1
|
Goldbach-Mansky R, Alehashemi S, de Jesus AA. Emerging concepts and treatments in autoinflammatory interferonopathies and monogenic systemic lupus erythematosus. Nat Rev Rheumatol 2025; 21:22-45. [PMID: 39623155 DOI: 10.1038/s41584-024-01184-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 12/22/2024]
Abstract
Over the past two decades, the number of genetically defined autoinflammatory interferonopathies has steadily increased. Aicardi-Goutières syndrome and proteasome-associated autoinflammatory syndromes (PRAAS, also known as CANDLE) are caused by genetic defects that impair homeostatic intracellular nucleic acid and protein processing respectively. Research into these genetic defects revealed intracellular sensors that activate type I interferon production. In SAVI and COPA syndrome, genetic defects that cause chronic activation of the dinucleotide sensor stimulator of interferon genes (STING) share features of lung inflammation and fibrosis; and selected mutations that amplify interferon-α/β receptor signalling cause central nervous system manifestations resembling Aicardi-Goutières syndrome. Research into the monogenic causes of childhood-onset systemic lupus erythematosus (SLE) demonstrates the pathogenic role of autoantibodies to particle-bound extracellular nucleic acids that distinguishes monogenic SLE from the autoinflammatory interferonopathies. This Review introduces a classification for autoinflammatory interferonopathies and discusses the divergent and shared pathomechanisms of interferon production and signalling in these diseases. Early success with drugs that block type I interferon signalling, new insights into the roles of cytoplasmic DNA or RNA sensors, pathways in type I interferon production and organ-specific pathology of the autoinflammatory interferonopathies and monogenic SLE, reveal novel drug targets that could personalize treatment approaches.
Collapse
Affiliation(s)
- Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Cuinat S, Bézieau S, Deb W, Mercier S, Vignard V, Isidor B, Küry S, Ebstein F. Understanding neurodevelopmental proteasomopathies as new rare disease entities: A review of current concepts, molecular biomarkers, and perspectives. Genes Dis 2024; 11:101130. [PMID: 39220754 PMCID: PMC11364055 DOI: 10.1016/j.gendis.2023.101130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2024] Open
Abstract
The recent advances in high throughput sequencing technology have drastically changed the practice of medical diagnosis, allowing for rapid identification of hundreds of genes causing human diseases. This unprecedented progress has made clear that most forms of intellectual disability that affect more than 3% of individuals worldwide are monogenic diseases. Strikingly, a substantial fraction of the mendelian forms of intellectual disability is associated with genes related to the ubiquitin-proteasome system, a highly conserved pathway made up of approximately 1200 genes involved in the regulation of protein homeostasis. Within this group is currently emerging a new class of neurodevelopmental disorders specifically caused by proteasome pathogenic variants which we propose to designate "neurodevelopmental proteasomopathies". Besides cognitive impairment, these diseases are typically associated with a series of syndromic clinical manifestations, among which facial dysmorphism, motor delay, and failure to thrive are the most prominent ones. While recent efforts have been made to uncover the effects exerted by proteasome variants on cell and tissue landscapes, the molecular pathogenesis of neurodevelopmental proteasomopathies remains ill-defined. In this review, we discuss the cellular changes typically induced by genomic alterations in proteasome genes and explore their relevance as biomarkers for the diagnosis, management, and potential treatment of these new rare disease entities.
Collapse
Affiliation(s)
- Silvestre Cuinat
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes F-44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| | - Frédéric Ebstein
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| |
Collapse
|
3
|
Sirkis DW, Oddi AP, Jonson C, Bonham LW, Hoang PT, Yokoyama JS. The role of interferon signaling in neurodegeneration and neuropsychiatric disorders. Front Psychiatry 2024; 15:1480438. [PMID: 39421070 PMCID: PMC11484020 DOI: 10.3389/fpsyt.2024.1480438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Recent advances in transcriptomics research have uncovered heightened interferon (IFN) responses in neurodegenerative diseases including Alzheimer's disease, primary tauopathy, Parkinson's disease, TDP-43 proteinopathy, and related mouse models. Augmented IFN signaling is now relatively well established for microglia in these contexts, but emerging work has highlighted a novel role for IFN-responsive T cells in the brain and peripheral blood in some types of neurodegeneration. These findings complement a body of literature implicating dysregulated IFN signaling in neuropsychiatric disorders including major depression and post-traumatic stress disorder. In this review, we will characterize and integrate advances in our understanding of IFN responses in neurodegenerative and neuropsychiatric disease, discuss how sex and ancestry modulate the IFN response, and examine potential mechanistic explanations for the upregulation of antiviral-like IFN signaling pathways in these seemingly non-viral neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Daniel W. Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Alexis P. Oddi
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Caroline Jonson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, United States
- DataTecnica LLC, Washington, DC, United States
| | - Luke W. Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Phuong T. Hoang
- Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer S. Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Alhumaid S, Alnaim AA, Al Ghamdi MA, Alahmari AA, Alabdulqader M, Al HajjiMohammed SM, Alalwan QM, Al Dossary N, Alghazal HA, Al Hassan MH, Almaani KM, Alhassan FH, Almuhanna MS, Alshakhes AS, BuMozah AS, Al-Alawi AS, Almousa FM, Alalawi HS, Al Matared SM, Alanazi FA, Aldera AH, AlBesher MA, Almuhaisen RH, Busubaih JS, Alyasin AH, Al Majhad AA, Al Ithan IA, Alzuwaid AS, Albaqshi MA, Alhmeed N, Albaqshi YA, Al Alawi Z. International treatment outcomes of neonates on extracorporeal membrane oxygenation (ECMO) with persistent pulmonary hypertension of the newborn (PPHN): a systematic review. J Cardiothorac Surg 2024; 19:493. [PMID: 39182148 PMCID: PMC11344431 DOI: 10.1186/s13019-024-03011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND PPHN is a common cause of neonatal respiratory failure and is still a serious condition and associated with high mortality. OBJECTIVES To compare the demographic variables, clinical characteristics, and treatment outcomes in neonates with PHHN who underwent ECMO and survived compared to neonates with PHHN who underwent ECMO and died. METHODS We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline and searched ProQuest, Medline, Embase, PubMed, CINAHL, Wiley online library, Scopus and Nature for studies on the development of PPHN in neonates who underwent ECMO, published from January 1, 2010 to May 31, 2023, with English language restriction. RESULTS Of the 5689 papers that were identified, 134 articles were included in the systematic review. Studies involving 1814 neonates with PPHN who were placed on ECMO were analyzed (1218 survived and 594 died). Neonates in the PPHN group who died had lower proportion of normal spontaneous vaginal delivery (6.4% vs 1.8%; p value > 0.05) and lower Apgar scores at 1 min and 5 min [i.e., low Apgar score: 1.5% vs 