1
|
Zhang Y, Liu FM, Li CY, Leng XJ, Zheng YF, Peng GP. Qingkailing injection induces pseudo-allergic reactions via the MRGPRX2 pathway. Am J Transl Res 2025; 17:2178-2187. [PMID: 40226010 PMCID: PMC11982860 DOI: 10.62347/mfbu4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/15/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE Qingkailing Injection (QKLI) is a traditional Chinese medicine injection mainly used for sedation, heat clearing, and other treatments. However, recent clinical studies have shown a risk of pseudo-allergic reactions. The purpose of this study is to elucidate the underlying mechanism of QKLI-induced mast cell degranulation in Laboratory of Allergic Diseases 2 (LAD2) and to validate QKLI-induced activation of guinea pig IgE-independent allergic responses. METHODS Levels of β-hexosaminidase (β-Hex), histamine (His), and complement pathway-related indicators in guinea pigs and LAD2 cells were assayed using the Enzyme-linked Immunosorbent Assay (ELISA). The release rates of β-Hex and His from LAD2 cells were measured using the o-phthalaldehyde (OPA) fluorimetric method. The antagonist for complement component 3a (C3a) receptors, SB290157 and siRNAs were used to inhibit the C3a pathway and the Mas-related G-protein-coupled receptor X2 (MRGPRX2) pathway. The MRGPRX2 pathway and its downstream proteins were detected by Western Blot (WB). RESULTS The results show that QKLI significantly increased levels of β-Hex, His, C3a, complement component 5a (C5a), and terminal complement complex C5b-9 (SC5b-9) in guinea pigs, while levels of interleukin 4 (IL-4), interleukin 13 (IL-13), and interleukin 6 (IL-6) were unaffected. The C3a receptor inhibitor SB290157 significantly reduced levels of β-Hex and His. In LAD2 cells, QKLI increased the release rates of β-Hex and His in a time-dependent manner and decreased the phosphorylation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) proteins downstream of the MRGPRX2 pathway. The effective components of QKL, baicalin (BA) and geniposide (GE), individually enhance the allergic responses of LAD2 cells to some extent. However, the use of QKL is significantly superior to the individual use of its components. CONCLUSIONS We found that QKLI induced pseudoanaphylaxis via an IgE-independent response in guinea pigs and through the MRGPRX2 pathway in human LAD2 cells. Among these, the main ingredients causing pseudoallergic reactions in QKLI were BA and GE. Our research contributes to a better understanding of the mechanisms underlying drug hypersensitivity reactions (DHRs).
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Nanjing University of Chinese MedicineNanjing, Jiangsu, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing, Jiangsu, China
| | - Fang-Mei Liu
- School of Pharmacy, Nanjing University of Chinese MedicineNanjing, Jiangsu, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing, Jiangsu, China
| | - Cun-Yu Li
- School of Pharmacy, Nanjing University of Chinese MedicineNanjing, Jiangsu, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing, Jiangsu, China
| | - Xue-Jiao Leng
- School of Pharmacy, Nanjing University of Chinese MedicineNanjing, Jiangsu, China
| | - Yun-Feng Zheng
- School of Pharmacy, Nanjing University of Chinese MedicineNanjing, Jiangsu, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing, Jiangsu, China
| | - Guo-Ping Peng
- School of Pharmacy, Nanjing University of Chinese MedicineNanjing, Jiangsu, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing, Jiangsu, China
| |
Collapse
|
2
|
