1
|
Watts AM, West NP, Smith PK, Zhang P, Cripps AW, Cox AJ. Nasal immune gene expression in response to azelastine and fluticasone propionate combination or monotherapy. Immun Inflamm Dis 2022; 10:e571. [PMID: 34813682 PMCID: PMC8926499 DOI: 10.1002/iid3.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 11/13/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The combination of the antihistamine azelastine (AZE) with the corticosteroid fluticasone propionate (FP) in a single spray, has been reported to be significantly more effective at reducing allergic rhinitis (AR) symptoms than treatment with either corticosteroid or antihistamine monotherapy. However, the biological basis for enhanced symptom relief is not known. This study aimed to compare gene expression profiles (760 immune genes, performed with the NanoString nCounter) from peripheral blood and nasal brushing/lavage lysate samples in response to nasal spray treatment. METHODS Moderate/severe persistent dust mite AR sufferers received either AZE (125 μg/spray) nasal spray (n = 16), FP (50 μg/spray) nasal spray (n = 14) or combination spray AZE/FP (125 μg AZE and 50 μg FP/spray) (n = 14) for 7 days, twice daily. Self-reported symptom questionnaires were completed daily for the study duration. Gene expression analysis (760 immune genes) was performed with the NanoString nCounter on purified RNA from peripheral blood and nasal brushing/lavage lysate samples. RESULTS In nasal samples, 206 genes were significantly differentially expressed following FP treatment; 182 genes downregulated (-2.57 to -0.45 Log2 fold change [FC]), 24 genes upregulated (0.49-1.40 Log2 FC). In response to AZE/FP, only 16 genes were significantly differentially expressed; 10 genes downregulated (-1.53 to -0.58 Log2 FC), six genes upregulated (1.07-1.62 Log2 FC). Following AZE treatment only five genes were significantly differentially expressed; one gene downregulated (-1.68 Log2 FC), four genes upregulated (0.59-1.19 Log2 FC). Immune gene changes in peripheral blood samples following treatment were minimal. AR symptoms improved under all treatments, but improvements were less pronounced following AZE treatment. CONCLUSION AZE/FP, FP, and AZE had diverse effects on immune gene expression profiles in nasal mucosa samples. The moderate number of genes modulated by AZE/FP indicates alternative pathways in reducing AR symptoms whilst avoiding extensive local immune suppression.
Collapse
Affiliation(s)
- Annabelle M. Watts
- School of Medical ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Nicholas P. West
- School of Medical ScienceGriffith UniversitySouthportQueenslandAustralia
- Menzies Health Institute of QueenslandGriffith UniversitySouthportQueenslandAustralia
| | - Peter K. Smith
- Queensland Allergy Services ClinicSouthportQueenslandAustralia
| | - Ping Zhang
- Menzies Health Institute of QueenslandGriffith UniversitySouthportQueenslandAustralia
| | - Allan W. Cripps
- Menzies Health Institute of QueenslandGriffith UniversitySouthportQueenslandAustralia
- School of MedicineGriffith UniversitySouthportQueenslandAustralia
| | - Amanda J. Cox
- School of Medical ScienceGriffith UniversitySouthportQueenslandAustralia
- Menzies Health Institute of QueenslandGriffith UniversitySouthportQueenslandAustralia
| |
Collapse
|
2
|
Kaur M, Gupta KB, Thakur S, Kaur S, Dhiman M. Parthenium hysterophorus mediated inflammation and hyper-responsiveness via NF-κB pathway in human A549 lung cancer cell line. ENVIRONMENTAL TOXICOLOGY 2020; 35:1241-1250. [PMID: 32686900 DOI: 10.1002/tox.22989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Being one of the notorious weed P. hysterophorus has invaded almost every part India and is the lead cause of skin allergies and severe dermatitis among farmers and rural population. It is an invasive obnoxious weed capable of surviving extreme environmental conditions and various parts of this plant are reported to cause severe contact allergies in humans due to the presence of high concentrations of toxic sesquiterpene lactones viz. parthenin. It can stimulate numerous cellular and immune responses that may translate into Oxidative stress, allergies, and inflammation. The effect of P. hysterophorus flower extract was evaluated on cell viability, oxidative stress and inflammation in A549 lung cancer cell line by spectrophotometric and reverse transcriptase-polymerase chain reaction methods. Schrodinger software based docking was performed for possible interactions studies. The A549 cells treated with P. hysterophorus flower extract favors increase in cell viability, reactive oxygen species generation. The mRNA expression of proinflammatory cytokines such as IFN-γ, TNF-α, and IL-1β was significantly increased whereas no change in IL-18 expression was observed. Significant increase in protein expression of NF-κB was observed, suggesting the role of NF-κB signalling in allergic responses. The docking studies demonstrated the potential interaction between Parthenin and NF-κB/IL-1β/IL-18 suggesting their activation leading to inflammation. The current study emphasize that P. hysterophorus mediates oxidative stress, and inflammatory process via alterations in expression of proinflammatory cytokines such as IL-1β, IFN-γ through NF-κB activation which was also confirmed in docking studies. Cellular and molecular mechanisms involved in pathogenesis of allergic/chronic inflammation and severe dermatitis need to be further investigated to identify specific binding partners responsible for severe inflammation which can provide some leads in developing effective targets against severe dermatitis and skin allergies.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Kunj Bihari Gupta