0.5%, moderately abnormal Apgar score: 10.3% vs 1.2% and reassuring Apgar score: 4% vs 2.3%; p value = 0.039] compared to those who survived. Neonates who had PPHN and died had higher proportion of medical comorbidities such as omphalocele (0.7% vs 4.7%), systemic hypotension (1% vs 2.5%), infection with Herpes simplex virus (0.4% vs 2.2%) or Bordetella pertussis (0.7% vs 2%); p = 0.042. Neonates with PPHN in the death group were more likely to present due to congenital diaphragmatic hernia (25.5% vs 47.3%), neonatal respiratory distress syndrome (4.2% vs 13.5%), meconium aspiration syndrome (8% vs 12.1%), pneumonia (1.6% vs 8.4%), sepsis (1.5% vs 8.2%) and alveolar capillary dysplasia with misalignment of pulmonary veins (0.1% vs 4.4%); p = 0.019. Neonates with PPHN who died needed a longer median time of mechanical ventilation (15 days, IQR 10 to 27 vs. 10 days, IQR 7 to 28; p = 0.024) and ECMO use (9.2 days, IQR 3.9 to 13.5 vs. 6 days, IQR 3 to 12.5; p = 0.033), and a shorter median duration of hospital stay (23 days, IQR 12.5 to 46 vs. 58.5 days, IQR 28.2 to 60.7; p = 0.000) compared to the neonates with PPHN who survived. ECMO-related complications such as chylothorax (1% vs 2.7%), intracranial bleeding (1.2% vs 1.7%) and catheter-related infections (0% vs 0.3%) were more frequent in the group of neonates with PPHN who died (p = 0.031). CONCLUSION ECMO in the neonates with PPHN who failed supportive cardiorespiratory care and conventional therapies has been successfully utilized with a neonatal survival rate of 67.1%. Mortality in neonates with PPHN who underwent ECMO was highest in cases born via the caesarean delivery mode or neonates who had lower Apgar scores at birth. Fatality rate in neonates with PPHN who underwent ECMO was the highest in patients with higher rate of specific medical comorbidities (omphalocele, systemic hypotension and infection with Herpes simplex virus or Bordetella pertussis) or cases who had PPHN due to higher rate of specific etiologies (congenital diaphragmatic hernia, neonatal respiratory distress syndrome and meconium aspiration syndrome). Neonates with PPHN who died may need a longer time of mechanical ventilation and ECMO use and a shorter duration of hospital stay; and may experience higher frequency of ECMO-related complications (chylothorax, intracranial bleeding and catheter-related infections) in comparison with the neonates with PPHN who survived.
Collapse
Affiliation(s)
- Saad Alhumaid
- School of Pharmacy, University of Tasmania, Hobart, 7000, Australia.
| | - Abdulrahman A Alnaim
- Department of Pediatrics, College of Medicine, King Faisal University, 31982, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mohammed A Al Ghamdi
- Department of Pediatrics, King Fahad Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, 34212, Dammam, Saudi Arabia
| | - Abdulaziz A Alahmari
- Department of Pediatrics, King Fahad Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, 34212, Dammam, Saudi Arabia
| | - Muneera Alabdulqader
- Pediatric Nephrology Specialty, Pediatric Department, Medical College, King Faisal University, 31982, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Sarah Mahmoud Al HajjiMohammed
- Pharmacy Department, Prince Saud Bin Jalawi Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36424, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Qasim M Alalwan
- Pediatric Radiology Department, King Fahad Hofuf Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36441, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Nourah Al Dossary
- General Surgery Department, Alomran General Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36358, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Header A Alghazal
- Microbiology Laboratory, Prince Saud Bin Jalawi Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36424, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mohammed H Al Hassan
- Administration of Nursing, Al-Ahsa Health Cluster, Al-Ahsa Health Cluster, Ministry of Health, 36421, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Khadeeja Mirza Almaani
- Alyahya Primary Health Centre, Primary Care Medicine, Al-Ahsa Health Cluster, Ministry of Health, 36341, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Fatimah Hejji Alhassan
- Alyahya Primary Health Centre, Primary Care Medicine, Al-Ahsa Health Cluster, Ministry of Health, 36341, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mohammed S Almuhanna
- Department of Pharmacy, Maternity and Children Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36422, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Aqeel S Alshakhes
- Department of Psychiatry, Prince Saud Bin Jalawi Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36424, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Ahmed Salman BuMozah
- Administration of Dental Services, Al-Ahsa Health Cluster, Ministry of Health, 36421, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Ahmed S Al-Alawi
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, 36421, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Fawzi M Almousa
- Pharmacy Department, Al Jabr Hospital for Eye, Ear, Nose and Throat, Al-Ahsa Health Cluster, Ministry of Health, 36422, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Hassan S Alalawi
- Pharmacy Department, Imam Abdulrahman Alfaisal Hospital, C1 Riyadh Health Cluster, Ministry of Health, 14723, Riyadh, Saudi Arabia
| | - Saleh Mana Al Matared
- Department of Public Health, Kubash General Hospital, Ministry of Health, 66244, Najran, Saudi Arabia
| | | | - Ahmed H Aldera
- Pharmacy Department, Prince Saud Bin Jalawi Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36424, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mustafa Ahmed AlBesher
- Regional Medical Supply, Al-Ahsa Health Cluster, Ministry of Health, 36361, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Ramzy Hasan Almuhaisen
- Quality Assurance and Patient Safety Administration, Directorate of Health Affairs, Ministry of Health, 36441, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Jawad S Busubaih
- Gastroenterology Department, King Fahad Hofuf Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36441, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Ali Hussain Alyasin
- Medical Store Department, Maternity and Children Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36422, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Abbas Ali Al Majhad
- Radiology Department, Prince Saud Bin Jalawi Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36424, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Ibtihal Abbas Al Ithan
- Renal Dialysis Department, King Fahad Hofuf Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36441, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Ahmed Saeed Alzuwaid
- Pharmacy Department, Aljafr General Hospital, Al-Ahsa Health Cluster, Ministry of Health, 7110, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mohammed Ali Albaqshi
- Pharmacy Department, Aljafr General Hospital, Al-Ahsa Health Cluster, Ministry of Health, 7110, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Naif Alhmeed
- Administration of Supply and Shared Services, C1 Riyadh Health Cluster, Ministry of Health, 14723, Riyadh, Saudi Arabia
| | - Yasmine Ahmed Albaqshi
- Respiratory Therapy Department, Maternity and Children Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36422, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, 31982, Al-Hofuf, Al-Ahsa, Saudi Arabia
| |
Collapse
|
5
|
Nie Y, Ma Z, Zhang B, Sun M, Zhang D, Li HH, Song X. The role of the immunoproteasome in cardiovascular disease. Pharmacol Res 2024; 204:107215. [PMID: 38744399 DOI: 10.1016/j.phrs.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions.