Azizoglu ZB, Babayeva R, Haskologlu ZS, Acar MB, Ayaz-Guner S, Okus FZ, Alsavaf MB, Can S, Basaran KE, Canatan MF, Ozcan A, Erkmen H, Leblebici CB, Yilmaz E, Karakukcu M, Kose M, Canoz O, Özen A, Karakoc-Aydiner E, Ceylaner S, Gümüş G, Per H, Gumus H, Canatan H, Ozcan S, Dogu F, Ikinciogullari A, Unal E, Baris S, Eken A. DIAPH1-Deficiency is Associated with Major T, NK and ILC Defects in Humans. J Clin Immunol 2024; 44:175. [PMID: 39120629 PMCID: PMC11315734 DOI: 10.1007/s10875-024-01777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Loss of function mutations in Diaphanous related formin 1 (DIAPH1) are associated with seizures, cortical blindness, and microcephaly syndrome (SCBMS) and are recently linked to combined immunodeficiency. However, the extent of defects in T and innate lymphoid cells (ILCs) remain unexplored. Herein, we characterized the primary T, natural killer (NK) and helper ILCs of six patients carrying two novel loss of function mutation in DIAPH1 and Jurkat cells after DIAPH1 knockdown. Mutations were identified by whole exome sequencing. T-cell immunophenotyping, proliferation, migration, cytokine signaling, survival, and NK cell cytotoxicity were studied via flow cytometry-based assays, confocal microscopy, and real-time qPCR. CD4+ T cell proteome was analyzed by mass spectrometry. p.R351* and p.R322*variants led to a significant reduction in the DIAPH1 mRNA and protein levels. DIAPH1-deficient T cells showed proliferation, activation, as well as TCR-mediated signaling defects. DIAPH1-deficient PBMCs also displayed impaired transwell migration, defective STAT5 phosphorylation in response to IL-2, IL-7 and IL-15. In vitro generation/expansion of Treg cells from naïve T cells was significantly reduced. shRNA-mediated silencing of DIAPH1 in Jurkat cells reduced DIAPH1 protein level and inhibited T cell proliferation and IL-2/STAT5 axis. Additionally, NK cells from patients had diminished cytotoxic activity, function and IL-2/STAT5 axis. Lastly, DIAPH1-deficient patients' peripheral blood contained dramatically reduced numbers of all helper ILC subsets. DIAPH1 deficiency results in major functional defects in T, NK cells and helper ILCs underlining the critical role of formin DIAPH1 in the biology of those cell subsets.
Collapse
Affiliation(s)
- Zehra Busra Azizoglu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
| | - Royala Babayeva
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Zehra Sule Haskologlu
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | | | - Serife Ayaz-Guner
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Fatma Zehra Okus
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | | | - Salim Can
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Kemal Erdem Basaran
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | | | - Alper Ozcan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Hasret Erkmen
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Can Berk Leblebici
- Department of Medical Genetics, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ebru Yilmaz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Musa Karakukcu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Mehmet Kose
- Division of Pediatric Pulmonology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Ozlem Canoz
- Department of Pathology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Türkiye
| | - Ahmet Özen
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Elif Karakoc-Aydiner
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Serdar Ceylaner
- Intergen, Genetic, Rare and Undiagnosed Diseases, Diagnosis and Research Center, Ankara, Türkiye
| | - Gülsüm Gümüş
- Division of Pediatric Radiology, Department of Radiology, Erciyes University Faculty of Medicine, Kayseri, Türkiye
| | - Huseyin Per
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Hakan Gumus
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
| | - Servet Ozcan
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, 38039, Türkiye
| | - Figen Dogu
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Aydan Ikinciogullari
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Ekrem Unal
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey.
- School of Health Sciences, Hasan Kalyoncu University, Gaziantep, Türkiye.
- Medical Point Hospital, Pediatric Hematology Oncology and BMT Unit, Gaziantep, Türkiye.
| | - Safa Baris
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye.
| | - Ahmet Eken
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye.
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye.
