1
|
Huang D, Xie L, Luo T, Lin L, Ren Q, Zeng Z, Huang H, Liao H, Chang X, Chen Y, Zhao H, Cai S, Dong H. Effects of azithromycin on alleviating airway inflammation in asthmatic mice by regulating airway microbiota and metabolites. Microbiol Spectr 2025; 13:e0221724. [PMID: 39932326 PMCID: PMC11878009 DOI: 10.1128/spectrum.02217-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
Asthma is a chronic respiratory disease with increasing global prevalence, often linked to disrupted airway microbiota. Azithromycin has shown promise in asthma treatment, but whether its effect is owing to its antimicrobial capacity remains largely unknown. A house dust mite (HDM)-induced asthmatic mouse model was used to evaluate the effects of azithromycin on airway inflammation and microbiota. Mice were divided into control, HDM-induced asthma, HDM + azithromycin, and azithromycin-alone groups. Airway microbiota was analyzed using 16S rRNA sequencing, and metabolomic profiles were assessed via liquid chromatography-tandem mass spectrometry. Azithromycin alleviated type 2 airway inflammation in HDM-induced asthma, restoring microbiota diversity by modulating specific genera, including Streptococcus, Staphylococcus, Ruminococcus, Coprococcus, Bifidobacterium, etc. Combination analysis with metabolomics revealed that azithromycin significantly regulated airway microbiota-associated sphingomyelin metabolism. Azithromycin's therapeutic effects in asthma are associated with its ability to regulate airway microbiota and its associated sphingomyelin metabolism, highlighting the potential for microbiota-targeted therapies in asthma.IMPORTANCEAsthma, a prevalent chronic respiratory condition, poses a significant global health challenge due to its increasing prevalence and associated morbidity. The role of airway microbiota in asthma pathogenesis is gaining attention, with evidence suggesting that disruptions in this microbial community contribute to disease severity. Our study investigates the impact of azithromycin, a macrolide antibiotic, on airway inflammation and microbiota in a mouse model of asthma. The findings reveal that azithromycin not only alleviates airway inflammation but also restores microbiota diversity and modulates microbiota-associated sphingomyelin metabolism. This research underscores the potential of microbiota-targeted therapies in asthma management, offering a novel therapeutic strategy that could improve patient outcomes and reduce the healthcare burden associated with asthma.
Collapse
Affiliation(s)
- DanHui Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingyan Xie
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingyue Luo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lishan Lin
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - QianNan Ren
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaojin Zeng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Liao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - XiaoDan Chang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuehua Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Lehtimäki J, Gupta S, Hjelmsø M, Shah S, Thorsen J, Rasmussen MA, Soverini M, Li X, Russel J, Trivedi U, Brix S, Bønnelykke K, Chawes BL, Bisgaard H, Sørensen SJ, Stokholm J. Fungi and bacteria in the beds of rural and urban infants correlate with later risk of atopic diseases. Clin Exp Allergy 2023; 53:1268-1278. [PMID: 37849355 DOI: 10.1111/cea.14414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Rural children have a lower risk of asthma and atopic diseases than urban children. However, whether indoor microbiota in non-farming rural homes provides protection is unclear. METHODS Here, we examine if microbes in the beds of rural and urban infants are associated with later development of atopic diseases. We studied fungi and bacteria in the beds of 6-month-old infants (n = 514) in association with the risk of asthma, allergic rhinitis, eczema and aeroallergen sensitization at 6 years of age in the prospective COPSAC2010 cohort. RESULTS Both fungal and bacterial diversity were lower in the beds of children, who later developed allergic rhinitis (-0.22 [-0.43,-0.01], padj = .04 and -.24 [-0.42,-0.05], padj = .01 respectively) and lower bacterial richness was discovered in beds of children later developing asthma (-41.34 [-76.95,-5.73], padj = .02) or allergic rhinitis (-45.65 [-81.19,-10.10], padj = .01). Interestingly, higher fungal diversity and richness were discovered in the beds of children developing eczema (0.23 [0.02,0.43], padj = .03 and 29.21 [1.59,56.83], padj = .04 respectively). We defined a limited set of fungal and bacterial genera that predicted rural/urban environment. Some rural-associated bacterial genera such as Romboutsia and Bacillus and fungal genera Spegazzinia and Physcia were also associated with reduced risk of diseases, including eczema. These fungal and bacterial fingerprints predicting the living environment were associated with asthma and allergic rhinitis, but not eczema, with rural compositions being protective. The bed dust bacteria mediated 27% of the protective association of a rural living environment for allergic rhinitis (p = .04). CONCLUSIONS Bed dust microbes can be differentially associated with airway- and skin-related diseases. The differing bed dust microbiota between rural and urban infants may influence their later risk of asthma and allergic rhinitis.