Collapse
Affiliation(s)
- Yifei Nie
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Baoen Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Meichen Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
6
|
Zhang J, Tao P, Deuitch NT, Yu X, Askentijevich I, Zhou Q. Proteasome-Associated Syndromes: Updates on Genetics, Clinical Manifestations, Pathogenesis, and Treatment. J Clin Immunol 2024; 44:88. [PMID: 38578475 DOI: 10.1007/s10875-024-01692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
The ubiquitin-proteasome system (UPS) has a critical role in post-translational protein modification that is essential for the maintenance of all cellular functions, including immune responses. The proteasome complex is ubiquitously expressed and is responsible for degradation of short-lived structurally abnormal, misfolded and not-needed proteins that are targeted for degradation via ubiquitin conjugation. Over the last 14 years, an increasing number of human diseases have been linked to pathogenic variants in proteasome subunits and UPS regulators. Defects of the proteasome complex or its chaperons - which have a regulatory role in the assembly of the proteasome - disrupt protein clearance and cellular homeostasis, leading to immune dysregulation, severe inflammation, and neurodevelopmental disorders in humans. Proteasome-associated diseases have complex inheritance, including monogenic, digenic and oligogenic disorders and can be dominantly or recessively inherited. In this review, we summarize the current known genetic causes of proteasomal disease, and discuss the molecular pathogenesis of these conditions based on the function and cellular expression of mutated proteins in the proteasome complex.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Panfeng Tao
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Natalie T Deuitch
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaomin Yu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Ivona Askentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qing Zhou
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
van der Made CI, Kersten S, Chorin O, Engelhardt KR, Ramakrishnan G, Griffin H, Schim van der Loeff I, Venselaar H, Rothschild AR, Segev M, Schuurs-Hoeijmakers JHM, Mantere T, Essers R, Esteki MZ, Avital AL, Loo PS, Simons A, Pfundt R, Warris A, Seyger MM, van de Veerdonk FL, Netea MG, Slatter MA, Flood T, Gennery AR, Simon AJ, Lev A, Frizinsky S, Barel O, van der Burg M, Somech R, Hambleton S, Henriet SSV, Hoischen A. Expanding the PRAAS spectrum: De novo mutations of immunoproteasome subunit β-type 10 in six infants with SCID-Omenn syndrome. Am J Hum Genet 2024; 111:791-804. [PMID: 38503300 PMCID: PMC11023912 DOI: 10.1016/j.ajhg.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Mutations in proteasome β-subunits or their chaperone and regulatory proteins are associated with proteasome-associated autoinflammatory disorders (PRAAS). We studied six unrelated infants with three de novo heterozygous missense variants in PSMB10, encoding the proteasome β2i-subunit. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash. Remaining T cells had limited T cell receptor repertoires, a skewed memory phenotype, and an elevated CD4/CD8 ratio. Bone marrow examination indicated severely impaired B cell maturation with limited V(D)J recombination. All infants received an allogeneic stem cell transplant and exhibited a variety of severe inflammatory complications thereafter, with 2 peri-transplant and 2 delayed deaths. The single long-term transplant survivor showed evidence for genetic rescue through revertant mosaicism overlapping the affected PSMB10 locus. The identified variants (c.166G>C [p.Asp56His] and c.601G>A/c.601G>C [p.Gly201Arg]) were predicted in silico to profoundly disrupt 20S immunoproteasome structure through impaired β-ring/β-ring interaction. Our identification of PSMB10 mutations as a cause of SCID-Omenn syndrome reinforces the connection between PRAAS-related diseases and SCID.
Collapse
Affiliation(s)
- Caspar I van der Made
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Simone Kersten
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Odelia Chorin
- Institute of Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Karin R Engelhardt
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Gayatri Ramakrishnan
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Helen Griffin
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Ina Schim van der Loeff
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Paediatric Immunology and Infectious Diseases, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanka Venselaar
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Annick Raas Rothschild
- Institute of Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Meirav Segev
- Institute of Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Janneke H M Schuurs-Hoeijmakers
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rick Essers
- Maastricht University Medical Centre MUMC+, Department of Clinical Genetics, Maastricht, the Netherlands; GROW School for Oncology and Developmental Biology, Department of Genetics and Cell Biology, Maastricht, the Netherlands
| | - Masoud Zamani Esteki
- Maastricht University Medical Centre MUMC+, Department of Clinical Genetics, Maastricht, the Netherlands; GROW School for Oncology and Developmental Biology, Department of Genetics and Cell Biology, Maastricht, the Netherlands
| | - Amir L Avital
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peh Sun Loo
- Department of Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Annet Simons
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK; Department of Paediatric Infectious Diseases, Great Ormond Street Hospital, London, UK
| | - Marieke M Seyger
- Department of Dermatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Mary A Slatter
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Paediatric Immunology and Infectious Diseases, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Terry Flood
- Paediatric Immunology and Infectious Diseases, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Paediatric Immunology and Infectious Diseases, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Amos J Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Shirley Frizinsky
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Ortal Barel
- The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Raz Somech
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Paediatric Immunology and Infectious Diseases, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Stefanie S V Henriet
- Department of Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Poli MC. Proteasome disorders and inborn errors of immunity. Immunol Rev 2024; 322:283-299. [PMID: 38071420 DOI: 10.1111/imr.13299] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Inborn errors of immunity (IEI) or primary immune deficiencies (PIDD) are caused by variants in genes encoding for molecules that are relevant to the innate or adaptive immune response. To date, defects in more than 450 different genes have been identified as causes of IEI, causing a constellation of heterogeneous clinical manifestations ranging from increased susceptibility to infection, to autoimmunity or autoinflammation. IEI that are mainly characterized by autoinflammation are broadly classified according to the inflammatory pathway that they predominantly perturb. Among autoinflammatory IEI are those characterized by the transcriptional upregulation of type I interferon genes and are referred to as interferonopathies. Within the spectrum of interferonopathies, genetic defects that affect the proteasome have been described to cause autoinflammatory disease and represent a growing area of investigation. This review is focused on describing the clinical, genetic, and molecular aspects of IEI associated with mutations that affect the proteasome and how the study of these diseases has contributed to delineate therapeutic interventions.
