1
|
Batorov EV, Tikhonova MA, Kryuchkova IV, Sergeevicheva VV, Sizikova SA, Ushakova GY, Batorova DS, Gilevich AV, Ostanin AA, Shevela EY, Chernykh ER. CD4 + memory T cells retain surface expression of CD31 independently of thymic function in patients with lymphoproliferative disorders following autologous hematopoietic stem-cell transplantation. Int J Hematol 2017; 106:108-115. [PMID: 28293817 DOI: 10.1007/s12185-017-2214-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/30/2022]
Abstract
High-dose chemotherapy with autologous hematopoietic stem-cell transplantation (AHSCT) causes severe and long-lasting immunodeficiency in patients with lymphoproliferative disorders. The thymus begins to restore the T-cell repertoire approximately from the sixth month post-transplant. We assessed the dynamics of post-transplant recovery of CD4+CD45RA+CD31+ T cells, "recent thymic emigrants" (RTEs), and a poorly described subtype of CD4+CD45RA-CD31+ T cells in 90 patients with lymphoproliferative disorders following high-dose chemotherapy with AHSCT. Relative and absolute counts of CD4+CD31+ naïve and memory T cells were evaluated before AHSCT, at the day of engraftment, and 6- and 12-month post-transplant. The pre-transplant count of CD4+CD45RA+CD31+ T cells was lower than in healthy controls, and did not reach donors' values during the 12-month period. The pre-transplant number of CD4+CD45RA-CD31+ T cells was higher than in healthy controls and was restored rapidly following AHSCT. Post-transplant mediastinal radiotherapy reduced counts of RTEs and elongated recovery period. Non-thymic tissue irradiation did not reduce this subset. The obtained data indicate that homeostatic proliferation may decrease the significance of CD31 expression on CD4+CD45RA+ T cells as a marker of RTEs, and suggest that evaluation of RTEs recovery by flow cytometry requires an accurate gating strategy to exclude CD31+ memory T cells.
Collapse
Affiliation(s)
- Egor V Batorov
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099, Novosibirsk, Russian Federation.
| | - Marina A Tikhonova
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099, Novosibirsk, Russian Federation
| | - Irina V Kryuchkova
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099, Novosibirsk, Russian Federation
| | - Vera V Sergeevicheva
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099, Novosibirsk, Russian Federation
| | - Svetlana A Sizikova
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099, Novosibirsk, Russian Federation
| | - Galina Y Ushakova
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099, Novosibirsk, Russian Federation
| | - Dariya S Batorova
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099, Novosibirsk, Russian Federation
| | - Andrey V Gilevich
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099, Novosibirsk, Russian Federation
| | - Alexander A Ostanin
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099, Novosibirsk, Russian Federation
| | - Ekaterina Y Shevela
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099, Novosibirsk, Russian Federation
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099, Novosibirsk, Russian Federation
| |
Collapse
|
2
|
Chinen J, Notarangelo LD, Shearer WT. Advances in clinical immunology in 2015. J Allergy Clin Immunol 2016; 138:1531-1540. [PMID: 27931534 PMCID: PMC5157931 DOI: 10.1016/j.jaci.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/02/2016] [Accepted: 10/07/2016] [Indexed: 12/17/2022]
Abstract
Advances in clinical immunology in the past year included the report of practice parameters for the diagnosis and management of primary immunodeficiencies to guide the clinician in the approach to these relatively uncommon disorders. We have learned of new gene defects causing immunodeficiency and of new phenotypes expanding the spectrum of conditions caused by genetic mutations such as a specific regulator of telomere elongation (RTEL1) mutation causing isolated natural killer cell deficiency and mutations in ras-associated RAB (RAB27) resulting in immunodeficiency without albinism. Advances in diagnosis included the increasing use of whole-exome sequencing to identify gene defects and the measurement of serum free light chains to identify secondary hypogammaglobulinemias. For several primary immunodeficiencies, improved outcomes have been reported after definitive therapy with hematopoietic stem cell transplantation and gene therapy.
Collapse
Affiliation(s)
- Javier Chinen
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex.
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - William T Shearer
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| |
Collapse
|