| |
Collapse
|
3
|
Cvrčková F, Ghosh R, Kočová H. Transmembrane formins as active cargoes of membrane trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3668-3684. [PMID: 38401146 PMCID: PMC11194305 DOI: 10.1093/jxb/erae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Formins are a large, evolutionarily old family of cytoskeletal regulators whose roles include actin capping and nucleation, as well as modulation of microtubule dynamics. The plant class I formin clade is characterized by a unique domain organization, as most of its members are transmembrane proteins with possible cell wall-binding motifs exposed to the extracytoplasmic space-a structure that appears to be a synapomorphy of the plant kingdom. While such transmembrane formins are traditionally considered mainly as plasmalemma-localized proteins contributing to the organization of the cell cortex, we review, from a cell biology perspective, the growing evidence that they can also, at least temporarily, reside (and in some cases also function) in endomembranes including secretory and endocytotic pathway compartments, the endoplasmic reticulum, the nuclear envelope, and the tonoplast. Based on this evidence, we propose that class I formins may thus serve as 'active cargoes' of membrane trafficking-membrane-embedded proteins that modulate the fate of endo- or exocytotic compartments while being transported by them.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Helena Kočová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| |
Collapse
|
4
|
Oka M, Akaki S, Ohno O, Terasaki M, Hamaoka-Tamura Y, Saito M, Kato S, Inoue A, Aoki J, Matsuno K, Furuta K, Tanaka S. Suppression of Mast Cell Activation by GPR35: GPR35 Is a Primary Target of Disodium Cromoglycate. J Pharmacol Exp Ther 2024; 389:76-86. [PMID: 38290974 DOI: 10.1124/jpet.123.002024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Mast cell stabilizers, including disodium cromoglycate (DSCG), were found to have potential as the agonists of an orphan G protein-coupled receptor, GPR35, although it remains to be determined whether GPR35 is expressed in mast cells and involved in suppression of mast cell degranulation. Our purpose in this study is to verify the expression of GPR35 in mast cells and to clarify how GPR35 modulates the degranulation. We explored the roles of GPR35 using an expression system, a mast cell line constitutively expressing rat GPR35, peritoneal mast cells, and bone marrow-derived cultured mast cells. Immediate allergic responses were assessed using the IgE-mediated passive cutaneous anaphylaxis (PCA) model. Various known GPR35 agonists, including DSCG and newly designed compounds, suppressed IgE-mediated degranulation. GPR35 was expressed in mature mast cells but not in immature bone marrow-derived cultured mast cells and the rat mast cell line. Degranulation induced by antigens was significantly downmodulated in the mast cell line stably expressing GPR35. A GPR35 agonist, zaprinast, induced a transient activation of RhoA and a transient decrease in the amount of filamentous actin. GPR35 agonists suppressed the PCA responses in the wild-type mice but not in the GPR35-/- mice. These findings suggest that GPR35 should prevent mast cells from undergoing degranulation induced by IgE-mediated antigen stimulation and be the primary target of mast cell stabilizers. SIGNIFICANCE STATEMENT: The agonists of an orphan G protein-coupled receptor, GPR35, including disodium cromoglycate, were found to suppress degranulation of rat and mouse mature mast cells, and their antiallergic effects were abrogated in the GPR35-/- mice, indicating that the primary target of mast cell stabilizers should be GPR35.
Collapse
Affiliation(s)
- Masumi Oka
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Sohta Akaki
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Osamu Ohno
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Maho Terasaki
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Yuho Hamaoka-Tamura
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Michiko Saito
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Shinichi Kato
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Asuka Inoue
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Junken Aoki
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Kenji Matsuno
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Kazuyuki Furuta
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| | - Satoshi Tanaka
- Laboratory of Pharmacology, Division of Pathological Sciences (M.O., M.T., Y.H.-T., S.T.), Bioscience Research Center (M.S.), and Laboratory of Pharmacology and Experimental Therapeutics, Division of Pathological Sciences (S.K.), Kyoto Pharmaceutical University, Kyoto, Japan; Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan (S.A., K.F.); Laboratory of Medicinal Chemistry, Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan (O.O.); Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (A.I.); Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (J.A.); and Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan (K.M.)
| |
Collapse
|
5
|
Sulimenko V, Sládková V, Sulimenko T, Dráberová E, Vosecká V, Dráberová L, Skalli O, Dráber P. Regulation of microtubule nucleation in mouse bone marrow-derived mast cells by ARF GTPase-activating protein GIT2. Front Immunol 2024; 15:1321321. [PMID: 38370406 PMCID: PMC10870779 DOI: 10.3389/fimmu.2024.1321321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Aggregation of high-affinity IgE receptors (FcϵRIs) on granulated mast cells triggers signaling pathways leading to a calcium response and release of inflammatory mediators from secretory granules. While microtubules play a role in the degranulation process, the complex molecular mechanisms regulating microtubule remodeling in activated mast cells are only partially understood. Here, we demonstrate that the activation of bone marrow mast cells induced by FcϵRI aggregation increases centrosomal microtubule nucleation, with G protein-coupled receptor kinase-interacting protein 2 (GIT2) playing a vital role in this process. Both endogenous and exogenous GIT2 were associated with centrosomes and γ-tubulin complex proteins. Depletion of GIT2 enhanced centrosomal microtubule nucleation, and phenotypic rescue experiments revealed that GIT2, unlike GIT1, acts as a negative regulator of microtubule nucleation in mast cells. GIT2 also participated in the regulation of antigen-induced degranulation and chemotaxis. Further experiments showed that phosphorylation affected the centrosomal localization of GIT2 and that during antigen-induced activation, GIT2 was phosphorylated by conventional protein kinase C, which promoted microtubule nucleation. We propose that GIT2 is a novel regulator of microtubule organization in activated mast cells by modulating centrosomal microtubule nucleation.
