1
|
Fadadu RP, Bozack AK, Cardenas A. Chemical and climatic environmental exposures and epigenetic aging: A systematic review. ENVIRONMENTAL RESEARCH 2025; 274:121347. [PMID: 40058550 PMCID: PMC12048242 DOI: 10.1016/j.envres.2025.121347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Epigenetic aging biomarkers are used for evaluating morbidity and mortality, monitoring therapies, and direct-to-consumer testing. However, the influence of environmental exposures on epigenetic age acceleration (EAA), also known as epigenetic age deviation, has not been systematically evaluated. In this systematic review, we synthesized findings from human epidemiologic studies on chemical and climatic environmental exposures, particularly air pollution, chemicals, metals, climate, and cigarette smoke, and EAA. A total of 102 studies analyzing epigenetic data from over 180,000 subjects were evaluated. Overall, studies in each exposure category frequently included adult participants, used a variety of epigenetic clocks, analyzed whole blood samples, and had a low risk of bias. Exposure to air pollution (15/19 of studies; 79%), cigarette smoke (53/66; 80%), and synthetic and occupational chemicals (5/8; 63%) were notably associated with increased EAA. Results for essential and non-essential metal exposure were more equivocal: 7/13 studies (54%) reported increased EAA. One study reported increased EAA with greater temperature exposure. In summary, we identified environmental exposures, such as air pollution and cigarette smoke, that were strongly associated with increased EAA. Further research is needed with larger and more diverse samples and high-quality exposure assessment.
Collapse
Affiliation(s)
- Raj P Fadadu
- Department of Epidemiology and Population Health, Stanford School of Medicine, 1701 Page Mill Rd., Stanford, CA, 94304, USA; Department of Dermatology, University of California San Diego School of Medicine, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Anne K Bozack
- Department of Epidemiology and Population Health, Stanford School of Medicine, 1701 Page Mill Rd., Stanford, CA, 94304, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, 1701 Page Mill Rd., Stanford, CA, 94304, USA.
| |
Collapse
|
2
|
Wang X, Chen L, Wei J, Zheng H, Zhou N, Xu X, Deng X, Liu T, Zou Y. The immune system in cardiovascular diseases: from basic mechanisms to therapeutic implications. Signal Transduct Target Ther 2025; 10:166. [PMID: 40404619 PMCID: PMC12098830 DOI: 10.1038/s41392-025-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/22/2024] [Accepted: 03/20/2025] [Indexed: 05/24/2025] Open
Abstract
Immune system plays a crucial role in the physiological and pathological regulation of the cardiovascular system. The exploration history and milestones of immune system in cardiovascular diseases (CVDs) have evolved from the initial discovery of chronic inflammation in atherosclerosis to large-scale clinical studies confirming the importance of anti-inflammatory therapy in treating CVDs. This progress has been facilitated by advancements in various technological approaches, including multi-omics analysis (single-cell sequencing, spatial transcriptome et al.) and significant improvements in immunotherapy techniques such as chimeric antigen receptor (CAR)-T cell therapy. Both innate and adaptive immunity holds a pivotal role in CVDs, involving Toll-like receptor (TLR) signaling pathway, nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1/2) signaling pathway, inflammasome signaling pathway, RNA and DNA sensing signaling pathway, as well as antibody-mediated and complement-dependent systems. Meanwhile, immune responses are simultaneously regulated by multi-level regulations in CVDs, including epigenetics (DNA, RNA, protein) and other key signaling pathways in CVDs, interactions among immune cells, and interactions between immune and cardiac or vascular cells. Remarkably, based on the progress in basic research on immune responses in the cardiovascular system, significant advancements have also been made in pre-clinical and clinical studies of immunotherapy. This review provides an overview of the role of immune system in the cardiovascular system, providing in-depth insights into the physiological and pathological regulation of immune responses in various CVDs, highlighting the impact of multi-level regulation of immune responses in CVDs. Finally, we also discuss pre-clinical and clinical strategies targeting the immune system and translational implications in CVDs.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Liming Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Wei
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Hao Zheng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ning Zhou
- Department of Cardiovascular Medicine, Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Deng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Jiangsu, Nanjing, China.
