1
|
Chen XY, Zhu XJ, Chen M, Lu MP, Wang ML, Yin M, Chen RX, Wu ZF, Bu DY, Zhang ZD, Cheng L. GARP Polymorphisms Associated with Susceptibility to House Dust Mite-Sensitized Persistent Allergic Rhinitis in a Chinese Population. J Asthma Allergy 2022; 15:1369-1381. [PMID: 36196093 PMCID: PMC9527031 DOI: 10.2147/jaa.s366815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Genetic variants in GARP (also known as LRRC32) have been reported to have significant associations with asthma and eczema in special populations, but little is known about allergic rhinitis. This study purposes to evaluate the association of single nucleotide polymorphisms (SNPs) in GARP with house dust mite (HDM)-sensitized persistent allergic rhinitis (PER) in a population of Han Chinese. Methods In this hospital-based case–control study, 534 HDM-sensitized PER patients and 451 healthy controls were recruited from East China. In this population, six SNPs in GARP were identified. Serum total and specific IgE levels were measured with ImmunoCAP. Secondary structure and minimum free energy were predicted by RNAfold. Results rs79525962 was associated with the risk of HDM-sensitized PER (P < 0.05). The individuals with CT+TT genotype demonstrated a higher risk of HDM-sensitized PER than those with CC genotype (adjusted OR = 1.393, 95% CI = 1.019–1.904). The homozygous genotype CC of rs3781699 rendered a lower risk of HDM-sensitized PER than the wild-type genotype AA (adjusted OR = 0.646, 95% CI = 0.427–0.976); however, the genotype and allele frequencies of rs3781699 demonstrated no associations with HDM-sensitized PER (P > 0.05). rs79525962 increased the risk of HDM-sensitized PER in the subgroup aged ≥16 years (adjusted OR = 1.745, 95% CI = 1.103–2.760), and this high risk was also found in the females (adjusted OR = 1.708, 95% CI = 1.021–2.856). The G-C haplotype of rs1320646-rs3781699 rendered a lower risk of HDM-sensitized PER than the common haplotype G-A (adjusted OR = 0.819, 95% CI = 0.676–0.993). The secondary structure of GARP altered in response to different genotypes of rs79525962 and rs3781699. Conclusion SNP rs79525962 in the GARP gene marks a risk locus of HDM-sensitized PER in Chinese Hans.
Collapse
Affiliation(s)
- Xin-Yuan Chen
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xin-Jie Zhu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Min Chen
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Mei-Ping Lu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Mei-Lin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Min Yin
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ruo-Xi Chen
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhong-Fei Wu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Dong-Yun Bu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zheng-Dong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
- Zheng-Dong Zhang, Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People’s Republic of China, Email
| | - Lei Cheng
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, People’s Republic of China
- Correspondence: Lei Cheng, Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People’s Republic of China, Email
| |
Collapse
|
2
|
Walters EH, Shukla SD, Mahmood MQ, Ward C. Fully integrating pathophysiological insights in COPD: an updated working disease model to broaden therapeutic vision. Eur Respir Rev 2021; 30:200364. [PMID: 34039673 PMCID: PMC9488955 DOI: 10.1183/16000617.0364-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Our starting point is that relatively new findings into the pathogenesis and pathophysiology of airway disease in smokers that lead to chronic obstructive pulmonary disease (COPD) need to be reassessed as a whole and integrated into "mainstream" thinking along with traditional concepts which have stood the test of time. Such a refining of the accepted disease paradigm is urgently needed as thinking on therapeutic targets is currently under active reconsideration. We feel that generalised airway wall "inflammation" is unduly over-emphasised, and highlight the patchy and variable nature of the pathology (with the core being airway remodelling). In addition, we present evidence for airway wall disease in smokers/COPD as including a hypocellular, hypovascular, destructive, fibrotic pathology, with a likely spectrum of epithelial-mesenchymal transition states as significant drivers of this remodelling. Furthermore, we present data from a number of research modalities and integrate this with the aetiology of lung cancer, the role of chronic airway luminal colonisation/infection by a specific group of "respiratory" bacteria in smokers (which results in luminal inflammation) and the central role for oxidative stress on the epithelium. We suggest translation of these insights into more focus on asymptomatic smokers and early COPD, with the potential for fresh preventive and therapeutic approaches.