Collapse
Affiliation(s)
- Vadym Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimíra Sládková
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Tetyana Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Eduarda Dráberová
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Věra Vosecká
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lubica Dráberová
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Omar Skalli
- Department of Biological Sciences, The University of Memphis, Memphis, TN, United States
| | - Pavel Dráber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Li Z, Su M, Xie X, Wang P, Bi H, Li E, Ren K, Dong L, Lv Z, Ma X, Liu Y, Zhao B, Peng Y, Liu J, Liu L, Yang J, Ji P, Mei Y. mDia formins form hetero-oligomers and cooperatively maintain murine hematopoiesis. PLoS Genet 2023; 19:e1011084. [PMID: 38157491 PMCID: PMC10756686 DOI: 10.1371/journal.pgen.1011084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
mDia formin proteins regulate the dynamics and organization of the cytoskeleton through their linear actin nucleation and polymerization activities. We previously showed that mDia1 deficiency leads to aberrant innate immune activation and induces myelodysplasia in a mouse model, and mDia2 regulates enucleation and cytokinesis of erythroblasts and the engraftment of hematopoietic stem and progenitor cells (HSPCs). However, whether and how mDia formins interplay and regulate hematopoiesis under physiological and stress conditions remains unknown. Here, we found that both mDia1 and mDia2 are required for HSPC regeneration under stress, such as serial plating, aging, and reconstitution after myeloid ablation. We showed that mDia1 and mDia2 form hetero-oligomers through the interactions between mDia1 GBD-DID and mDia2 DAD domains. Double knockout of mDia1 and mDia2 in hematopoietic cells synergistically impaired the filamentous actin network and serum response factor-involved transcriptional signaling, which led to declined HSPCs, severe anemia, and significant mortality in neonates and newborn mice. Our data demonstrate the potential roles of mDia hetero-oligomerization and their non-rodent functions in the regulation of HSPCs activity and orchestration of hematopoiesis.
Collapse
Affiliation(s)
- Zhaofeng Li
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Meng Su
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Xinshu Xie
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Pan Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Honghao Bi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ermin Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Lili Dong
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhiyi Lv
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Xuezhen Ma
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yijie Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuanliang Peng
- Department of Hematology, the Second Xiangya Hospital; Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University; Changsha, China
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital; Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University; Changsha, China
| | - Lu Liu
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yang Mei
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| |
Collapse
|
7
|
Martínez-Aguilar LM, Ibarra-Sánchez A, Guerrero-Morán DJ, Macías-Silva M, Muñoz-Bello JO, Padilla A, Lizano M, González-Espinosa C. Lysophosphatidylinositol Promotes Chemotaxis and Cytokine Synthesis in Mast Cells with Differential Participation of GPR55 and CB2 Receptors. Int J Mol Sci 2023; 24:ijms24076316. [PMID: 37047288 PMCID: PMC10094727 DOI: 10.3390/ijms24076316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Mast cells (MCs) are the main participants in the control of immune reactions associated with inflammation, allergies, defense against pathogens, and tumor growth. Bioactive lipids are lipophilic compounds able to modulate MC activation. Here, we explored some of the effects of the bioactive lipid lysophosphatidylinositol (LPI) on MCs. Utilizing murine bone marrow-derived mast cells (BMMCs), we found that LPI did not cause degranulation, but slightly increased FcεRI-dependent β-hexosaminidase release. However, LPI induced strong chemotaxis together with changes in LIM kinase (LIMK) and cofilin phosphorylation. LPI also promoted modifications to actin cytoskeleton dynamics that were detected by an increase in cell size and interruptions in the continuity of the cortical actin ring. The chemotaxis and cortical actin ring changes were dependent on GPR55 receptor activation, since the specific agonist O1602 mimicked the effects of LPI and the selective antagonist ML193 prevented them. The LPI and O1602-dependent stimulation of BMMC also led to VEGF, TNF, IL-1α, and IL-1β mRNA accumulation, but, in contrast with chemotaxis-related processes, the effects on cytokine transcription were dependent on GPR55 and cannabinoid (CB) 2 receptors, since they were sensitive to ML193 and to the specific CB2 receptor antagonist AM630. Remarkably, GPR55-dependent BMMC chemotaxis was observed towards conditioned media from distinct mouse and human cancer cells. Our data suggest that LPI induces the chemotaxis of MCs and leads to cytokine production in MC in vitro with the differential participation of GPR55 and CB2 receptors. These effects could play a significant role in the recruitment of MCs to tumors and the production of MC-derived pro-angiogenic factors in the tumor microenvironment.