Collapse
Affiliation(s)
- M Cecilia Poli
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Unit of Immunology and Rheumatology Hospital Roberto del Río, Santiago, Chile
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiency diseases (PIDs), also called inborn errors of immunity (IEI), are genetic disorders characterized by increased susceptibility to infection and/or aberrant regulation of immunological pathways. This review summarizes and highlights the new IEI disorders in the International Union of Immunological Societies (IUIS) 2022 report and current trends among new PIDs. RECENT FINDINGS Since the 2019 IUIS report and the 2021 IUIS interim update, the IUIS IEI classification now includes 485 validated IEIs. Increasing utilization of genetic testing and advances in the strategic evaluation of genetic variants has continued to drive the identification of, not only novel IEI disorders, but additional genetic etiologies for known IEI disorders and phenotypes. SUMMARY The recognition of new IEIs continues to advance at a rapid pace, which is due in part to increased performance and application of genetic modalities as well as expansion of the underlying science that is applied to convincingly establish causality. These disorders, as a whole, continue to emphasize the specificity of immunity, complexity of immune mechanisms, and the fine balance that defines immune homeostasis.
Collapse
Affiliation(s)
- Joyce E Yu
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
10
|
Sasaki I, Kato T, Kanazawa N, Kaisho T. Autoinflammatory Diseases Due to Defects in Degradation or Transport of Intracellular Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:83-95. [PMID: 38467974 DOI: 10.1007/978-981-99-9781-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The number of human inborn errors of immunity has now gone beyond 430. The responsible gene variants themselves are apparently the cause for the disorders, but the underlying molecular or cellular mechanisms for the pathogenesis are often unclear. In order to clarify the pathogenesis, the mutant mice carrying the gene variants are apparently useful and important. Extensive analysis of those mice should contribute to the clarification of novel immunoregulatory mechanisms or development of novel therapeutic maneuvers critical not only for the rare monogenic diseases themselves but also for related common polygenic diseases. We have recently generated novel model mice in which complicated manifestations of human inborn errors of immunity affecting degradation or transport of intracellular proteins were recapitulated. Here, we review outline of these disorders, mainly based on the phenotype of the mutant mice we have generated.
Collapse
Affiliation(s)
- Izumi Sasaki
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Kato
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Nobuo Kanazawa
- Department of Dermatology, Hyogo Medical University, Nishinomiya, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
11
|
Yamaoka K, Oku K. JAK inhibitors in rheumatology. Immunol Med 2023; 46:143-152. [PMID: 36744577 DOI: 10.1080/25785826.2023.2172808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023] Open
Abstract
Janus kinase inhibitors (JAKis) are a group of drugs with a different mechanism of action from biologics and are most rapidly uptaken in the rheumatology field. JAK is a protein kinase activated in the cytoplasm by multiple cytokines and hormones involved in inflammatory pathology. The expression of JAK has been observed in various diseases, indicating the utility of JAK inhibitors in a wide variety of immune-mediated inflammatory diseases. Clinical trials are underway for a number of different rheumatic diseases based on the therapeutic efficacy of JAKis, which is comparable to that of biologics. This article will review the current status of JAKis for rheumatic diseases in terms of efficacy and safety and extend to future clinical applications for rare diseases.
Collapse
Affiliation(s)
- Kunihiro Yamaoka
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Kenji Oku
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
12
|
Papendorf JJ, Ebstein F, Alehashemi S, Piotto DGP, Kozlova A, Terreri MT, Shcherbina A, Rastegar A, Rodrigues M, Pereira R, Park S, Lin B, Uss K, Möller S, da Silva Pina AF, Sztajnbok F, Torreggiani S, Niemela J, Stoddard J, Rosenzweig SD, Oler AJ, McNinch C, de Guzman MM, Fonseca A, Micheloni N, Fraga MM, Perazzio SF, Goldbach-Mansky R, de Jesus AA, Krüger E. Identification of eight novel proteasome variants in five unrelated cases of proteasome-associated autoinflammatory syndromes (PRAAS). Front Immunol 2023; 14:1190104. [PMID: 37600812 PMCID: PMC10436547 DOI: 10.3389/fimmu.2023.1190104] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/12/2023] [Indexed: 08/22/2023] Open
Abstract
Mutations in genes coding for proteasome subunits and/or proteasome assembly helpers typically cause recurring autoinflammation referred to as chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperatures (CANDLE) or proteasome-associated autoinflammatory syndrome (PRAAS). Patients with CANDLE/PRAAS present with mostly chronically elevated type I interferon scores that emerge as a consequence of increased proteotoxic stress by mechanisms that are not fully understood. Here, we report on five unrelated patients with CANDLE/PRAAS carrying novel inherited proteasome missense and/or nonsense variants. Four patients were compound heterozygous for novel pathogenic variants in the known CANDLE/PRAAS associated genes, PSMB8 and PSMB10, whereas one patient showed additive loss-of-function mutations in PSMB8. Variants in two previously not associated proteasome genes, PSMA5 and PSMC5, were found in a patient who also carried the PSMB8 founder mutation, p.T75M. All newly identified mutations substantially impact the steady-state expression of the affected proteasome subunits and/or their incorporation into mature 26S proteasomes. Our observations expand the spectrum of PRAAS-associated genetic variants and improve a molecular diagnosis and genetic counseling of patients with sterile autoinflammation.