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Shweta Thakur
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
3
|
Hong L, Tang Y, Pan S, Xu M, Shi Y, Gao S, Sui C, He C, Zheng K, Tang R, Shi Z, Wang Q, Wang H. Interleukin 3-induced GITR promotes the activation of human basophils. Cytokine 2020; 136:155268. [PMID: 32889153 DOI: 10.1016/j.cyto.2020.155268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023]
Abstract
Human basophils regulate allergic reactions by secreting histamine, interleukin 4 (IL-4) and IL-13 through key surface receptors FcεRI as well as IL-3R, which are constitutively expressed on basophils. IL-3/IL-3R signaling axis plays key roles in regulating the development and activation of basophils. We and others have shown that IL-3-induced surface receptors e.g. ST2, IL-17RB and IL-2 receptors regulate the biology of basophils. However, the expression and function of IL-3-induced surface proteins on human basophils remain to be elucidated. We in this study aimed to identify new basophil activation regulators by transcriptomic analysis of IL-3-stimulated basophils. Gene expression microarray analysis of IL-3-treated basophils revealed 2050 differentially expressed genes, of which 323 genes encoded surface proteins including GITR. We identified that GITR was preferentially induced by IL-3 rather than anti-IgE, IL-33, fMLP and C5a. IL-3-induced GITR was suppressed by inhibitors targeting JAK2, PI3K and MEK1/2. Stimulation of IL-3-treated basophils by GITR enhanced the expression of IL-4 and IL-13. Moreover, IgE-mediated degranulation was enhanced by GITRL in the presence of IL-3. This transcriptomic analysis of IL-3-activated basophils helps to identify novel activation regulator. IL-3-induced GITR promoted the activation of basophils, adding new evidence supporting GITR as an important player in Th2-associated immune responses.
Collapse
Affiliation(s)
- Li Hong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yangyang Tang
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shuai Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Meizhen Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanbiao Shi
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Sijia Gao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chao Sui
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - KuiYang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zhixu Shi
- Xuzhou Red Cross Blood Center, Xuzhou, Jiangsu 221400, China
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
4
|
Günel C, Demirci B, Eryılmaz A, Yılmaz M, Meteoğlu İ, Ömürlü İK, Başal Y. Inhibitory Effect of Pycnogenol ® on Airway Inflammation in Ovalbumin-Induced Allergic Rhinitis. Balkan Med J 2016; 33:620-626. [PMID: 27994914 PMCID: PMC5156464 DOI: 10.5152/balkanmedj.2016.150057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The supplement Pycnogenol® (PYC) has been used for the treatment of several chronic diseases including allergic rhinitis (AR). However, the in vivo effects on allergic inflammation have not been identified to date. AIMS To investigate the treatment results of PYC on allergic inflammation in a rat model of allergic rhinitis. STUDY DESIGN Animal experimentation. METHODS Allergic rhinitis was stimulated in 42 rats by intraperitoneal sensitization and intranasal challenge with Ovalbumin. The animals were divided into six subgroups: healthy controls, AR group, AR group treated with corticosteroid (dexamethasone 1 mg/kg; CS+AR), healthy rats group that were given only PYC of 10 mg/kg (PYC10), AR group treated with PYC of 3mg/kg (PYC3+AR), and AR group treated with PYC of 10 mg/kg (PYC10+AR). Interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-10 (IL-10), and OVA-specific immunoglobulin E (Ig-E) levels of serum were measured. Histopathological changes in nasal mucosa and expression of tumor necrosis factor-α (TNF-α) and IL-1β were evaluated. RESULTS The levels of the IL-4 were significantly decreased in the PYC3+AR, PYC10+AR and CS+AR groups compared with the AR group (p=0.002, p<0.001, p=0.006). The production of the IFN-γ was significantly decreased in the PYC3+AR and PYC10+AR groups compared with the AR group (p=0.013, p=0.001). The administration of PYC to allergic rats suppressed the elevated IL-10 production, especially in the PYC3+AR group (p=0.006). Mucosal edema was significantly decreased respectively after treatment at dose 3 mg/kg and 10 mg/kg PYC (both, p<0.001). The mucosal expression of TNF-α has significantly decreased in the PYC3+AR and PYC10+AR groups (p=0.005, p<0.001), while the IL-1β expression significantly decreased in the CS+AR, PYC3+AR, and PYC10+AR groups (p<0.001, p=0.003, p=0.001). CONCLUSION PYC has multiple suppressive effects on allergic response. Thus, PYC may be used as a supplementary agent in allergic response.