Collapse
Affiliation(s)
- Lizbeth Magnolia Martínez-Aguilar
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Daniel José Guerrero-Morán
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
| | - Marina Macías-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Jesús Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.O.M.-B.); (M.L.)
| | - Alejandro Padilla
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universtiaria, Mexico City 04510, Mexico;
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (J.O.M.-B.); (M.L.)
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, Mexico City 14330, Mexico; (L.M.M.-A.); (A.I.-S.); (D.J.G.-M.)
- Centro de Investigación sobre Envejecimiento (CIE), Cinvestav, Unidad Sede Sur. Calzada de los Tenorios No. 235 Col. Granjas Coapa, Tlalpan, Mexico City 14400, Mexico
- Correspondence: ; Tel.: +52-5554-832800
| |
Collapse
|
8
|
Shi S, Ye L, Yu X, Jin K, Wu W. Focus on mast cells in the tumor microenvironment: Current knowledge and future directions. Biochim Biophys Acta Rev Cancer 2023; 1878:188845. [PMID: 36476563 DOI: 10.1016/j.bbcan.2022.188845] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Mast cells (MCs) are crucial cells participating in both innate and adaptive immune processes that play important roles in protecting human health and in the pathophysiology of various diseases, such as allergies, cardiovascular diseases, and autoimmune diseases. In the context of tumors, MCs are a non-negligible population of immune cells in the tumor microenvironment (TME). In most tumor types, MCs accumulate in both the tumor tissue and the surrounding tissue. MCs interact with multiple components of the TME, affecting TME remodeling and the tumor cell fate. However, controversy persists regarding whether MCs contribute to tumor progression or trigger an anti-tumor immune response. This review focuses on the context of the TME to explore the specific properties and functions of MCs and discusses the crosstalk that occurs between MCs and other components of the TME, which affect tumor angiogenesis and lymphangiogenesis, invasion and metastasis, and tumor immunity through different mechanisms. We also anticipate the potential role of MCs in cancer immunotherapy, which might expand upon the success achieved with existing cancer therapies.
Collapse
Affiliation(s)
- Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Guenther C. β2-Integrins - Regulatory and Executive Bridges in the Signaling Network Controlling Leukocyte Trafficking and Migration. Front Immunol 2022; 13:809590. [PMID: 35529883 PMCID: PMC9072638 DOI: 10.3389/fimmu.2022.809590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Leukocyte trafficking is an essential process of immunity, occurring as leukocytes travel within the bloodstream and as leukocyte migration within tissues. While it is now established that leukocytes can utilize the mesenchymal migration mode or amoeboid migration mode, differences in the migratory behavior of leukocyte subclasses and how these are realized on a molecular level in each subclass is not fully understood. To outline these differences, first migration modes and their dependence on parameters of the extracellular environments will be explained, as well as the intracellular molecular machinery that powers migration in general. Extracellular parameters are detected by adhesion receptors such as integrins. β2-integrins are surface receptors exclusively expressed on leukocytes and are essential for leukocytes exiting the bloodstream, as well as in mesenchymal migration modes, however, integrins are dispensable for the amoeboid migration mode. Additionally, the balance of different RhoGTPases - which are downstream of surface receptor signaling, including integrins - mediate formation of membrane structures as well as actin dynamics. Individual leukocyte subpopulations have been shown to express distinct RhoGTPase profiles along with their differences in migration behavior, which will be outlined. Emerging aspects of leukocyte migration include signal transduction from integrins via actin to the nucleus that regulates DNA status, gene expression profiles and ultimately leukocyte migratory phenotypes, as well as altered leukocyte migration in tumors, which will be touched upon.
