1
|
Nuñez-Borque E, Fernandez-Bravo S, Yuste-Montalvo A, Esteban V. Pathophysiological, Cellular, and Molecular Events of the Vascular System in Anaphylaxis. Front Immunol 2022; 13:836222. [PMID: 35371072 PMCID: PMC8965328 DOI: 10.3389/fimmu.2022.836222] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
Anaphylaxis is a systemic hypersensitivity reaction that can be life threatening. Mechanistically, it results from the immune activation and release of a variety of mediators that give rise to the signs and symptoms of this pathological event. For years, most of the research in anaphylaxis has focused on the contribution of the immune component. However, approaches that shed light on the participation of other cellular and molecular agents are necessary. Among them, the vascular niche receives the various signals (e.g., histamine) that elicit the range of anaphylactic events. Cardiovascular manifestations such as increased vascular permeability, vasodilation, hypotension, vasoconstriction, and cardiac alterations are crucial in the pathophysiology of anaphylaxis and are highly involved to the development of the most severe cases. Specifically, the endothelium, vascular smooth muscle cells, and their molecular signaling outcomes play an essential role downstream of the immune reaction. Therefore, in this review, we synthesized the vascular changes observed during anaphylaxis as well as its cellular and molecular components. As the risk of anaphylaxis exists both in clinical procedures and in routine life, increasing our knowledge of the vascular physiology and their molecular mechanism will enable us to improve the clinical management and how to treat or prevent anaphylaxis. Key Message Anaphylaxis, the most severe allergic reaction, involves a variety of immune and non-immune molecular signals that give rise to its pathophysiological manifestations. Importantly, the vascular system is engaged in processes relevant to anaphylactic events such as increased vascular permeability, vasodilation, hypotension, vasoconstriction, and decreased cardiac output. The novelty of this review focuses on the fact that new studies will greatly improve the understanding of anaphylaxis when viewed from a vascular molecular angle and specifically from the endothelium. This knowledge will improve therapeutic options to treat or prevent anaphylaxis.
Collapse
Affiliation(s)
- Emilio Nuñez-Borque
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sergio Fernandez-Bravo
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alma Yuste-Montalvo
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| |
Collapse
|
2
|
A novel strategy for the discovery and validation of allergic component and its action mechanism in Red Ginseng. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3
|
Investigating the Role of PPARβ/δ in Retinal Vascular Remodeling Using Pparβ/ δ-Deficient Mice. Int J Mol Sci 2020; 21:ijms21124403. [PMID: 32575793 PMCID: PMC7353058 DOI: 10.3390/ijms21124403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)β/δ is a member of the nuclear receptor superfamily of transcription factors, which plays fundamental roles in cell proliferation and differentiation, inflammation, adipogenesis, and energy homeostasis. Previous studies demonstrated a reduced choroidal neovascularization (CNV) in Pparβ/δ-deficient mice. However, PPARβ/δ's role in physiological blood vessel formation and vessel remodeling in the retina has yet to be established. Our study showed that PPARβ/δ is specifically required for disordered blood vessel formation in the retina. We further demonstrated an increased arteriovenous crossover and wider venous caliber in Pparβ/δ-haplodeficient mice. In summary, these results indicated a critical role of PPARβ/δ in pathological angiogenesis and blood vessel remodeling in the retina.
Collapse
|
4
|
Wagner N, Wagner KD. PPAR Beta/Delta and the Hallmarks of Cancer. Cells 2020; 9:cells9051133. [PMID: 32375405 PMCID: PMC7291220 DOI: 10.3390/cells9051133] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family. Three different isoforms, PPAR alpha, PPAR beta/delta and PPAR gamma have been identified. They all form heterodimers with retinoic X receptors to activate or repress downstream target genes dependent on the presence/absence of ligands and coactivators or corepressors. PPARs differ in their tissue expression profile, ligands and specific agonists and antagonists. PPARs attract attention as potential therapeutic targets for a variety of diseases. PPAR alpha and gamma agonists are in clinical use for the treatment of dyslipidemias and diabetes. For both receptors, several clinical trials as potential therapeutic targets for cancer are ongoing. In contrast, PPAR beta/delta has been suggested as a therapeutic target for metabolic syndrome. However, potential risks in the settings of cancer are less clear. A variety of studies have investigated PPAR beta/delta expression or activation/inhibition in different cancer cell models in vitro, but the relevance for cancer growth in vivo is less well documented and controversial. In this review, we summarize critically the knowledge of PPAR beta/delta functions for the different hallmarks of cancer biological capabilities, which interplay to determine cancer growth.