Collapse
Affiliation(s)
- Ceren Günel
- Department of Otolaryngology Head and Neck Surgery, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Buket Demirci
- Department of Medical Pharmacology, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Aylin Eryılmaz
- Department of Otolaryngology Head and Neck Surgery, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Mustafa Yılmaz
- Department of Biochemistry, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - İbrahim Meteoğlu
- Department of Medical Pathology, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - İmran Kurt Ömürlü
- Department of Biostatistic, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Yeşim Başal
- Department of Otolaryngology Head and Neck Surgery, Adnan Menderes University School of Medicine, Aydın, Turkey
| |
Collapse
|
5
|
Gustafsson M, Gawel DR, Alfredsson L, Baranzini S, Björkander J, Blomgran R, Hellberg S, Eklund D, Ernerudh J, Kockum I, Konstantinell A, Lahesmaa R, Lentini A, Liljenström HRI, Mattson L, Matussek A, Mellergård J, Mendez M, Olsson T, Pujana MA, Rasool O, Serra-Musach J, Stenmarker M, Tripathi S, Viitala M, Wang H, Zhang H, Nestor CE, Benson M. A validated gene regulatory network and GWAS identifies early regulators of T cell-associated diseases. Sci Transl Med 2016; 7:313ra178. [PMID: 26560356 DOI: 10.1126/scitranslmed.aad2722] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Early regulators of disease may increase understanding of disease mechanisms and serve as markers for presymptomatic diagnosis and treatment. However, early regulators are difficult to identify because patients generally present after they are symptomatic. We hypothesized that early regulators of T cell-associated diseases could be found by identifying upstream transcription factors (TFs) in T cell differentiation and by prioritizing hub TFs that were enriched for disease-associated polymorphisms. A gene regulatory network (GRN) was constructed by time series profiling of the transcriptomes and methylomes of human CD4(+) T cells during in vitro differentiation into four helper T cell lineages, in combination with sequence-based TF binding predictions. The TFs GATA3, MAF, and MYB were identified as early regulators and validated by ChIP-seq (chromatin immunoprecipitation sequencing) and small interfering RNA knockdowns. Differential mRNA expression of the TFs and their targets in T cell-associated diseases supports their clinical relevance. To directly test if the TFs were altered early in disease, T cells from patients with two T cell-mediated diseases, multiple sclerosis and seasonal allergic rhinitis, were analyzed. Strikingly, the TFs were differentially expressed during asymptomatic stages of both diseases, whereas their targets showed altered expression during symptomatic stages. This analytical strategy to identify early regulators of disease by combining GRNs with genome-wide association studies may be generally applicable for functional and clinical studies of early disease development.
Collapse
Affiliation(s)
- Mika Gustafsson
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden. Bioinformatics, Department of Physics, Chemistry, and Biology, Linköping University, SE-581 83 Linköping, Sweden.
| | - Danuta R Gawel
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Solna, Sweden
| | - Sergio Baranzini
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Janne Björkander
- Futurum-Academy for Health and Care, County Council of Jönköping, SE-551 85 Jönköping, Sweden
| | - Robert Blomgran
- Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine, Linköping University, SE-581 83 Linköping, Sweden
| | - Sandra Hellberg
- Department of Clinical and Experimental Medicine, Division of Clinical Immunology, Unit of Autoimmunity and Immune Regulation, Linköping University, SE-581 83 Linköping, Sweden
| | - Daniel Eklund
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, SE-581 83 Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical and Experimental Medicine, Division of Clinical Immunology, Unit of Autoimmunity and Immune Regulation, Linköping University, SE-581 83 Linköping, Sweden. Department of Clinical Immunology and Transfusion Medicine, Linköping University, SE-581 83 Linköping, Sweden
| | - Ingrid Kockum
- Department of Clinical Neurosciences, Karolinska Institutet and Centrum for Molecular Medicine, SE-171 77 Stockholm, Sweden
| | - Aelita Konstantinell
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden. Department of Medical Biology, The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Riita Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Antonio Lentini
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden
| | - H Robert I Liljenström
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden
| | - Lina Mattson
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden
| | - Andreas Matussek
- Futurum-Academy for Health and Care, County Council of Jönköping, SE-551 85 Jönköping, Sweden
| | - Johan Mellergård
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden
| | - Melissa Mendez