- State Key Laboratory of Respiratory Disease, Joint International Research Laboratory of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institutes of Advanced Medical Sciences and Huaihe Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
3
|
Choi EY, Ailshire JA. Ambient outdoor heat and accelerated epigenetic aging among older adults in the US. SCIENCE ADVANCES 2025; 11:eadr0616. [PMID: 40009659 PMCID: PMC11864172 DOI: 10.1126/sciadv.adr0616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025]
Abstract
Extreme heat is well-documented to adversely affect health and mortality, but its link to biological aging-a precursor of the morbidity and mortality process-remains unclear. This study examines the association between ambient outdoor heat and epigenetic aging in a nationally representative sample of US adults aged 56+ (N = 3686). The number of heat days in neighborhoods is calculated using the heat index, covering time windows from the day of blood collection to 6 years prior. Multilevel regression models are used to predict PCPhenoAge acceleration, PCGrimAge acceleration, and DunedinPACE. More heat days over short- and mid-term windows are associated with increased PCPhenoAge acceleration (e.g., Bprior7-dayCaution+heat: 1.07 years). Longer-term heat is associated with all clocks (e.g., Bprior1-yearExtremecaution+heat: 2.48 years for PCPhenoAge, Bprior1-yearExtremecaution+heat: 1.09 year for PCGrimAge, and Bprior6-yearExtremecaution+heat: 0.05 years for DunedinPACE). Subgroup analyses show no strong evidence for increased vulnerability by sociodemographic factors. These findings provide insights into the biological underpinnings linking heat to aging-related morbidity and mortality risks.
Collapse
Affiliation(s)
- Eun Young Choi
- Leonard Davis School of Gerontology, University of Southern California, McClintock Avenue, CA90089, Los Angeles, CA 3715, USA
| | - Jennifer A. Ailshire
- Leonard Davis School of Gerontology, University of Southern California, McClintock Avenue, CA90089, Los Angeles, CA 3715, USA
| |
Collapse
|
4
|
Silva Monte K, Costa AC, Morais HCC, Gomes Guedes N, da Beatriz CBC, Cruz Neto J, de Souza Maciel Ferreira JE, Cavalcante TF, Moreira RP. Decreased childhood asthma hospitalizations linked to hotter, drier climate with lower wind speed in drylands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-13. [PMID: 39825785 DOI: 10.1080/09603123.2025.2453042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Climate change poses a significant threat to human health. Long-term climate effects on childhood asthma hospitalizations depend on the population's geographic region. These effects in tropical drylands are not well understood. The objective of this study is to examine the long-term association between childhood asthma hospitalizations and the climate of a tropical dryland. The study covered 14 municipalities in the Brazilian semiarid. Monthly trends in hospitalizations and climatic variables were calculated. A generalized additive model analyzed the association between these trends, and the Mann-Kendall test determined if trends were increasing, decreasing, or not significant. Thirteen municipalities showed a significant link between hospitalizations and climate variables, especially wind speed, maximum temperature, and humidity. Overall, hospitalizations decreased, correlating with decreasing wind speed and humidity, and increasing temperature. However, no discernable pattern was found between hospitalizations and precipitation. The study emphasizes the need for climate-health analysis to manage childhood asthma amid climate change.
Collapse
Affiliation(s)
- Klézio Silva Monte
- Graduate Program in Energy and Environment, University for International Integration of the Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | - Alexandre Cunha Costa
- Engineering and Sustainable Development Institute, University for International Integration of the Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | - Huana Carolina Cândido Morais
- Health Sciences Institute, University for International Integration of the Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | | | - Clara Beatriz Costa da Beatriz
- Graduate Nursing Program, University for International Integration of the Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | - João Cruz Neto
- Graduate Nursing Program, Federal University of Ceará, Fortaleza, Brazil
| | | | - Tahissa Frota Cavalcante
- Health Sciences Institute, University for International Integration of the Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | - Rafaella Pessoa Moreira
- Health Sciences Institute, University for International Integration of the Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| |
Collapse
|
5
|
Liang R, Tang Q, Chen J, Zhu L. Epigenetic Clocks: Beyond Biological Age, Using the Past to Predict the Present and Future. Aging Dis 2024:AD.2024.1495. [PMID: 39751861 DOI: 10.14336/ad.2024.1495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Predicting health trajectories and accurately measuring aging processes across the human lifespan remain profound scientific challenges. Assessing the effectiveness and impact of interventions targeting aging is even more elusive, largely due to the intricate, multidimensional nature of aging-a process that defies simple quantification. Traditional biomarkers offer only partial perspectives, capturing limited aspects of the aging landscape. Yet, over the past decade, groundbreaking advancements have emerged. Epigenetic clocks, derived from DNA methylation patterns, have established themselves as powerful aging biomarkers, capable of estimating biological age and assessing aging rates across diverse tissues with remarkable precision. These clocks provide predictive insights into mortality and age-related disease risks, effectively distinguishing biological age from chronological age and illuminating enduring questions in gerontology. Despite significant progress in epigenetic clock development, substantial challenges remain, underscoring the need for continued investigation to fully unlock their potential in the science of aging.