Collapse
Affiliation(s)
- Carla Guenther
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Dahlin JS, Maurer M, Metcalfe DD, Pejler G, Sagi‐Eisenberg R, Nilsson G. The ingenious mast cell: Contemporary insights into mast cell behavior and function. Allergy 2022; 77:83-99. [PMID: 33955017 DOI: 10.1111/all.14881] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Mast cells are (in)famous for their role in allergic diseases, but the physiological and pathophysiological roles of this ingenious cell are still not fully understood. Mast cells are important for homeostasis and surveillance of the human system, recognizing both endogenous and exogenous agents, which induce release of a variety of mediators acting on both immune and non-immune cells, including nerve cells, fibroblasts, endothelial cells, smooth muscle cells, and epithelial cells. During recent years, clinical and experimental studies on human mast cells, as well as experiments using animal models, have resulted in many discoveries that help decipher the function of mast cells in health and disease. In this review, we focus particularly on new insights into mast cell biology, with a focus on mast cell development, recruitment, heterogeneity, and reactivity. We also highlight the development in our understanding of mast cell-driven diseases and discuss the development of novel strategies to treat such conditions.
Collapse
Affiliation(s)
- Joakim S. Dahlin
- Division of Immunology and Allergy Department of Medicine Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Marcus Maurer
- Department of Dermatology and Allergy Dermatological Allergology Allergie‐Centrum‐Charité Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, Berlin Institute of Health Berlin Germany
| | - Dean D. Metcalfe
- Mast Cell Biology Section Laboratory of Allergic Diseases NIAID, NIH Bethesda MD USA
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
- Department of Anatomy, Physiology and Biochemistry Swedish University of Agricultural Sciences Uppsala Sweden
| | - Ronit Sagi‐Eisenberg
- Department of Cell and Developmental Biology Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Gunnar Nilsson
- Division of Immunology and Allergy Department of Medicine Karolinska Institutet Karolinska University Hospital Stockholm Sweden
- Department of Medical Sciences Uppsala University Uppsala Sweden
| |
Collapse
|
11
|
Mast cell activation syndrome: is anaphylaxis part of the phenotype? A systematic review. Curr Opin Allergy Clin Immunol 2021; 21:426-434. [PMID: 34292177 DOI: 10.1097/aci.0000000000000768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Mast cell activation syndrome (MCAS) and anaphylaxis are the result of a spontaneous or triggered pathological degranulation of mast cells (MCs) and might have as substrate normal or pathological MCs (increased burden, aberrant MCs or both). RECENT FINDINGS This review summarizes the most recent evidence on immunoglobulin E (IgE)-mediated and non IgE-mediated mechanisms underlying MC activation and degranulation and highlights the importance of standardized diagnostic criteria for MCAS. Application of these criteria implies that in most cases the clinical presentation of MCAS meets the diagnostic criteria for anaphylaxis. SUMMARY Integrating clinical parameters and diagnostic test recognition and underlying clonal MC disease are of utmost importance for a patient-tailored approach. Hereditary alpha-tryptasemia can be encountered in context of anaphylaxis, MCAS and primary MC disorders.