- Laboratorio de Investigación en Enfermedades Infecciosas, LID, Universidad Peruana Cayetano Heredia, Lima PE-15102, Peru
| | - Tomas Olsson
- Department of Clinical Neurosciences, Karolinska Institutet and Centrum for Molecular Medicine, SE-171 77 Stockholm, Sweden
| | - Miguel A Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Cancer and Systems Biology Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, ES-08908 Barcelona, Spain
| | - Omid Rasool
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Jordi Serra-Musach
- Program Against Cancer Therapeutic Resistance (ProCURE), Cancer and Systems Biology Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, ES-08908 Barcelona, Spain
| | - Margaretha Stenmarker
- Futurum-Academy for Health and Care, County Council of Jönköping, SE-551 85 Jönköping, Sweden
| | - Subhash Tripathi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Miro Viitala
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Hui Wang
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden. Department of Immunology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huan Zhang
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden
| | - Colm E Nestor
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden
| | - Mikael Benson
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|
6
|
Bruhn S, Fang Y, Barrenäs F, Gustafsson M, Zhang H, Konstantinell A, Krönke A, Sönnichsen B, Bresnick A, Dulyaninova N, Wang H, Zhao Y, Klingelhöfer J, Ambartsumian N, Beck MK, Nestor C, Bona E, Xiang Z, Benson M. A generally applicable translational strategy identifies S100A4 as a candidate gene in allergy. Sci Transl Med 2014; 6:218ra4. [PMID: 24401939 DOI: 10.1126/scitranslmed.3007410] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of diagnostic markers and therapeutic candidate genes in common diseases is complicated by the involvement of thousands of genes. We hypothesized that genes co-regulated with a key gene in allergy, IL13, would form a module that could help to identify candidate genes. We identified a T helper 2 (TH2) cell module by small interfering RNA-mediated knockdown of 25 putative IL13-regulating transcription factors followed by expression profiling. The module contained candidate genes whose diagnostic potential was supported by clinical studies. Functional studies of human TH2 cells as well as mouse models of allergy showed that deletion of one of the genes, S100A4, resulted in decreased signs of allergy including TH2 cell activation, humoral immunity, and infiltration of effector cells. Specifically, dendritic cells required S100A4 for activating T cells. Treatment with an anti-S100A4 antibody resulted in decreased signs of allergy in the mouse model as well as in allergen-challenged T cells from allergic patients. This strategy, which may be generally applicable to complex diseases, identified and validated an important diagnostic and therapeutic candidate gene in allergy.
Collapse
Affiliation(s)
- Sören Bruhn
- The Center for Individualized Medication, Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gustafsson M, Edström M, Gawel D, Nestor CE, Wang H, Zhang H, Barrenäs F, Tojo J, Kockum I, Olsson T, Serra-Musach J, Bonifaci N, Pujana MA, Ernerudh J, Benson M. Integrated genomic and prospective clinical studies show the importance of modular pleiotropy for disease susceptibility, diagnosis and treatment. Genome Med 2014; 6:17. [PMID: 24571673 PMCID: PMC4064311 DOI: 10.1186/gm534] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/21/2014] [Indexed: 12/17/2022] Open
Abstract
Background Translational research typically aims to identify and functionally validate individual, disease-specific genes. However, reaching this aim is complicated by the involvement of thousands of genes in common diseases, and that many of those genes are pleiotropic, that is, shared by several diseases. Methods We integrated genomic meta-analyses with prospective clinical studies to systematically investigate the pathogenic, diagnostic and therapeutic roles of pleiotropic genes. In a novel approach, we first used pathway analysis of all published genome-wide association studies (GWAS) to find a cell type common to many diseases. Results The analysis showed over-representation of the T helper cell differentiation pathway, which is expressed in T cells. This led us to focus on expression profiling of CD4+ T cells from highly diverse inflammatory and malignant diseases. We found that pleiotropic genes were highly interconnected and formed a pleiotropic module, which was enriched for inflammatory, metabolic and proliferative pathways. The general relevance of this module was supported by highly significant enrichment of genetic variants identified by all GWAS and cancer studies, as well as known diagnostic and therapeutic targets. Prospective clinical studies of multiple sclerosis and allergy showed the importance of both pleiotropic and disease specific modules for clinical stratification. Conclusions In summary, this translational genomics study identified a pleiotropic module, which has key pathogenic, diagnostic and therapeutic roles.