Collapse
|
5
|
Cao J, Zhang Y, Che D, Liu R, Yang L, Zhang T, He L. H 1R mediates local anesthetic-induced vascular permeability in angioedema. Toxicol Appl Pharmacol 2020; 392:114921. [PMID: 32061592 DOI: 10.1016/j.taap.2020.114921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Angioedema may occur during local anesthetic (LA) injection in the perioperative period. Histaminergic angioedema is the most common form of angioedema. It has been reported that LA is a potential exogenous ligand for histamine receptor 1 (H1R). Whether H1R participates in LA-induced angioedema is still controversial. By using a constructed H1R high-expressed cell model, siRNA transfection, pharmacologic means, and genetically modified animal models, here we showed that H1R mediated LA-induced hyperpermeability. LA with uncycled N-methyl scaffold in the side chain (procaine, tetracaine and lidocaine) had a better strength of drug-H1R affinity than that for LA with cycled N atom (bupivacaine and ropivacaine) by the molecular docking assay and equilibrium dissociation constant (KD values) obtained from the cell membrane chromatography (CMC) relative standard method. Procaine, tetracaine, and lidocaine triggered big calcium mobilization in H1R-HEK293 cells and human umbilical vein endothelial cells (HUVECs) but much weaker in NC-HEK293 cells or H1R knockdown HUVECs. Besides, the results of transendothelial resistance measurement, paracellular flux assay and immunofluorescence showed that procaine induced H1R-dependent hyperpermeability, which involved in PLCγ/IP3R/PKC, ERK1/2, Akt signaling pathways, downstream vascular endothelial cadherin (VE-cad) destabilization. Furthermore, H1R gene knockout prevented paw swelling and vascular leakage caused by procaine, tetracaine, and lidocaine in vivo. This study supported a key role of H1R in LA-induced angioedema, and suggested that in the design of LA structure, the ring formation of the N-methyl scaffold on the side chain can properly avoid the angioedema.
Collapse
Affiliation(s)
- Jiao Cao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yongjing Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Delu Che
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rui Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liu Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Mendez-Barbero N, Yuste-Montalvo A, Nuñez-Borque E, Jensen BM, Gutiérrez-Muñoz C, Tome-Amat J, Garrido-Arandia M, Díaz-Perales A, Ballesteros-Martinez C, Laguna JJ, Beitia J, Poulsen LK, Cuesta-Herranz J, Blanco-Colio LM, Esteban V. The TNF-like weak inducer of the apoptosis/fibroblast growth factor–inducible molecule 14 axis mediates histamine and platelet-activating factor–induced subcutaneous vascular leakage and anaphylactic shock. J Allergy Clin Immunol 2020; 145:583-596.e6. [DOI: 10.1016/j.jaci.2019.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/11/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
|
7
|
PPAR δ: A Potential Therapeutic Target for the Treatment of Metabolic Hypertension. Int J Hypertens 2019; 2019:7809216. [PMID: 31073415 PMCID: PMC6470447 DOI: 10.1155/2019/7809216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/17/2019] [Indexed: 12/20/2022] Open
Abstract
High blood pressure and its associated cardiovascular diseases have been major risks for public health. Multiple metabolic risk factors can cause the vascular dysfunction and vascular lesion, and the hypertension due to metabolic disturbances was defined as metabolic hypertension. The members of a subfamily of the nuclear receptors, peroxisome proliferator-activated receptors (PPARs), were found to be key regulators of metabolism and vascular function. We provide up-to-date knowledge on the role of subtype PPARδ in the regulation of metabolism and vascular function and the effect of its intervention on the metabolic hypertension management. We hope to give some insights into the development of more effective treatments of metabolic hypertension and its main complications.