Collapse
Affiliation(s)
- E Haydn Walters
- School of Medicine and Menzies Institute, University of Tasmania, Hobart, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs and School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Malik Q Mahmood
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Australia
| | - Chris Ward
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University Medical School, Newcastle University, UK
| |
Collapse
|
3
|
Schiffers C, van de Wetering C, Bauer RA, Habibovic A, Hristova M, Dustin CM, Lambrichts S, Vacek PM, Wouters EF, Reynaert NL, van der Vliet A. Downregulation of epithelial DUOX1 in chronic obstructive pulmonary disease. JCI Insight 2021; 6:142189. [PMID: 33301419 PMCID: PMC7934842 DOI: 10.1172/jci.insight.142189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease characterized by small airway remodeling and alveolar emphysema due to environmental stresses such as cigarette smoking (CS). Oxidative stress is commonly implicated in COPD pathology, but recent findings suggest that one oxidant-producing NADPH oxidase homolog, dual oxidase 1 (DUOX1), is downregulated in the airways of patients with COPD. We evaluated lung tissue sections from patients with COPD for small airway epithelial DUOX1 protein expression, in association with measures of lung function and small airway and alveolar remodeling. We also addressed the impact of DUOX1 for lung tissue remodeling in mouse models of COPD. Small airway DUOX1 levels were decreased in advanced COPD and correlated with loss of lung function and markers of emphysema and remodeling. Similarly, DUOX1 downregulation in correlation with extracellular matrix remodeling was observed in a genetic model of COPD, transgenic SPC-TNF-α mice. Finally, development of subepithelial airway fibrosis in mice due to exposure to the CS-component acrolein, or alveolar emphysema induced by administration of elastase, were in both cases exacerbated in Duox1-deficient mice. Collectively, our studies highlight that downregulation of DUOX1 may be a contributing feature of COPD pathogenesis, likely related to impaired DUOX1-mediated innate injury responses involved in epithelial homeostasis.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.,Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.,Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Robert A Bauer
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Sara Lambrichts
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Pamela M Vacek
- Department of Medical Biostatistics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Emiel Fm Wouters
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands.,Ludwig Boltzman Institute for Lung Health, Vienna, Austria
| | - Niki L Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
4
|
Huang C, Yu Y, Du W, Liu Y, Dai R, Tang W, Wang P, Zhang C, Shi G. Fungal and bacterial microbiome dysbiosis and imbalance of trans-kingdom network in asthma. Clin Transl Allergy 2020; 10:42. [PMID: 33110490 PMCID: PMC7583303 DOI: 10.1186/s13601-020-00345-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Background Fungal and bacterial microbiota play an important role in development of asthma. We aim to characterize airway microbiome (mycobiome, bacteriome) and functional genes in asthmatics and controls. Methods Sputum microbiome of controls, untreated asthma patients and inhaled corticosteroid (ICS) receiving patients was detected using high throughput sequencing. Metagenomic sequencing was used to examine the functional genes of microbiome. Results 1. Mycobiome: α diversity was lower in untreated asthma group than that in controls. Mycobiome compositions differed among the three groups. Compared with controls, untreated asthma group has higher abundance of Wallemia, Mortierella and Fusarium. Compared with untreated asthma patients, ICS receiving patients has higher abundance of Fusarium and Mortierella, lower frequency of Wallemia, Alternaria and Aspergillus. 2. Bacteriome: α diversity was lower in untreated asthma group than that in controls. There are some overlaps of bacteriome compositions between controls and untreated asthma patients which were distinct from ICS receiving patients. Untreated asthma group has higher Streptococcus than controls. 3. Potential fungal and bacterial biomarkers of asthma: Trametes, Aspergillus, Streptococcus, Gemella, Neisseria, etc. 4. Correlation network: There are dense and homogenous correlations in controls but a dramatically unbalanced network in untreated asthma and ICS receiving patients, which suggested the existence of disease-specific inter-kingdom and intra-kingdom alterations. 5. Metagenomic analysis: functional pathways were associated with the status of asthma, microbiome and functional genes showed different correlations in different environment. Conclusion We showed mycobiome and bacteriome dysbiosis in asthma featured by alterations in biodiversity, community composition, inter-kingdom and intra-kingdom network. We also observed several functional genes associated with asthma.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| | - Youchao Yu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| | - Wei Du
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| | - Yahui Liu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| | - Ranran Dai
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| | - Wei Tang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| | - Ping Wang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800, Dongchuan Road, Shanghai, 200240 People's Republic of China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People's Republic of China
| |
Collapse
|
5
|