Collapse
Affiliation(s)
- Mika Gustafsson
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Måns Edström
- Clinical and Experimental Medicine, Faculty of Health Sciences, Division of Clinical Immunology, Unit of Autoimmunity and Immune Regulation, Linköping University, 58185 Linköping, Sweden
| | - Danuta Gawel
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Colm E Nestor
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Hui Wang
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Huan Zhang
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Fredrik Barrenäs
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - James Tojo
- Department of Clinical Neurosciences, Karolinska Institutet and Centrum for Molecular Medicine, 17177 Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neurosciences, Karolinska Institutet and Centrum for Molecular Medicine, 17177 Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neurosciences, Karolinska Institutet and Centrum for Molecular Medicine, 17177 Stockholm, Sweden
| | - Jordi Serra-Musach
- Cancer and Systems Biology Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Núria Bonifaci
- Cancer and Systems Biology Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Miguel Angel Pujana
- Cancer and Systems Biology Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Jan Ernerudh
- Clinical and Experimental Medicine, Faculty of Health Sciences, Division of Clinical Immunology, Unit of Autoimmunity and Immune Regulation, Linköping University, 58185 Linköping, Sweden
| | - Mikael Benson
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
8
|
Nestor CE, Barrenäs F, Wang H, Lentini A, Zhang H, Bruhn S, Jörnsten R, Langston MA, Rogers G, Gustafsson M, Benson M. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure. PLoS Genet 2014; 10:e1004059. [PMID: 24391521 PMCID: PMC3879208 DOI: 10.1371/journal.pgen.1004059] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 11/11/2013] [Indexed: 12/30/2022] Open
Abstract
Altered DNA methylation patterns in CD4+ T-cells indicate the importance of epigenetic mechanisms in inflammatory diseases. However, the identification of these alterations is complicated by the heterogeneity of most inflammatory diseases. Seasonal allergic rhinitis (SAR) is an optimal disease model for the study of DNA methylation because of its well-defined phenotype and etiology. We generated genome-wide DNA methylation (Npatients = 8, Ncontrols = 8) and gene expression (Npatients = 9, Ncontrols = 10) profiles of CD4+ T-cells from SAR patients and healthy controls using Illumina's HumanMethylation450 and HT-12 microarrays, respectively. DNA methylation profiles clearly and robustly distinguished SAR patients from controls, during and outside the pollen season. In agreement with previously published studies, gene expression profiles of the same samples failed to separate patients and controls. Separation by methylation (Npatients = 12, Ncontrols = 12), but not by gene expression (Npatients = 21, Ncontrols = 21) was also observed in an in vitro model system in which purified PBMCs from patients and healthy controls were challenged with allergen. We observed changes in the proportions of memory T-cell populations between patients (Npatients = 35) and controls (Ncontrols = 12), which could explain the observed difference in DNA methylation. Our data highlight the potential of epigenomics in the stratification of immune disease and represents the first successful molecular classification of SAR using CD4+ T cells. T-cells, a type of white blood cell, are an important part of the immune-system in humans. T-cells allow us to adapt our immune-response to the various infectious agents we encounter during life. However, T-cells can also cause disease when they target the body's own cells, e.g. Psoriasis, or when they react to a harmless particle or ‘antigen’, i.e. allergy. Much evidence supports an environmental, or ‘epigenetic’, component to allergy. Surprisingly, although allergy is viewed as a T-cell disease with an epigenetic component, no studies have identified epigenetic differences between healthy individuals and allergic individuals. Using a state-of-the-art genome-wide approach, we found that we could clearly and robustly separate allergic patients from healthy controls. It is often assumed that these changes reflect changes in DNA methylation in a given type of cell; however such differences can also result from different mixtures of T-cell subtypes in the samples. Indeed, we found that allergic patients had different proportions of T-cell sub-types compared to healthy controls. These changes in T-cell proportions may explain the difference in DNA methylation profile we observed between patients and controls. Our study is the first successful molecular classification of allergy using CD4+ T cells.
Collapse
Affiliation(s)
- Colm E. Nestor
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
- * E-mail:
| | - Fredrik Barrenäs
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
| | - Hui Wang
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
- Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Antonio Lentini
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
| | - Huan Zhang
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
| | - Sören Bruhn
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
| | - Rebecka Jörnsten
- Mathematical Sciences, Chalmers University of Technology, University of Gothenburg, Gothenburg, Sweden
| | - Michael A. Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Gary Rogers
- National Institute for Computational Sciences, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Mika Gustafsson
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
| | - Mikael Benson
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Chavali S, Bruhn S, Tiemann K, Sætrom P, Barrenäs F, Saito T, Kanduri K, Wang H, Benson M. MicroRNAs act complementarily to regulate disease-related mRNA modules in human diseases. RNA (NEW YORK, N.Y.) 2013; 19:1552-1562. [PMID: 24062574 PMCID: PMC3851722 DOI: 10.1261/rna.038414.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
MicroRNAs (miRNAs) play a key role in regulating mRNA expression, and individual miRNAs have been proposed as diagnostic and therapeutic candidates. The identification of such candidates is complicated by the involvement of multiple miRNAs and mRNAs as well as unknown disease topology of the miRNAs. Here, we investigated if disease-associated miRNAs regulate modules of disease-associated mRNAs, if those miRNAs act complementarily or synergistically, and if single or combinations of miRNAs can be targeted to alter module functions. We first analyzed publicly available miRNA and mRNA expression data for five different diseases. Integrated target prediction and network-based analysis showed that the miRNAs regulated modules of disease-relevant genes. Most of the miRNAs acted complementarily to regulate multiple mRNAs. To functionally test these findings, we repeated the analysis using our own miRNA and mRNA expression data from CD4+ T cells from patients with seasonal allergic rhinitis. This is a good model of complex diseases because of its well-defined phenotype and pathogenesis. Combined computational and functional studies confirmed that miRNAs mainly acted complementarily and that a combination of two complementary miRNAs, miR-223 and miR-139-3p, could be targeted to alter disease-relevant module functions, namely, the release of type 2 helper T-cell (Th2) cytokines. Taken together, our findings indicate that miRNAs act complementarily to regulate modules of disease-related mRNAs and can be targeted to alter disease-relevant functions.