Collapse
Affiliation(s)
- Jonas Johannes Papendorf
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Daniela Gerent Petry Piotto
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Anna Kozlova
- Department of Immunology, D.Rogachev National Medical and Research Center for Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Maria Teresa Terreri
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Anna Shcherbina
- Department of Immunology, D.Rogachev National Medical and Research Center for Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Andre Rastegar
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Marta Rodrigues
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Renan Pereira
- Department of Pediatrics, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, Brazil
| | - Sophia Park
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bin Lin
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kat Uss
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sophie Möller
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ana Flávia da Silva Pina
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Flavio Sztajnbok
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Sofia Torreggiani
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Colton McNinch
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Marietta M. de Guzman
- Section of Pediatric Rheumatology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Adriana Fonseca
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Nicole Micheloni
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Melissa Mariti Fraga
- Division of Pediatric Rheumatology, Department of Pediatrics, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Sandro Félix Perazzio
- Division of Rheumatology – Department of Medicine, Universidade Federal de São Paulo (Unifesp), Sao Paulo, Brazil
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Adriana A. de Jesus
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
The link between rheumatic disorders and inborn errors of immunity. EBioMedicine 2023; 90:104501. [PMID: 36870198 PMCID: PMC9996386 DOI: 10.1016/j.ebiom.2023.104501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/11/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Inborn errors of immunity (IEIs) are immunological disorders characterized by variable susceptibility to infections, immune dysregulation and/or malignancies, as a consequence of damaging germline variants in single genes. Though initially identified among patients with unusual, severe or recurrent infections, non-infectious manifestations and especially immune dysregulation in the form of autoimmunity or autoinflammation can be the first or dominant phenotypic aspect of IEIs. An increasing number of IEIs causing autoimmunity or autoinflammation, including rheumatic disease have been reported over the last decade. Despite their rarity, identification of those disorders provided insight into the pathomechanisms of immune dysregulation, which may be relevant for understanding the pathogenesis of systemic rheumatic disorders. In this review, we present novel IEIs primarily causing autoimmunity or autoinflammation along with their pathogenic mechanisms. In addition, we explore the likely pathophysiological and clinical relevance of IEIs in systemic rheumatic disorders.
Collapse
|
14
|
Waad Sadiq Z, Brioli A, Al-Abdulla R, Çetin G, Schütt J, Murua Escobar H, Krüger E, Ebstein F. Immunogenic cell death triggered by impaired deubiquitination in multiple myeloma relies on dysregulated type I interferon signaling. Front Immunol 2023; 14:982720. [PMID: 36936919 PMCID: PMC10018035 DOI: 10.3389/fimmu.2023.982720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Proteasome inhibition is first line therapy in multiple myeloma (MM). The immunological potential of cell death triggered by defects of the ubiquitin-proteasome system (UPS) and subsequent perturbations of protein homeostasis is, however, less well defined. Methods In this paper, we applied the protein homeostasis disruptors bortezomib (BTZ), ONX0914, RA190 and PR619 to various MM cell lines and primary patient samples to investigate their ability to induce immunogenic cell death (ICD). Results Our data show that while BTZ treatment triggers sterile type I interferon (IFN) responses, exposure of the cells to ONX0914 or RA190 was mostly immunologically silent. Interestingly, inhibition of protein de-ubiquitination by PR619 was associated with the acquisition of a strong type I IFN gene signature which relied on key components of the unfolded protein and integrated stress responses including inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR) and general control nonderepressible 2 (GCN2). The immunological relevance of blocking de-ubiquitination in MM was further reflected by the ability of PR619-induced apoptotic cells to facilitate dendritic cell (DC) maturation via type I IFN-dependent mechanisms. Conclusion Altogether, our findings identify de-ubiquitination inhibition as a promising strategy for inducing ICD of MM to expand current available treatments.
Collapse
Affiliation(s)
- Zeinab Waad Sadiq
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Annamaria Brioli
- Klinik und Poliklinik für Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Ruba Al-Abdulla
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Gonca Çetin
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jacqueline Schütt
- Klinik und Poliklinik für Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Papa R, Caorsi R, Volpi S, Gattorno M. New monogenic autoinflammatory diseases: 2021 year in review. Immunol Lett 2022; 248:96-98. [PMID: 35810990 DOI: 10.1016/j.imlet.2022.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/19/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Riccardo Papa
- Center for Autoinflammatory Diseases and Immunodeficiencies IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiencies IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
16
|
Boyadzhieva Z, Ruffer N, Burmester G, Pankow A, Krusche M. Effectiveness and Safety of JAK Inhibitors in Autoinflammatory Diseases: A Systematic Review. Front Med (Lausanne) 2022; 9:930071. [PMID: 35833101 PMCID: PMC9271622 DOI: 10.3389/fmed.2022.930071] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
Introduction Autoinflammatory diseases (AID) are rare diseases presenting with episodes of sterile inflammation. These involve multiple organs and can cause both acute organ damage and serious long-term effects, like amyloidosis. Disease-specific anti-inflammatory therapeutic strategies are established for some AID. However, their clinical course frequently includes relapsing, uncontrolled conditions. Therefore, new therapeutic approaches are needed. Janus Kinase inhibitors (JAKi) block key cytokines of AID pathogenesis and can be a potential option. Methods A systematic review of the literature in accordance with the PRISMA guidelines was conducted. Three databases (MEDLINE, Embase and Cochrane Central Register of Controlled Trials) were searched for publications regarding the use of JAKi for AID. Data from the included publications was extracted and a narrative synthesis was performed. Criteria for defining treatment response were defined and applied. Results We report data from 38 publications with a total of 101 patients describing the effects of JAKi in AID. Data on Type I Interferonopathies, Adult-Onset Still's Disease (AOSD), Systemic Juvenile Idiopathic Arthritis (sJIA), Familial Mediterranean Fever (FMF), and Behçet's Syndrome (BS) was identified. From a total of 52 patients with type I interferonopathies, in seven patients (7/52, 13.5%) a complete response was achieved, most (35/52, 67.3%) showed a partial response and a minority (10/52, 19.2%) showed no treatment response. For AOSD, a complete or a partial response was achieved by eleven (11/26, 42.3%) patients each. Two sJIA patients achieved complete response (2/4, 50%) and in two cases (2/4, 50%) a partial response was reported. Half of FMF patients showed a complete response and the other half had a partial one (3/6, 50.0%). Amongst BS patients most achieved a partial response (8/13, 61.5%). Five patients showed no response to therapy (5/13, 38.5%). Overall, the most frequent AEs were upper respiratory tract infections (17), pneumonia (10), BK virus viremia (10) and viruria (4), herpes zoster infection (5), viral gastroenteritis (2) and other infections (4). Conclusion The results from this systematic review show that JAKi can be beneficial in certain AID. The risk of AEs, especially viral infections, should be considered. To accurately assess the risk benefit ratio of JAKi for AID, clinical trials should be conducted.