Collapse
Affiliation(s)
- Jenni Lehtimäki
- Finnish Environment Institute, Helsinki, Finland
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Shashank Gupta
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Mathis Hjelmsø
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Shiraz Shah
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Matteo Soverini
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Xuanji Li
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Bo Lund Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
3
|
Clemente-Suárez VJ, Mielgo-Ayuso J, Ramos-Campo DJ, Beltran-Velasco AI, Martínez-Guardado I, Navarro Jimenez E, Redondo-Flórez L, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Basis of preventive and non-pharmacological interventions in asthma. Front Public Health 2023; 11:1172391. [PMID: 37920579 PMCID: PMC10619920 DOI: 10.3389/fpubh.2023.1172391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Asthma is one of the most common atopic disorders in all stages of life. Its etiology is likely due to a complex interaction between genetic, environmental, and lifestyle factors. Due to this, different non-pharmacological interventions can be implemented to reduce or alleviate the symptoms caused by this disease. Thus, the present narrative review aimed to analyze the preventive and non-pharmacological interventions such as physical exercise, physiotherapy, nutritional, ergonutritional, and psychological strategies in asthma treatment. To reach these aims, an extensive narrative review was conducted. The databases used were MedLine (PubMed), Cochrane (Wiley), Embase, PsychINFO, and CinAhl. Asthma is an immune-mediated inflammatory condition characterized by increased responsiveness to bronchoconstrictor stimuli. Different factors have been shown to play an important role in the pathogenesis of asthma, however, the treatments used to reduce its incidence are more controversial. Physical activity is focused on the benefits that aerobic training can provide, while physiotherapy interventions recommend breathing exercises to improve the quality of life of patients. Nutritional interventions are targeted on implement diets that prioritize the consumption of fruits and vegetables and supplementation with antioxidants. Psychological interventions have been proposed as an essential non-pharmacological tool to reduce the emotional problems associated with asthma.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Studies Centre in Applied Combat (CESCA), Toledo, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, Burgos, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, Universidad Camilo José Cela, Madrid, Spain
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Jose Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Studies Centre in Applied Combat (CESCA), Toledo, Spain
| |
Collapse
|
4
|
Qin X, Pate CA, Zahran HS. Adult asthma prevalence and trend analysis by urban-rural status across sociodemographic characteristics-United States, 2012-20. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100085. [PMID: 37780802 PMCID: PMC10509958 DOI: 10.1016/j.jacig.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 10/03/2023]
Abstract
Background Asthma prevalence estimates among adults are limited for urban-rural classification across sociodemographic characteristics. Objectives This study examined current asthma prevalence and annual trends by 6-level urban-rural categories across sociodemographic characteristics among US adults. Methods Asthma prevalence for 2020 and annual trends for 2012-20 were estimated using Behavioral Risk Factor Surveillance System data. The 2013 National Center for Health Statistics urban and rural categories were used to define urban-rural status. Results Current asthma prevalence was higher in medium (9.7%; prevalence ratio 1.103 [95% CI 1.037, 1.174]) and small (9.9%; 1.111 [1.031, 1.197]) metro than in large fringe metropolitan (8.6%), was higher in micropolitan (10.2%) than in both large fringe (8.6%; 1.115 [1.042, 1.194]) and large central metropolitan (8.8%; 1.080 [1.001, 1.066]) areas. Prevalence by sociodemographic characteristics varied between urban-rural scheme; the prevalence was significantly higher among adults aged 55-64 years in micropolitan (11.9%), women in small metro (12.8%), and other race non-Hispanic in noncore (most rural) (13.6%) areas, adults without a high school diploma in micropolitan areas (13.8%), household income <100% of federal poverty level in micropolitan areas (15.7%), and adults with insurance coverage in micropolitan areas (10.3%) compared to the corresponding populations in other urban-rural categories. During 2012-20, an increasing trend in prevalence was observed only in medium metro areas, with an annual percentage change of 0.81. Conclusions Asthma prevalence differed by 6-level urban-rural categories. These findings might be helpful in establishing effective asthma control programs and targeting resource allocation at the local level.
Collapse
Affiliation(s)
- Xiaoting Qin
- Asthma and Community Health Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Ga
| | - Cynthia A. Pate
- Asthma and Community Health Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Ga
| | - Hatice S. Zahran
- Asthma and Community Health Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Ga
| |
Collapse
|
5
|
Intake of Natural, Unprocessed Tiger Nuts ( Cyperus esculentus L.) Drink Significantly Favors Intestinal Beneficial Bacteria in a Short Period of Time. Nutrients 2022; 14:nu14091709. [PMID: 35565679 PMCID: PMC9104503 DOI: 10.3390/nu14091709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/14/2023] Open
Abstract
Horchata is a natural drink obtained from tiger nut tubers (Cyperus esculentus L.). It has a pleasant milky aspect and nutty flavor; some health benefits have been traditionally attributed to it. This study evaluated the effects of an unprocessed horchata drink on the gut microbiota of healthy adult volunteers (n = 31) who consumed 300 mL of natural, unprocessed horchata with no added sugar daily for 3 days. Although there were no apparent microbial profile changes induced by horchata consumption in the studied population, differences could be determined when volunteers were segmented by microbial clusters. Three distinctive enterogroups were identified previous to consuming horchata, respectively characterized by the relative abundances of Blautia and Lachnospira (B1), Bacteroides (B2) and Ruminococcus and Bifidobacterium (B3). After consuming horchata, samples of all volunteers were grouped into two clusters, one enriched in Akkermansia, Christenellaceae and Clostridiales (A1) and the other with a remarkable presence of Faecalibacterium, Bifidobacterium and Lachnospira (A2). Interestingly, the impact of horchata was dependent on the previous microbiome of each individual, and its effect yielded microbial profiles associated with butyrate production, which are typical of a Mediterranean or vegetable/fiber-rich diet and could be related to the presence of high amylose starch and polyphenols.
Collapse
|