Abdelaziz MH, Abdelwahab SF, Wan J, Cai W, Huixuan W, Jianjun C, Kumar KD, Vasudevan A, Sadek A, Su Z, Wang S, Xu H. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med 2020; 18:58. [PMID: 32024540 PMCID: PMC7003359 DOI: 10.1186/s12967-020-02251-w] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages are heterogenous phagocytic cells with an important role in the innate immunity. They are, also, significant contributors in the adaptive immune system. Macrophages are the most abundant immune cells in the lung during allergic asthma, which is the most common chronic respiratory disease of both adults and children. Macrophages activated by Th1 cells are known as M1 macrophages while those activated by IL-4 and IL-13 are called alternatively activated macrophages (AAM) or M2 cells. AAM are subdivided into four distinct subtypes (M2a, M2b, M2c and M2d), depending on the nature of inducing agent and the expressed markers. BODY: IL-4 is the major effector cytokine in both alternative activation of macrophages and pathogenesis of asthma. Thus, the role of M2a macrophages in asthma is a major concern. However, this is controversial. Therefore, further studies are required to improve our knowledge about the role of IL-4-induced macrophages in allergic asthma, through precisive elucidation of the roles of specific M2a proteins in the pathogenesis of asthma. In the current review, we try to illustrate the different functions of M2a macrophages (protective and pathogenic roles) in the pathogenesis of asthma, including explanation of how different M2a proteins and markers act during the pathogenesis of allergic asthma. These include surface markers, enzymes, secreted proteins, chemokines, cytokines, signal transduction proteins and transcription factors. CONCLUSIONS AAM is considered a double-edged sword in allergic asthma. Finally, we recommend further studies that focus on increased selective expression or suppression of protective and pathogenic M2a markers.
Collapse
Affiliation(s)
- Mohamed Hamed Abdelaziz
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Sayed F Abdelwahab
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Pharmaceutical Technology, Taif University, College of Pharmacy, Taif, 21974, Kingdom of Saudi Arabia.
| | - Jie Wan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wei Cai
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Huixuan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Jianjun
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kesavan Dinesh Kumar
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Aparna Vasudevan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ahmed Sadek
- Department of Microbiology & Immunology, School of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
6
|
Fang L, Sun Q, Roth M. Immunologic and Non-Immunologic Mechanisms Leading to Airway Remodeling in Asthma. Int J Mol Sci 2020; 21:ijms21030757. [PMID: 31979396 PMCID: PMC7037330 DOI: 10.3390/ijms21030757] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Asthma increases worldwide without any definite reason and patient numbers double every 10 years. Drugs used for asthma therapy relax the muscles and reduce inflammation, but none of them inhibited airway wall remodeling in clinical studies. Airway wall remodeling can either be induced through pro-inflammatory cytokines released by immune cells, or direct binding of IgE to smooth muscle cells, or non-immunological stimuli. Increasing evidence suggests that airway wall remodeling is initiated early in life by epigenetic events that lead to cell type specific pathologies, and modulate the interaction between epithelial and sub-epithelial cells. Animal models are only available for remodeling in allergic asthma, but none for non-allergic asthma. In human asthma, the mechanisms leading to airway wall remodeling are not well understood. In order to improve the understanding of this asthma pathology, the definition of “remodeling” needs to be better specified as it summarizes a wide range of tissue structural changes. Second, it needs to be assessed if specific remodeling patterns occur in specific asthma pheno- or endo-types. Third, the interaction of the immune cells with tissue forming cells needs to be assessed in both directions; e.g., do immune cells always stimulate tissue cells or are inflamed tissue cells calling immune cells to the rescue? This review aims to provide an overview on immunologic and non-immunologic mechanisms controlling airway wall remodeling in asthma.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research & Pneumology, University Hospital & University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland;
| | - Qinzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Michael Roth
- Pulmonary Cell Research & Pneumology, University Hospital & University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland;
- Correspondence: ; Tel.: +41-61-265-2337
| |
Collapse
|
7
|
Resolution of allergic asthma. Semin Immunopathol 2019; 41:665-674. [PMID: 31705318 DOI: 10.1007/s00281-019-00770-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Allergic asthma is an inflammatory disease of the airways characterized by recurrent episodes of wheezing and bronchoconstriction. Chronic inflammation may finally lead to structural damage followed by airway remodeling. Various studies in recent years contributed to unravel important aspects of the immunopathogenesis of asthma and adapted new pharmaceutical developments. Here, I consider some novel insights into the immunopathogenesis of asthma and the protective and pathogenic roles of some innate and adaptive immune cells as well as the function of soluble mediators such as cytokines. Particular attention will be given to new concepts on resolution of chronic airway inflammation for prevention of airway structural damage.
Collapse
|