Collapse
Affiliation(s)
- Zhivana Boyadzhieva
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Nikolas Ruffer
- Division of Rheumatology and Systemic Inflammatory Diseases, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Gerd Burmester
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Pankow
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Krusche
- Division of Rheumatology and Systemic Inflammatory Diseases, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
17
|
Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, Klein C, Morio T, Oksenhendler E, Picard C, Puel A, Puck J, Seppänen MRJ, Somech R, Su HC, Sullivan KE, Torgerson TR, Meyts I. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 2022; 42:1473-1507. [PMID: 35748970 PMCID: PMC9244088 DOI: 10.1007/s10875-022-01289-3] [Citation(s) in RCA: 634] [Impact Index Per Article: 211.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022]
Abstract
We report the updated classification of inborn errors of immunity, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 55 novel monogenic gene defects, and 1 phenocopy due to autoantibodies, that have either been discovered since the previous update (published January 2020) or were characterized earlier but have since been confirmed or expanded in subsequent studies. While variants in additional genes associated with immune diseases have been reported in the literature, this update includes only those that the committee assessed that reached the necessary threshold to represent novel inborn errors of immunity. There are now a total of 485 inborn errors of immunity. These advances in discovering the genetic causes of human immune diseases continue to significantly further our understanding of molecular, cellular, and immunological mechanisms of disease pathogenesis, thereby simultaneously enhancing immunological knowledge and improving patient diagnosis and management. This report is designed to serve as a resource for immunologists and geneticists pursuing the molecular diagnosis of individuals with heritable immunological disorders and for the scientific dissection of cellular and molecular mechanisms underlying monogenic and related human immune diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, NSW, Australia.
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aziz Bousfiha
- Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergy LICIA Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca, Morocco
| | | | - Jose Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Steven M Holland
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Klein
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, APHP, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Université Paris Cité, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital, 75015, Paris, France
- Université Paris Cité, Imagine Institute, 75015, Paris, France
| | - Jennifer Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center and Rare Diseases Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Raz Somech
- Pediatric Department and Immunology Unit, Sheba Medical Center, Tel Aviv, Israel
| | - Helen C Su
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Isabelle Meyts
- Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, Department of Pediatrics, University Hospitals Leuven and KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
18
|
Signa S, Dell’Orso G, Gattorno M, Faraci M. Hematopoietic stem cell transplantation in systemic autoinflammatory diseases - the first one hundred transplanted patients. Expert Rev Clin Immunol 2022; 18:667-689. [DOI: 10.1080/1744666x.2022.2078704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Sara Signa
- Center for Autoinflammatory diseases and Immunodeficiencies, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Gianluca Dell’Orso
- Hematopoietic stem cell Transplantation Unit, Department of Hematology-Oncology, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Marco Gattorno
- Center for Autoinflammatory diseases and Immunodeficiencies, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Maura Faraci
- Hematopoietic stem cell Transplantation Unit, Department of Hematology-Oncology, IRCSS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
19
|
Papendorf JJ, Krüger E, Ebstein F. Proteostasis Perturbations and Their Roles in Causing Sterile Inflammation and Autoinflammatory Diseases. Cells 2022; 11:cells11091422. [PMID: 35563729 PMCID: PMC9103147 DOI: 10.3390/cells11091422] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Proteostasis, a portmanteau of the words protein and homeostasis, refers to the ability of eukaryotic cells to maintain a stable proteome by acting on protein synthesis, quality control and/or degradation. Over the last two decades, an increasing number of disorders caused by proteostasis perturbations have been identified. Depending on their molecular etiology, such diseases may be classified into ribosomopathies, proteinopathies and proteasomopathies. Strikingly, most—if not all—of these syndromes exhibit an autoinflammatory component, implying a direct cause-and-effect relationship between proteostasis disruption and the initiation of innate immune responses. In this review, we provide a comprehensive overview of the molecular pathogenesis of these disorders and summarize current knowledge of the various mechanisms by which impaired proteostasis promotes autoinflammation. We particularly focus our discussion on the notion of how cells sense and integrate proteostasis perturbations as danger signals in the context of autoinflammatory diseases to provide insights into the complex and multiple facets of sterile inflammation.
Collapse
|
20
|
Li W, Wang W, Wang W, Zhong L, Gou L, Wang C, Ma J, Quan M, Jian S, Tang X, Zhang Y, Wang L, Ma M, Song H. Janus Kinase Inhibitors in the Treatment of Type I Interferonopathies: A Case Series From a Single Center in China. Front Immunol 2022; 13:825367. [PMID: 35418997 PMCID: PMC8995420 DOI: 10.3389/fimmu.2022.825367] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/01/2022] [Indexed: 01/31/2023] Open
Abstract
Objective This study aimed to assess the efficacy and safety of 2 Janus kinase (JAK) inhibitors (jakinibs) tofacitinib and ruxolitinib in the treatment of type I interferonopathies patients including STING-associated vasculopathy with onset in infancy (SAVI), Aicardi-Goutières syndrome (AGS), and spondyloenchondrodysplasia with immune dysregulation (SPENCD). Methods A total of 6 patients were considered in this study: 2 patients with SAVI, 1 patient with AGS1, 1 patient with AGS7, and 2 patients with SPENCD. Clinical manifestations, laboratory investigations, radiology examinations, treatment, and outcomes were collected between November 2017 and November 2021 in Peking Union Medical College Hospital. The disease score for patients with SAVI and AGS scale for patients with AGS were documented. The expression of 6 interferon-stimulated genes (ISGs) was assessed by real-time PCR. Results Three patients (1 patient with SAVI, 2 patients with AGS) were treated with ruxolitinib and 3 patients (1 patient with SAVI, 2 patients with SPENCD) were treated with tofacitinib. The mean duration of the treatment was 2.5 years (1.25-4 years). Upon treatment, cutaneous lesions and febrile attacks subsided in all affected patients. Two patients discontinued the corticoid treatment. Two patients with SAVI showed an improvement in the disease scores (p < 0.05). The erythrocyte sedimentation rate normalized in 2 patients with AGS. The interferon score (IS) was remarkably decreased in 2 patients with SPENCD (p < 0.01). Catch-ups with growth and weight gain were observed in 3 and 2 patients, respectively. Lung lesions improved in 1 patient with SAVI and remained stable in 3 patients. Lymphopenia was found in 3 patients during the treatment without severe infections. Conclusion The JAK inhibitors baricitinib and tofacitinib are promising therapeutic agents for patients with SAVI, AGS, and SPENCD, especially for the improvement of cutaneous lesions and febrile attacks. However, further cohort studies are needed to assess the efficacy and safety.