Collapse
|
8
|
Ballesteros-Martinez C, Mendez-Barbero N, Montalvo-Yuste A, Jensen BM, Gomez-Cardenosa A, Klitfod L, Garrido-Arandia M, Alvarez-Llamas G, Pastor-Vargas C, Vivanco F, Garvey LH, Cuesta-Herranz J, Poulsen LK, Esteban V. Endothelial Regulator of Calcineurin 1 Promotes Barrier Integrity and Modulates Histamine-Induced Barrier Dysfunction in Anaphylaxis. Front Immunol 2017; 8:1323. [PMID: 29104573 PMCID: PMC5655011 DOI: 10.3389/fimmu.2017.01323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
Anaphylaxis, the most serious and life-threatening allergic reaction, produces the release of inflammatory mediators by mast cells and basophils. Regulator of calcineurin 1 (Rcan1) is a negative regulator of mast-cell degranulation. The action of mediators leads to vasodilation and an increase in vascular permeability, causing great loss of intravascular volume in a short time. Nevertheless, the molecular basis remains unexplored on the vascular level. We investigated Rcan1 expression induced by histamine, platelet-activating factor (PAF), and epinephrine in primary human vein (HV)-/artery (HA)-derived endothelial cells (ECs) and human dermal microvascular ECs (HMVEC-D). Vascular permeability was analyzed in vitro in human ECs with forced Rcan1 expression using Transwell migration assays and in vivo using Rcan1 knockout mice. Histamine, but neither PAF nor epinephrine, induced Rcan1-4 mRNA and protein expression in primary HV-ECs, HA-ECs, and HMVEC-D through histamine receptor 1 (H1R). These effects were prevented by pharmacological inhibition of calcineurin with cyclosporine A. Moreover, intravenous histamine administration increased Rcan1 expression in lung tissues of mice undergoing experimental anaphylaxis. Functional in vitro assays showed that overexpression of Rcan1 promotes barrier integrity, suggesting a role played by this molecule in vascular permeability. Consistent with these findings, in vivo models of subcutaneous and intravenous histamine-mediated fluid extravasation showed increased response in skin, aorta, and lungs of Rcan1-deficient mice compared with wild-type animals. These findings reveal that endothelial Rcan1 is synthesized in response to histamine through a calcineurin-sensitive pathway and may reduce barrier breakdown, thus contributing to the strengthening of the endothelium and resistance to anaphylaxis. These new insights underscore its potential role as a regulator of sensitivity to anaphylaxis in humans.
Collapse
Affiliation(s)
| | - Nerea Mendez-Barbero
- Department of Vascular Physiopathology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Alma Montalvo-Yuste
- Department of Immunology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Bettina M Jensen
- Allergy Clinic, Gentofte Hospital, Copenhagen University Hospital, Hellerup, Denmark
| | | | - Lotte Klitfod
- Surgery Department, Gentofte Hospital, Copenhagen University Hospital, Hellerup, Denmark
| | - María Garrido-Arandia
- Center for Plant Biotechnology and Genomics, Technical University of Madrid, Madrid, Spain
| | - Gloria Alvarez-Llamas
- Department of Immunology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Carlos Pastor-Vargas
- Department of Immunology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Fernando Vivanco
- Department of Immunology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Lene Heise Garvey
- Allergy Clinic, Gentofte Hospital, Copenhagen University Hospital, Hellerup, Denmark
| | - Javier Cuesta-Herranz
- Department of Immunology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain.,Department of Allergy, Fundación Jiménez Díaz, Madrid, Spain
| | - Lars K Poulsen
- Allergy Clinic, Gentofte Hospital, Copenhagen University Hospital, Hellerup, Denmark
| | - Vanesa Esteban
- Department of Immunology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain.,Allergy Clinic, Gentofte Hospital, Copenhagen University Hospital, Hellerup, Denmark
| |
Collapse
|
9
|
Wawrzyniak P, Akdis CA, Finkelman FD, Rothenberg ME. Advances and highlights in mechanisms of allergic disease in 2015. J Allergy Clin Immunol 2016; 137:1681-1696. [PMID: 27090934 DOI: 10.1016/j.jaci.2016.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 01/08/2023]
Abstract
This review highlights some of the advances in mechanisms of allergic disease, particularly anaphylaxis, including food allergy, drug hypersensitivity, atopic dermatitis (AD), allergic conjunctivitis, and airway diseases. During the last year, a mechanistic advance in food allergy was achieved by focusing on mechanisms of allergen sensitization. Novel biomarkers and treatment for mastocytosis were presented in several studies. Novel therapeutic approaches in the treatment of atopic dermatitis and psoriasis showed that promising supplementation of the infant's diet in the first year of life with immunoactive prebiotics might have a preventive role against early development of AD and that therapeutic approaches to treat AD in children might be best directed to the correction of a TH2/TH1 imbalance. Several studies were published emphasizing the role of the epithelial barrier in patients with allergic diseases. An impaired skin barrier as a cause for sensitization to food allergens in children and its relationship to filaggrin mutations has been an important development. Numerous studies presented new approaches for improvement of epithelial barrier function and novel biologicals used in the treatment of inflammatory skin and eosinophilic diseases. In addition, novel transcription factors and signaling molecules that can develop as new possible therapeutic targets have been reported.
Collapse
Affiliation(s)
- Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.
| | - Fred D Finkelman
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, University of Cincinnati College of Medicine, and the Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|