID: 35111336 PMCID: PMC8790724 DOI: 10.15420/cfr.2021.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/15/2021] [Indexed: 11/04/2022] Open
Abstract
Uremic cardiomyopathy (UC) is the cardiac remodelling that occurs in patients with chronic kidney disease (CKD). It is characterised by a left ventricular (LV) hypertrophy phenotype, diastolic dysfunction and generally preserved LV ejection fraction. UC has a major role mediating the increased rate of cardiovascular events, especially heart failure related, observed in patients with CKD. Recently, the use of T1 and T2 mapping techniques on cardiac MRI has expanded the ability to characterise cardiac involvement in CKD. Native T1 mapping effectively tracks the progression of interstitial fibrosis in UC, whereas T2 mapping analysis suggests the contribution of myocardial oedema, at least in a subgroup of patients. Both T1 and T2 increased values were related to worsening clinical status, myocardial injury and B-type natriuretic peptide release. Studies investigating the prognostic relevance and histology validation of mapping techniques in CKD are awaited.
Collapse
Affiliation(s)
- Luca Arcari
- Cardiology Unit, Madre Giuseppina Vannini Hospital, Rome, Italy
| | | | | | | | - Luca Cacciotti
- Cardiology Unit, Madre Giuseppina Vannini Hospital, Rome, Italy
| |
Collapse
|
21
|
Tschabrunn CM, Zado ES, Schaller R, Garcia FC, Kumareswaran R, Hsue W, Santangeli P, Marchlinski FE. Isolated critical epicardial arrhythmogenic substrate abnormalities in patients with arrhythmogenic right ventricular cardiomyopathy and ventricular tachycardia. Heart Rhythm 2021; 19:538-545. [PMID: 34883271 DOI: 10.1016/j.hrthm.2021.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Ventricular tachycardia (VT) substrate abnormalities in arrhythmogenic right ventricular cardiomyopathy (ARVC) typically involve both the right ventricular (RV) endocardium (ENDO) and epicardium (EPI). OBJECTIVE The purpose of this study was to examine the prevalence, electrophysiological features, and outcomes of catheter ablation of VT in patients with isolated epicardial substrate (IES) abnormalities. METHODS We studied 71 consecutive patients with VT who met Task Force criteria for ARVC and underwent detailed ENDO and EPI mapping. Patients with critical IES demonstrated (1) confluent EPI bipolar abnormal electrograms (EGMs) and (2) no or minor (<5.0 cm2) RV ENDO low bipolar voltage. Induced VTs were localized using activation mapping, entrainment mapping, and/or pacemapping. RESULTS Twelve patients (17%) had IES. Extensive EPI bipolar low-voltage area (Bi-LVA; 74 ± 40 cm2) and EGM abnormalities were identified in all patients. Uni-ENDO LVA (<5.5 mV) was seen in 11 of 12 patients (92%) (41 ± 25 cm2) and corresponded to EPI RV bipolar abnormalities. A median of 2 VTs (range 1-7; cycle length 288 ± 68 ms) were induced and localized to the EPI. EPI ablation resulted in noninducibility of all targeted VTs. Preablation cardiac magnetic resonance (CMR) imaging was performed in 10 of 12 patients with RV dyskinesis and/or late gadolinium enhancement in only 4 of 10 patients. During follow-up of 56 ± 46 months, 9 of 12 patients (75%) remained VT-free. CONCLUSION In patients with ARVC and VT, substrate abnormalities can uncommonly be isolated to the RV EPI. Detection of critical IES may be limited with CMR imaging but suggested by ENDO unipolar EGM abnormalities. EPI ablation eliminates VT in these patients and typically results in long-term VT-free survival.