Collapse
Affiliation(s)
- Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Luwen Zhu
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Gu W, Xie D, Li Q, Feng H, Xue Y, Chen Y, Tang J, Zhou Y, Wang D, Tong S, Liu S. Association of humidity and precipitation with asthma: a systematic review and meta-analysis. FRONTIERS IN ALLERGY 2024; 5:1483430. [PMID: 39713043 PMCID: PMC11659254 DOI: 10.3389/falgy.2024.1483430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction The relationship of asthma with humidity and precipitation remains controversial. The objective of this study was to investigate the association of increased humidity and precipitation with asthma risk. Methods A comprehensive systematic search was conducted across various databases, including PubMed, Embase, Cochrane Library, Web of Science, Chinese Wanfang, CQVIP, and CNKI. A total of 21 studies with 1,052,960 participants from 9 countries or regions were included. The fixed and random effect model were used to analyze the data. Results The study revealed a pooled odds ratio (OR) of 1.0489 [95% confidence interval (CI): 1.0061, 1.0935] for the association between humidity and asthma risk. Specifically, among individuals under 18 years of age, the OR (95% CI) was 1.0898 (1.0290, 1.1541). Furthermore, the OR (95% CI) for developing countries or regions was 1.0927 (1.0220, 1.1684), while it was 1.1298 (0.9502, 1.3433) for regions with a high latitude (41°-51°). The pooled OR for precipitation and asthma risk was 0.9991 (0.9987, 0.9995). The OR (95%CI) values were 0.9991 (0.9987, 0.9995), 0.9991 (0.9987, 0.9995) and 0.9990 (0.9986, 0.9994) in people above the age of 18, developing countries or regions, and middle latitudes (31°-41°), respectively. Discussion The impact of humidity on asthma risk is particularly pronounced among individuals below 18 years of age, people living in developing countries or regions and in regions located in high latitudes. And the influence of precipitation on asthma persons over the age of 18, developing countries or regions, and middle latitudes significantly. Increased humidity appears to elevate asthma risk, and increased precipitation may reduce the risk. In addition, there appears to be a combined effect of humidity and precipitation on asthma. Systematic Review Registration PROSPERO, identifier, CRD42023482446.
Collapse
Affiliation(s)
- Wangyang Gu
- Department of Big Data Center, Sanya Women and Children's Hospital Affiliated to Hainan Medical University, Sanya, China
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Dan Xie
- Department of Big Data Center, Sanya Women and Children's Hospital Affiliated to Hainan Medical University, Sanya, China
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Qinpeng Li
- Department of Big Data Center, Sanya Women and Children's Hospital Affiliated to Hainan Medical University, Sanya, China
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Huike Feng
- Department of Big Data Center, Sanya Women and Children's Hospital Affiliated to Hainan Medical University, Sanya, China
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Yihao Xue
- Department of Big Data Center, Sanya Women and Children's Hospital Affiliated to Hainan Medical University, Sanya, China
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Yang Chen
- Department of Epidemiology and Statistics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Tang
- Department of Epidemiology and Statistics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yushi Zhou
- Department of Big Data Center, Sanya Women and Children's Hospital Affiliated to Hainan Medical University, Sanya, China
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Dan Wang
- Department of Big Data Center, Sanya Women and Children's Hospital Affiliated to Hainan Medical University, Sanya, China
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| | - Shilu Tong
- Department of Epidemiology and Statistics, School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD, Australia
- Chinese Centers for Disease Control and Prevention, National Institute of Environmental Health, Beijing, China
| | - Shijian Liu
- Department of Big Data Center, Sanya Women and Children's Hospital Affiliated to Hainan Medical University, Sanya, China
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
- Department of Epidemiology and Statistics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, China
| |
Collapse
|
7
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
8
|
Prada D, Baccarelli AA, Kupsco A, Parks RM. Climate change and health: understanding mechanisms will inform mitigation and prevention strategies. Nat Med 2024; 30:1522-1524. [PMID: 38641749 PMCID: PMC11267509 DOI: 10.1038/s41591-024-02925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Affiliation(s)
- Diddier Prada
- Institute for Health Equity Research, Department of Population Health Science and Policy and the Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Robbie M Parks
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, NY, USA.