Collapse
Affiliation(s)
- Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Sören Bruhn
- The Centre for Individualized Medication, Linköping University Hospital, Linköping University, Linköping, SE-58185, Sweden
| | - Katrin Tiemann
- The Centre for Individualized Medication, Linköping University Hospital, Linköping University, Linköping, SE-58185, Sweden
| | - Pål Sætrom
- Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
| | - Fredrik Barrenäs
- The Centre for Individualized Medication, Linköping University Hospital, Linköping University, Linköping, SE-58185, Sweden
| | - Takaya Saito
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
| | - Kartiek Kanduri
- The Unit for Clinical Systems Biology, University of Gothenburg, Gothenburg, SE 40530, Sweden
| | - Hui Wang
- The Centre for Individualized Medication, Linköping University Hospital, Linköping University, Linköping, SE-58185, Sweden
- The Unit for Clinical Systems Biology, University of Gothenburg, Gothenburg, SE 40530, Sweden
| | - Mikael Benson
- The Centre for Individualized Medication, Linköping University Hospital, Linköping University, Linköping, SE-58185, Sweden
- Pediatric Allergy Unit, Queen Silvia Children's Hospital, Gothenburg, SE 41685, Sweden
| |
Collapse
|
10
|
Zhao Y, Wang H, Gustafsson M, Muraro A, Bruhn S, Benson M. Combined multivariate and pathway analyses show that allergen-induced gene expression changes in CD4+ T cells are reversed by glucocorticoids. PLoS One 2012; 7:e39016. [PMID: 22701743 PMCID: PMC3373548 DOI: 10.1371/journal.pone.0039016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 05/15/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Glucocorticoids (GCs) play a key role in the treatment of allergy. However, the genome-wide effects of GCs on gene expression in allergen-challenged CD4(+) T cells have not been described. The aim of this study was to perform a genome-wide analysis to investigate whether allergen-induced gene expression changes in CD4(+) T cells could be reversed by GCs. METHODOLOGY/PRINCIPAL FINDINGS Gene expression microarray analysis was performed to profile gene expression in diluent- (D), allergen- (A), and allergen + hydrocortisone- (T) challenged CD4(+) T cells from patients with seasonal allergic rhinitis. Principal component analysis (PCA) showed good separation of the three groups. To identify the correlation between changes in gene expression in allergen-challenged CD4(+) T cells before and after GC treatment, we performed orthogonal partial least squares discriminant analysis (OPLS-DA) followed by Pearson correlation analysis. This revealed that allergen-induced genes were widely reversed by GC treatment (r = -0.77, P<0.0001). We extracted 547 genes reversed by GC treatment from OPLS-DA models based on their high contribution to the discrimination and found that those genes belonged to several different inflammatory pathways including TNFR2 Signalling, Interferon Signalling, Glucocorticoid Receptor Signalling and T Helper Cell Differentiation. The results were supported by gene expression microarray analyses of two independent materials. CONCLUSIONS/SIGNIFICANCE Allergen-induced gene expression changes in CD4(+) T cells were reversed by treatment with glucocorticoids. The top allergen-induced genes that reversed by GC treatment belonged to several inflammatory pathways and genes of known or potential relevance for allergy.