Collapse
Affiliation(s)
- Wendao Li
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wei Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Linqing Zhong
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lijuan Gou
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Changyan Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jingran Ma
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Meiying Quan
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shan Jian
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyan Tang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu Zhang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lin Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Mingsheng Ma
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hongmei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Cornman RS, Cryan PM. Positively selected genes in the hoary bat ( Lasiurus cinereus) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ 2022; 10:e13130. [PMID: 35317076 PMCID: PMC8934532 DOI: 10.7717/peerj.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Bats of the genus Lasiurus occur throughout the Americas and have diversified into at least 20 species among three subgenera. The hoary bat (Lasiurus cinereus) is highly migratory and ranges farther across North America than any other wild mammal. Despite the ecological importance of this species as a major insect predator, and the particular susceptibility of lasiurine bats to wind turbine strikes, our understanding of hoary bat ecology, physiology, and behavior remains poor. Methods To better understand adaptive evolution in this lineage, we used whole-genome sequencing to identify protein-coding sequence and explore signatures of positive selection. Gene models were predicted with Maker and compared to seven well-annotated and phylogenetically representative species. Evolutionary rate analysis was performed with PAML. Results Of 9,447 single-copy orthologous groups that met evaluation criteria, 150 genes had a significant excess of nonsynonymous substitutions along the L. cinereus branch (P < 0.001 after manual review of alignments). Selected genes as a group had biased expression, most strongly in thymus tissue. We identified 23 selected genes with reported immune functions as well as a divergent paralog of Steep1 within suborder Yangochiroptera. Seventeen genes had roles in lipid and glucose metabolic pathways, partially overlapping with 15 mitochondrion-associated genes; these adaptations may reflect the metabolic challenges of hibernation, long-distance migration, and seasonal variation in prey abundance. The genomic distribution of positively selected genes differed significantly from background expectation by discrete Kolmogorov-Smirnov test (P < 0.001). Remarkably, the top three physical clusters all coincided with islands of conserved synteny predating Mammalia, the largest of which shares synteny with the human cat-eye critical region (CECR) on 22q11. This observation coupled with the expansion of a novel Tbx1-like gene family may indicate evolutionary innovation during pharyngeal arch development: both the CECR and Tbx1 cause dosage-dependent congenital abnormalities in thymus, heart, and head, and craniodysmorphy is associated with human orthologs of other positively selected genes as well.
Collapse
|
22
|
Matsubayashi T, Yamamoto M, Takayama S, Otsuki Y, Yamadori I, Honda Y, Izawa K, Nishikomori R, Oto T. Allograft Dysfunction After Lung Transplantation for COPA Syndrome: A Case Report and Literature Review. Mod Rheumatol Case Rep 2022; 6:314-318. [PMID: 35079820 DOI: 10.1093/mrcr/rxac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/18/2021] [Accepted: 01/04/2022] [Indexed: 11/14/2022]
Abstract
COPA syndrome is an autoinflammatory disease with autoimmune and autoinflammatory manifestations affecting lungs, joints, and kidneys. COPA syndrome is caused by heterozygous loss-of-function mutations in the coatmer subunit alpha (COPA) gene, encoding α subunit of coatmer protein complex I (COP-I) coated vesicles. Mutant COPA induces constitutive activation of stimulator of interferon (IFN) genes (STING), leading to systemic inflammation and elevated type I interferon response. We have previously reported a Japanese family of COPA syndrome with a novel V242G mutation. Two out of 4 patients required lung transplantation due to intractable interstitial lung disease (ILD) and respiratory failure. Both of them deceased after lung transplantation, one due to sepsis and the other due to allograft dysfunction possibly caused by the reccurent ILD. The literature review indentified unfavorable outcome of the solid organ transplant in COPA syndrome and its related disease, however, precise clinico-pathological description of these cases has been scarce. Here, we report in detail the clinical course of our cases to clarify the pathophysiology of allograft dysfunction in COPA syndrome and propose potential therapeutic approaches to improve post-transplant graft survival.
Collapse
Affiliation(s)
| | - Masaki Yamamoto
- Department of Pediatrics, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Saki Takayama
- Department of Pediatrics, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Yoshiro Otsuki
- Department of Pathology, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Ichiro Yamadori
- Department of Pathology, Fukuyama Medical Association Health Support Center, Hiroshima, Japan
| | - Yoshitaka Honda
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Takahiro Oto
- Department of Thoracic Surgery, HGH, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
23
|
Isidor B, Ebstein F, Hurst A, Vincent M, Bader I, Rudy NL, Cogne B, Mayr J, Brehm A, Bupp C, Warren K, Bacino CA, Gerard A, Ranells JD, Metcalfe KA, van Bever Y, Jiang YH, Mendelssohn BA, Cope H, Rosenfeld JA, Blackburn PR, Goodenberger ML, Kearney HM, Kennedy J, Scurr I, Szczaluba K, Ploski R, de Saint Martin A, Alembik Y, Piton A, Bruel AL, Thauvin-Robinet C, Strong A, Diderich KEM, Bourgeois D, Dahan K, Vignard V, Bonneau D, Colin E, Barth M, Camby C, Baujat G, Briceño I, Gómez A, Deb W, Conrad S, Besnard T, Bézieau S, Krüger E, Küry S, Stankiewicz P. Stankiewicz-Isidor syndrome: expanding the clinical and molecular phenotype. Genet Med 2021; 24:179-191. [PMID: 34906456 DOI: 10.1016/j.gim.2021.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/23/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS. METHODS We report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status. RESULTS The expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes. CONCLUSION We refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature.
Collapse
Affiliation(s)
- Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes, France; Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France.