Collapse
|
12
|
Lazki-Hagenbach P, Klein O, Sagi-Eisenberg R. The actin cytoskeleton and mast cell function. Curr Opin Immunol 2021; 72:27-33. [PMID: 33765561 DOI: 10.1016/j.coi.2021.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
The application of high and super-resolution microscopy techniques has extended the possibilities of studying actin dynamics in mast cells (MCs). These studies demonstrated the close correlation between actin-driven changes in cell morphology and the functions that MC perform during their life cycle. Dynamic conversions between actin polymerization and depolymerization support MC degranulation and leading to the release of the preformed, secretory granule (SG)-contained, inflammatory mediators. Cell flattening inflicting an actin porous geometry and clearing of cortical actin, characterize the secretory actin phenotype. In contrast, pericentral actin clusters, that entrap the SGs, characterize the migratory actin phenotype, which supports MC migration, but restricts MC degranulation. Multiple actin binding and actin interacting proteins regulate these actin rearrangements, in compliance with the signals elicited by the respective activating receptors. Here, we review recent findings on the interplay between the actin cytoskeleton and MC migration and degranulation.
Collapse
Affiliation(s)
- Pia Lazki-Hagenbach
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
13
|
Ménasché G, Longé C, Bratti M, Blank U. Cytoskeletal Transport, Reorganization, and Fusion Regulation in Mast Cell-Stimulus Secretion Coupling. Front Cell Dev Biol 2021; 9:652077. [PMID: 33796537 PMCID: PMC8007931 DOI: 10.3389/fcell.2021.652077] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Mast cells are well known for their role in allergies and many chronic inflammatory diseases. They release upon stimulation, e.g., via the IgE receptor, numerous bioactive compounds from cytoplasmic secretory granules. The regulation of granule secretion and its interaction with the cytoskeleton and transport mechanisms has only recently begun to be understood. These studies have provided new insight into the interaction between the secretory machinery and cytoskeletal elements in the regulation of the degranulation process. They suggest a tight coupling of these two systems, implying a series of specific signaling effectors and adaptor molecules. Here we review recent knowledge describing the signaling events regulating cytoskeletal reorganization and secretory granule transport machinery in conjunction with the membrane fusion machinery that occur during mast cell degranulation. The new insight into MC biology offers novel strategies to treat human allergic and inflammatory diseases targeting the late steps that affect harmful release from granular stores leaving regulatory cytokine secretion intact.
Collapse
Affiliation(s)
- Gaël Ménasché
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Cyril Longé
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
14
|
Authentic and Ectopically Expressed MRGPRX2 Elicit Similar Mechanisms to Stimulate Degranulation of Mast Cells. Cells 2021; 10:cells10020376. [PMID: 33673037 PMCID: PMC7918488 DOI: 10.3390/cells10020376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
The identification of the Mas-related G-protein-coupled receptors (Mrgpr) as targets of diverse stimuli of mast cells (MCs), including neuropeptides and pseudo-allergy causing drugs, has placed these receptors at a prime position in MC research. However, the species-dependent diversity of these receptors raises the need for an adequate model for investigating the human MRGPRX2 receptor. RBL-2H3 cells, stably transfected with MRGPRX2 (RBL-MRGPRX2), are increasingly used for this purpose. Therefore, we investigated whether ectopically expressed MRGPRX2, in rat MCs, recapitulates its authentic signaling. To this purpose, we performed a broad comparative study of the responses of human LAD-2 MCs that express MRGPRX2 endogenously, and RBL-MRGPRX2 cells to compound 48/80, substance P and vancomycin, three proto-type ligands of MRGPRX2. We demonstrate that both models share similar dose-response relationships, kinetics and sensitivities to a wide range of signaling targeting drugs. Therefore, our results indicate that ectopically expressed MRGPRX2 preserves the signaling pathways employed to evoke human MC degranulation, which we show to rely on ERK1/2 MAP kinases, phospholipase C (PLC) and autophagy-related signaling. Importantly, we also show that the underlying mechanisms of MRGPRX2-triggered MC degranulation in either LAD-2 or RBL-MRGPRX2 cells are different from those elicited by its rodent orthologs.