Collapse
Affiliation(s)
- Yelin Zhao
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Hui Wang
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Department of Pediatrics, University of Gothenburg, Gothenburg, Sweden
| | - Mika Gustafsson
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Antonella Muraro
- Department of Pediatrics, Center for Food Allergy Diagnosis and Treatment, Veneto Region, University of Padua, Padua, Italy
| | - Sören Bruhn
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Mikael Benson
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
11
|
Bruhn S, Barrenäs F, Mobini R, Andersson BA, Chavali S, Egan BS, Hovig E, Sandve GK, Langston MA, Rogers G, Wang H, Benson M. Increased expression of IRF4 and ETS1 in CD4+ cells from patients with intermittent allergic rhinitis. Allergy 2012; 67:33-40. [PMID: 21919915 DOI: 10.1111/j.1398-9995.2011.02707.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The transcription factor (TF) IRF4 is involved in the regulation of Th1, Th2, Th9, and Th17 cells, and animal studies have indicated an important role in allergy. However, IRF4 and its target genes have not been examined in human allergy. METHODS IRF4 and its target genes were examined in allergen-challenged CD4(+) cells from patients with IAR, using combined gene expression microarrays and chromatin immunoprecipitation chips (ChIP-chips), computational target prediction, and RNAi knockdowns. RESULTS IRF4 increased in allergen-challenged CD4(+) cells from patients with IAR, and functional studies supported its role in Th2 cell activation. IRF4 ChIP-chip showed that IRF4 regulated a large number of genes relevant to Th cell differentiation. However, neither Th1 nor Th2 cytokines were the direct targets of IRF4. To examine whether IRF4 induced Th2 cytokines via one or more downstream TFs, we combined gene expression microarrays, ChIP-chips, and computational target prediction and found a putative intermediary TF, namely ETS1 in allergen-challenged CD4(+) cells from allergic patients. ETS1 increased significantly in allergen-challenged CD4(+) cells from patients compared to controls. Gene expression microarrays before and after ETS1 RNAi knockdown showed that ETS1 induced Th2 cytokines as well as disease-related pathways. CONCLUSIONS Increased expression of IRF4 in allergen-challenged CD4(+) cells from patients with intermittent allergic rhinitis leads to activation of a complex transcriptional program, including Th2 cytokines.
Collapse
Affiliation(s)
- S Bruhn
- The Centre for Individualized Medication, Linköping University Hospital, Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang H, Gottfries J, Barrenäs F, Benson M. Identification of novel biomarkers in seasonal allergic rhinitis by combining proteomic, multivariate and pathway analysis. PLoS One 2011; 6:e23563. [PMID: 21887273 PMCID: PMC3160968 DOI: 10.1371/journal.pone.0023563] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 07/20/2011] [Indexed: 01/24/2023] Open
Abstract
Background Glucocorticoids (GCs) play a key role in the treatment of seasonal allergic rhinitis (SAR). However, some patients show a low response to GC treatment. We hypothesized that proteins that correlated to discrimination between symptomatic high and low responders (HR and LR) to GC treatment might be regulated by GCs and therefore suitable as biomarkers for GC treatment. Methodology/Principal Findings We identified 953 nasal fluid proteins in symptomatic HR and LR with a LC MS/MS based-quantitative proteomics analysis and performed multivariate analysis to identify a combination of proteins that best separated symptomatic HR and LR. Pathway analysis showed that those proteins were most enriched in the acute phase response pathway. We prioritized candidate biomarkers for GC treatment based on the multivariate and pathway analysis. Next, we tested if those candidate biomarkers differed before and after GC treatment in nasal fluids from 40 patients with SAR using ELISA. Several proteins including ORM (P<0.0001), APOH (P<0.0001), FGA (P<0.01), CTSD (P<0.05) and SERPINB3 (P<0.05) differed significantly before and after GC treatment. Particularly, ORM (P<0.01), FGA (P<0.05) and APOH (P<0.01) that belonged to the acute phase response pathway decreased significantly in HR but not LR before and after GC treatment. Conclusions/Significance We identified several novel biomarkers for GC treatment response in SAR with combined proteomics, multivariate and pathway analysis. The analytical principles may be generally applicable to identify biomarkers in clinical studies of complex diseases.
Collapse
Affiliation(s)
- Hui Wang
- The Unit for Clinical Systems Biology, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
13
|
Current world literature. Curr Opin Otolaryngol Head Neck Surg 2011; 19:58-65. [PMID: 21233627 DOI: 10.1097/moo.0b013e32834344aa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Sabin BR, Saltoun CA, Avila PC. Advances in upper airway diseases and allergen immunotherapy. J Allergy Clin Immunol 2011; 127:342-50. [DOI: 10.1016/j.jaci.2010.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 02/07/2023]
|
15
|
Wang H, Chavali S, Mobini R, Muraro A, Barbon F, Boldrin D, Aberg N, Benson M. A pathway-based approach to find novel markers of local glucocorticoid treatment in intermittent allergic rhinitis. Allergy 2011; 66:132-40. [PMID: 20659080 DOI: 10.1111/j.1398-9995.2010.02444.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Glucocorticoids (GCs) may affect the expression of hundreds of genes in different cells and tissues from patients with intermittent allergic rhinitis (IAR). It is a formidable challenge to understand these complex changes by studying individual genes. In this study, we aimed to identify (i) pathways affected by local GC treatment and (ii) examine if those pathways could be used to find novel markers of local GC treatment in nasal fluids from patients with IAR. METHODS Gene expression microarray- and iTRAQ-based proteomic analyses of nasal fluids, nasal fluid cells and nasal mucosa from patients with IAR were performed to find pathways enriched for differentially expressed genes and proteins. Proteins representing those pathways were analyzed with ELISA in an independent material of nasal fluids from 23 patients with IAR before and after treatment with a local GC. RESULTS Transcriptomal and proteomic high-throughput analyses of nasal fluids, nasal fluid cells and nasal mucosal showed that local GC treatment affected a wide variety of pathways in IAR such as the glucocorticoid receptor pathway and the acute phase response pathway. Extracellular proteins encoded by genes in those pathways were analyzed in an independent material of nasal fluids from patients. Proteins that changed significantly in expression included known biomarkers such as eosinophil cationic protein but also proteins that had not been previously described in IAR, namely CCL2, M-CSF, CXCL6 and apoH. CONCLUSION Pathway-based analyses of genomic and proteomic high-throughput data can be used as a complementary approach to identify novel potential markers of GC treatment in IAR.