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Anna Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Marie Vincent
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Ingrid Bader
- Department of Clinical Genetics, University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Natasha L Rudy
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Benjamin Cogne
- Service de Génétique Médicale, CHU Nantes, Nantes, France; Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Johannes Mayr
- Department of Clinical Genetics, University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Anja Brehm
- Octapharma Biopharmaceuticals GmbH, Berlin, Germany
| | - Caleb Bupp
- Spectrum Health Helen DeVos Children's Hospital, Grand Rapids, MI
| | | | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Amanda Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Judith D Ranells
- Department of Pediatrics, University of South Florida, Tampa, FL
| | - Kay A Metcalfe
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust and Institute of Human Development, University of Manchester, Manchester, United Kingdom
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yong-Hui Jiang
- Department of Genetics, Yale School of Medicine, New Haven, CT; Department of Neurobiology, Duke University School of Medicine, Durham, NC; Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Bryce A Mendelssohn
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, CA
| | - Heidi Cope
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics Laboratories, Houston, TX
| | - Patrick R Blackburn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - McKinsey L Goodenberger
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Hutton M Kearney
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Joanna Kennedy
- Clinical Genetics, University Hospitals Bristol, Bristol, United Kingdom; University of Bristol, Bristol, United Kingdom
| | - Ingrid Scurr
- Clinical Genetics, University Hospitals Bristol, Bristol, United Kingdom; University of Bristol, Bristol, United Kingdom
| | - Krzysztof Szczaluba
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Anne de Saint Martin
- Pediatric Neurology Unit, Department of Pediatrics, University Hospital Strasbourg, Strasbourg, France
| | - Yves Alembik
- Department of Clinical Genetic, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Amélie Piton
- Unité de Génétique Moléculaire Strasbourg University Hospital, 1 place de l'Hôpital, Strasbourg Cedex, France
| | - Ange-Line Bruel
- FHU TRANSLAD, Centre Hospitalier Universitaire Dijon-Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France; Génétique des Anomalies du Développement, Inserm UMR 1231, Université de Bourgogne, Dijon, France; Centre de Génétique et Centre de Référence Déficience Intellectuelle de causes rares, Hôpital d'Enfants, Centre Hospitalier Universitaire Dijon-Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon-Bourgogne, Dijon, France; INSERM UMR1231 GAD, Dijon, France
| | - Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | - Karin Dahan
- Laboratoire National de Santé, Dudelange, Luxembourg
| | - Virginie Vignard
- Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | | | - Estelle Colin
- Service de Génétique médicale, CHU d'Angers, Angers, France
| | - Magalie Barth
- Pediatric Surgery Department, Hôpital Mère-Enfant, F44093 Nantes, France
| | - Caroline Camby
- Pediatric Surgery Department, Hôpital Mère-Enfant, F44093 Nantes, France
| | - Geneviève Baujat
- Department of Medical Genetics, Necker Enfants Malades Hospital, AP-HP, Paris, France; INSERM U1163, Imagine Institute, Paris Descartes University, Paris, France
| | - Ignacio Briceño
- Grupo Genética Humana, Facultad de Medicina, Universidad de La Sabana, Chía, Colombia
| | - Alberto Gómez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Wallid Deb
- Service de Génétique Médicale, CHU Nantes, Nantes, France; Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Solène Conrad
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Thomas Besnard
- Service de Génétique Médicale, CHU Nantes, Nantes, France; Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Stéphane Bézieau
- Service de Génétique Médicale, CHU Nantes, Nantes, France; Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Sébastien Küry
- Service de Génétique Médicale, CHU Nantes, Nantes, France; Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - PaweƗ Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
24
|
Grasping the sword of Damocles. Blood 2021; 138:1792-1793. [PMID: 34762128 DOI: 10.1182/blood.2021012347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/20/2022] Open
|
25
|
Ebstein F, Küry S, Papendorf JJ, Krüger E. Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Front Mol Neurosci 2021; 14:733012. [PMID: 34566579 PMCID: PMC8455891 DOI: 10.3389/fnmol.2021.733012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,l'Institut du Thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France
| | - Jonas Johannes Papendorf
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Shiraki M, Williams E, Yokoyama N, Shinoda K, Nademi Z, Matsumoto K, Nihira H, Honda Y, Izawa K, Nishikomori R, Slatter MA, Cant AJ, Gennery AR, Ohnishi H, Kanegane H. Hematopoietic Cell Transplantation Ameliorates Autoinflammation in A20 Haploinsufficiency. J Clin Immunol 2021; 41:1954-1956. [PMID: 34427832 DOI: 10.1007/s10875-021-01124-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Mayuka Shiraki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, , 501-1194, Japan
| | - Eleri Williams
- Children's Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK
| | | | | | - Zohreh Nademi
- Children's Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kana Matsumoto
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitaka Honda
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Mary A Slatter
- Children's Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK.,Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Andrew J Cant
- Children's Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Children's Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK.,Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, , 501-1194, Japan. .,Clinical Genetics Center, Gifu University Hospital, Gifu, Japan.
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
27
|
Monogenic Autoinflammatory Diseases: State of the Art and Future Perspectives. Int J Mol Sci 2021; 22:ijms22126360. [PMID: 34198614 PMCID: PMC8232320 DOI: 10.3390/ijms22126360] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic autoinflammatory diseases are a heterogeneous family of disorders characterized by a dysregulation of the innate immune system, in which sterile inflammation primarily develops through antigen-independent hyperactivation of immune pathways. In most cases, they have a strong genetic background, with mutations in single genes involved in inflammation. Therefore, they can derive from different pathogenic mechanisms at any level, such as dysregulated inflammasome-mediated production of cytokines, intracellular stress, defective regulatory pathways, altered protein folding, enhanced NF-kappaB signalling, ubiquitination disorders, interferon pathway upregulation and complement activation. Since the discover of pathogenic mutations of the pyrin-encoding gene MEFV in Familial Mediterranean Fever, more than 50 monogenic autoinflammatory diseases have been discovered thanks to the advances in genetic sequencing: the advent of new genetic analysis techniques and the discovery of genes involved in autoinflammatory diseases have allowed a better understanding of the underlying innate immunologic pathways and pathogenetic mechanisms, thus opening new perspectives in targeted therapies. Moreover, this field of research has become of great interest, since more than a hundred clinical trials for autoinflammatory diseases are currently active or recently concluded, allowing us to hope for considerable acquisitions for the next few years. General paediatricians need to be aware of the importance of this group of diseases and they should consider autoinflammatory diseases in patients with clinical hallmarks, in order to guide further examinations and refer the patient to a specialist rheumatologist. Here we resume the pathogenesis, clinical aspects and diagnosis of the most important autoinflammatory diseases in children.
Collapse
|
28
|
Aksentijevich I, Schnappauf O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat Rev Rheumatol 2021; 17:405-425. [PMID: 34035534 DOI: 10.1038/s41584-021-00614-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Monogenic autoinflammatory diseases are a group of rheumatologic disorders caused by dysregulation in the innate immune system. The molecular mechanisms of these disorders are linked to defects in inflammasome-mediated, NF-κB-mediated or interferon-mediated inflammatory signalling pathways, cytokine receptors, the actin cytoskeleton, proteasome complexes and various enzymes. As with other human disorders, disease-causing variants in a single gene can present with variable expressivity and incomplete penetrance. In some cases, pathogenic variants in the same gene can be inherited either in a recessive or dominant manner and can cause distinct and seemingly unrelated phenotypes, although they have a unifying biochemical mechanism. With an enhanced understanding of protein structure and functionality of protein domains, genotype-phenotype correlations are beginning to be unravelled. Many of the mutated proteins are primarily expressed in haematopoietic cells, and their malfunction leads to systemic inflammation. Disease presentation is also defined by a specific effect of the mutant protein in a particular cell type and, therefore, the resulting phenotype might be more deleterious in one tissue than in another. Many patients present with the expanded immunological disease continuum that includes autoinflammation, immunodeficiency, autoimmunity and atopy, which necessitate genetic testing.
Collapse
Affiliation(s)
- Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Oskar Schnappauf
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|