Collapse
Affiliation(s)
- Cory M Tschabrunn
- Cardiac Electrophysiology Section, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erica S Zado
- Cardiac Electrophysiology Section, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Schaller
- Cardiac Electrophysiology Section, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fermin C Garcia
- Cardiac Electrophysiology Section, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramanan Kumareswaran
- Cardiac Electrophysiology Section, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Weihow Hsue
- Cardiac Electrophysiology Section, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Pasquale Santangeli
- Cardiac Electrophysiology Section, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Francis E Marchlinski
- Cardiac Electrophysiology Section, Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
22
|
Conte E, Mushtaq S, Muscogiuri G, Formenti A, Annoni A, Mancini E, Ricci F, Melotti E, Gigante C, Lorenza Z, Guglielmo M, Baggiano A, Maragna R, Giacari CM, Carbucicchio C, Catto V, Pepi M, Andreini D, Pontone G. The Potential Role of Cardiac CT in the Evaluation of Patients With Known or Suspected Cardiomyopathy: From Traditional Indications to Novel Clinical Applications. Front Cardiovasc Med 2021; 8:709124. [PMID: 34595219 PMCID: PMC8476802 DOI: 10.3389/fcvm.2021.709124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022] Open
Abstract
After 15 years from its advent in the clinical field, coronary computed tomography (CCTA) is now widely considered as the best first-step test in patients with low-to-moderate pre-test probability of coronary artery disease. Technological innovation was of pivotal importance for the extensive clinical and scientific interest in CCTA. Recently, the advent of last generation wide-coverage CT scans paved the way for new clinical applications of this technique beyond coronary arteries anatomy evaluation. More precisely, both biventricular volume and systolic function quantification and myocardial fibrosis identification appeared to be feasible with last generation CT. In the present review we would focus on potential applications of cardiac computed tomography (CCT), beyond CCTA, for a comprehensive assessment patients with newly diagnosed cardiomyopathy, from technical requirements to novel clinical applications.
Collapse
Affiliation(s)
- Edoardo Conte
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Saima Mushtaq
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giuseppe Muscogiuri
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Alberto Formenti
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Andrea Annoni
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Elisabetta Mancini
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Francesca Ricci
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Eleonora Melotti
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Carlo Gigante
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Zanotto Lorenza
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Marco Guglielmo
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Andrea Baggiano
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Riccardo Maragna
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Carlo Maria Giacari
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Corrado Carbucicchio
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Valentina Catto
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Mauro Pepi
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Daniele Andreini
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Gianluca Pontone
- Centro Cardologico Monzino, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| |
Collapse
|
23
|
Sung E, Etoz S, Zhang Y, Trayanova NA. Whole-heart ventricular arrhythmia modeling moving forward: Mechanistic insights and translational applications. BIOPHYSICS REVIEWS 2021; 2:031304. [PMID: 36281224 PMCID: PMC9588428 DOI: 10.1063/5.0058050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Ventricular arrhythmias are the primary cause of sudden cardiac death and one of the leading causes of mortality worldwide. Whole-heart computational modeling offers a unique approach for studying ventricular arrhythmias, offering vast potential for developing both a mechanistic understanding of ventricular arrhythmias and clinical applications for treatment. In this review, the fundamentals of whole-heart ventricular modeling and current methods of personalizing models using clinical data are presented. From this foundation, the authors summarize recent advances in whole-heart ventricular arrhythmia modeling. Efforts in gaining mechanistic insights into ventricular arrhythmias are discussed, in addition to other applications of models such as the assessment of novel therapeutics. The review emphasizes the unique benefits of computational modeling that allow for insights that are not obtainable by contemporary experimental or clinical means. Additionally, the clinical impact of modeling is explored, demonstrating how patient care is influenced by the information gained from ventricular arrhythmia models. The authors conclude with future perspectives about the direction of whole-heart ventricular arrhythmia modeling, outlining how advances in neural network methodologies hold the potential to reduce computational expense and permit for efficient whole-heart modeling.
Collapse
Affiliation(s)
- Eric Sung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sevde Etoz
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yingnan Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Author to whom correspondence should be addressed: . Tel.: 410-516-4375
| |
Collapse
|