Collapse
Affiliation(s)
- H Wang
- The Unit for Clinical Systems Biology, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Combining network modeling and gene expression microarray analysis to explore the dynamics of Th1 and Th2 cell regulation. PLoS Comput Biol 2010; 6:e1001032. [PMID: 21187905 PMCID: PMC3002992 DOI: 10.1371/journal.pcbi.1001032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 11/11/2010] [Indexed: 01/14/2023] Open
Abstract
Two T helper (Th) cell subsets, namely Th1 and Th2 cells, play an important role in inflammatory diseases. The two subsets are thought to counter-regulate each other, and alterations in their balance result in different diseases. This paradigm has been challenged by recent clinical and experimental data. Because of the large number of genes involved in regulating Th1 and Th2 cells, assessment of this paradigm by modeling or experiments is difficult. Novel algorithms based on formal methods now permit the analysis of large gene regulatory networks. By combining these algorithms with in silico knockouts and gene expression microarray data from human T cells, we examined if the results were compatible with a counter-regulatory role of Th1 and Th2 cells. We constructed a directed network model of genes regulating Th1 and Th2 cells through text mining and manual curation. We identified four attractors in the network, three of which included genes that corresponded to Th0, Th1 and Th2 cells. The fourth attractor contained a mixture of Th1 and Th2 genes. We found that neither in silico knockouts of the Th1 and Th2 attractor genes nor gene expression microarray data from patients with immunological disorders and healthy subjects supported a counter-regulatory role of Th1 and Th2 cells. By combining network modeling with transcriptomic data analysis and in silico knockouts, we have devised a practical way to help unravel complex regulatory network topology and to increase our understanding of how network actions may differ in health and disease.
Collapse
|
17
|
Wang H, Mobini R, Fang Y, Barrenäs F, Zhang H, Xiang Z, Benson M. Allergen challenge of peripheral blood mononuclear cells from patients with seasonal allergic rhinitis increases IL-17RB, which regulates basophil apoptosis and degranulation. Clin Exp Allergy 2010; 40:1194-202. [PMID: 20545698 DOI: 10.1111/j.1365-2222.2010.03542.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Previously, expression profiling has been used to analyse allergen-challenged T-helper type 2 cells, nasal biopsies and nasal fluid cells from patients with seasonal allergic rhinitis (SAR). Allergen-challenged peripheral blood mononuclear cells (PBMCs) provide a human in vitro model of how antigen-presenting cells, CD4+ T cells and effector cells such as basophils interact in allergic inflammation. OBJECTIVE To identify novel genes and pathways in allergen-challenged PBMCs from patients with SAR using gene expression profiling and functional studies. METHODS PBMCs from 11 patients with SAR and 23 healthy controls were analysed with gene expression profiling. mRNA expression of IL17RB in basophils was evaluated using quantitative real-time PCR. Membrane protein expression and apoptosis of basophils were examined by flow cytometry. Degranulation of basophils was assessed by measuring beta-hexosaminidase release. Cytokine release was measured using ELISA. RESULTS Gene expression microarray analysis of allergen-challenged PBMCs showed that 209 out of 44000 genes were differentially expressed in patients compared with controls. IL17RB was the gene whose expression increased most in patients (P<0.0001). FACS analysis of PBMCs showed, for the first time, that basophils express IL-17RB. Following allergen challenge, IL-17RB protein increased significantly on basophils from patients compared with controls (P<0.05). IL-3 significantly increased both mRNA and protein expressions of IL17RB. Activation of IL-17RB by its ligand, IL-25, inhibited apoptosis of basophils. Moreover, IgE-mediated degranulation was enhanced by IL-25. CONCLUSION Increased expression of IL-17RB on allergen-challenged basophil is regulated by IL-3, inhibits apoptosis and promotes IgE-mediated degranulation of basophils.
Collapse
Affiliation(s)
- H Wang
- The Unit for Clinical Systems Biology, Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Sahlgrenska Academy, University of Gothenburg, and The Pediatric Allergy Unit, The Queen Silvia Children's Hospital, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|