Collapse
|
15
|
Tur-Gracia S, Martinez-Quiles N. Emerging functions of cytoskeletal proteins in immune diseases. J Cell Sci 2021; 134:134/3/jcs253534. [PMID: 33558442 DOI: 10.1242/jcs.253534] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immune cells are especially dependent on the proper functioning of the actin cytoskeleton, and both innate and adaptive responses rely on it. Leukocytes need to adhere not only to substrates but also to cells in order to form synapses that pass on instructions or kill infected cells. Neutrophils literally squeeze their cell body during blood extravasation and efficiently migrate to the inflammatory focus. Moreover, the development of immune cells requires the remodeling of their cytoskeleton as it depends on, among other processes, adhesive contacts and migration. In recent years, the number of reports describing cytoskeletal defects that compromise the immune system has increased immensely. Furthermore, a new emerging paradigm points toward a role for the cellular actin content as an essential component of the so-called homeostasis-altering molecular processes that induce the activation of innate immune signaling pathways. Here, we review the role of critical actin-cytoskeleton-remodeling proteins, including the Arp2/3 complex, cofilin, coronin and WD40-repeat containing protein 1 (WDR1), in immune pathophysiology, with a special focus on autoimmune and autoinflammatory traits.
Collapse
Affiliation(s)
- Sara Tur-Gracia
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Narcisa Martinez-Quiles
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain .,Gregorio Marañón Health Research Institute, 28007 Madrid, Spain
| |
Collapse
|
16
|
Klein O, Azouz NP, Sagi-Eisenberg R. Measurement of Exocytosis in Genetically Manipulated Mast Cells. Methods Mol Biol 2021; 2233:181-192. [PMID: 33222135 DOI: 10.1007/978-1-0716-1044-2_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The hallmark of mast cell activation is secretion of immune mediators by regulated exocytosis. Measurements of mediator secretion from mast cells that are genetically manipulated by transient transfections provide a powerful tool for deciphering the underlying mechanisms of mast cell exocytosis. However, common methods to study regulated exocytosis in bulk culture of mast cells suffer from the drawback of high signal-to-noise ratio because of their failure to distinguish between the different mast cell populations, that is, genetically modified mast cells versus their non-transfected counterparts. In particular, the low transfection efficiency of mast cells poses a significant limitation on the use of conventional methodologies. To overcome this hurdle, we developed a method, which discriminates and allows detection of regulated exocytosis of transfected cells based on the secretion of a fluorescent secretory reporter. We used a plasmid encoding for Neuropeptide Y (NPY) fused to a monomeric red fluorescent protein (NPY-mRFP), yielding a fluorescent secretory granule-targeted reporter that is co-transfected with a plasmid encoding a gene of interest. Upon cell trigger, NPY-mRFP is released from the cells by regulated exocytosis, alongside the endogenous mediators. Therefore, using NPY-mRFP as a reporter for mast cell exocytosis allows either quantitative, via a fluorimeter assay, or qualitative analysis, via confocal microscopy, of the genetically manipulated mast cells. Moreover, this method may be easily modified to accommodate studies of regulated exocytosis in any other type of cell.
Collapse
Affiliation(s)
- Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nurit P Azouz
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatrics, Cincinnati Children Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Miklavc P, Frick M. Actin and Myosin in Non-Neuronal Exocytosis. Cells 2020; 9:cells9061455. [PMID: 32545391 PMCID: PMC7348895 DOI: 10.3390/cells9061455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular secretion depends on exocytosis of secretory vesicles and discharge of vesicle contents. Actin and myosin are essential for pre-fusion and post-fusion stages of exocytosis. Secretory vesicles depend on actin for transport to and attachment at the cell cortex during the pre-fusion phase. Actin coats on fused vesicles contribute to stabilization of large vesicles, active vesicle contraction and/or retrieval of excess membrane during the post-fusion phase. Myosin molecular motors complement the role of actin. Myosin V is required for vesicle trafficking and attachment to cortical actin. Myosin I and II members engage in local remodeling of cortical actin to allow vesicles to get access to the plasma membrane for membrane fusion. Myosins stabilize open fusion pores and contribute to anchoring and contraction of actin coats to facilitate vesicle content release. Actin and myosin function in secretion is regulated by a plethora of interacting regulatory lipids and proteins. Some of these processes have been first described in non-neuronal cells and reflect adaptations to exocytosis of large secretory vesicles and/or secretion of bulky vesicle cargoes. Here we collate the current knowledge and highlight the role of actomyosin during distinct phases of exocytosis in an attempt to identify unifying molecular mechanisms in non-neuronal secretory cells.
Collapse
Affiliation(s)
- Pika Miklavc
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| |
Collapse
|