| |
Collapse
|
9
|
Mijač S, Banić I, Genc AM, Lipej M, Turkalj M. The Effects of Environmental Exposure on Epigenetic Modifications in Allergic Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:110. [PMID: 38256371 PMCID: PMC10820670 DOI: 10.3390/medicina60010110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Allergic diseases are one of the most common chronic conditions and their prevalence is on the rise. Environmental exposure, primarily prenatal and early life influences, affect the risk for the development and specific phenotypes of allergic diseases via epigenetic mechanisms. Exposure to pollutants, microorganisms and parasites, tobacco smoke and certain aspects of diet are known to drive epigenetic changes that are essential for immune regulation (e.g., the shift toward T helper 2-Th2 cell polarization and decrease in regulatory T-cell (Treg) differentiation). DNA methylation and histone modifications can modify immune programming related to either pro-allergic interleukin 4 (IL-4), interleukin 13 (IL-13) or counter-regulatory interferon γ (IFN-γ) production. Differential expression of small non-coding RNAs has also been linked to the risk for allergic diseases and associated with air pollution. Certain exposures and associated epigenetic mechanisms play a role in the susceptibility to allergic conditions and specific clinical manifestations of the disease, while others are thought to have a protective role against the development of allergic diseases, such as maternal and early postnatal microbial diversity, maternal helminth infections and dietary supplementation with polyunsaturated fatty acids and vitamin D. Epigenetic mechanisms are also known to be involved in mediating the response to common treatment in allergic diseases, for example, changes in histone acetylation of proinflammatory genes and in the expression of certain microRNAs are associated with the response to inhaled corticosteroids in asthma. Gaining better insight into the epigenetic regulation of allergic diseases may ultimately lead to significant improvements in the management of these conditions, earlier and more precise diagnostics, optimization of current treatment regimes, and the implementation of novel therapeutic options and prevention strategies in the near future.
Collapse
Affiliation(s)
- Sandra Mijač
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
| | - Ivana Banić
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
- Department of Innovative Diagnostics, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia
| | - Ana-Marija Genc
- Department of Medical Research, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia; (S.M.); (A.-M.G.)
| | - Marcel Lipej
- IT Department, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia;
| | - Mirjana Turkalj
- Department of Pediatric Allergy and Pulmonology, Srebrnjak Children’s Hospital, Srebrnjak 100, HR-10000 Zagreb, Croatia;
- Faculty of Medicine, J.J. Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Faculty of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
10
|
Miousse IR, Hale RB, Alsbrook S, Boysen G, Broadnax T, Murry C, Williams C, Park CH, Richards R, Reedy J, Chalbot MC, Kavouras IG, Koturbash I. Climate Change and New Challenges for Rural Communities: Particulate Matter Matters. SUSTAINABILITY 2023; 15:16192. [PMID: 39119507 PMCID: PMC11307925 DOI: 10.3390/su152316192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Climate change presents multiple challenges to rural communities. Here, we investigated the toxicological potential of the six types of particulate matter most common to rural Arkansas: soil, road, and agricultural dusts, pollen, traffic exhaust, and particles from biomass burning in human small airway epithelial cells (SAECs). Biomass burning and agricultural dust demonstrated the most potent toxicological responses, exhibited as significant (p < 0.05) up-regulation of HMOX1 (oxidative stress) and TNFα (inflammatory response) genes as well as epigenetic alterations (altered expression of DNA methyltransferases DNMT1, DNMT3A, and DNMT3B, enzymatic activity, and DNA methylation of alpha satellite elements) that were evident at both 24 h and 72 h of exposure. We further demonstrate evidence of aridification in the state of Arkansas and the presence of winds capable of transporting agricultural dust- and biomass burning-associated particles far beyond their origination. Partnerships in the form of citizen science projects may provide important solutions to prevent and mitigate the negative effects of the rapidly evolving climate and improve the well-being of rural communities. Furthermore, the identification of the most toxic types of particulate matter could inform local policies related to agriculture, biomass burning, and dust control.
Collapse
Affiliation(s)
- Isabelle Racine Miousse
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rachel B. Hale
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Scott Alsbrook
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gunnar Boysen
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | - Chul Hyun Park
- Clinton School of Public Service, University of Arkansas, Little Rock, AR 72201, USA
| | - Robert Richards
- Clinton School of Public Service, University of Arkansas, Little Rock, AR 72201, USA
| | - Justin Reedy
- Department of Communication, University of Oklahoma, Norman, OK 73019, USA
| | - Marie-Cécile Chalbot
- Department of Biological Sciences, New York City College of Technology, City University of New York, New York, NY 10018, USA
| | - Ilias G. Kavouras
- Department of Environmental, Occupational and Geospatial Health Sciences, City University of New York, New York, NY 10018, USA
| | - Igor Koturbash
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
11
|
Nassikas NJ, Gold DR. Climate change is a health crisis with opportunities for health care action: A focus on health care providers, patients with asthma and allergic immune diseases, and their families and neighbors. J Allergy Clin Immunol 2023; 152:1047-1052. [PMID: 37742937 PMCID: PMC10841871 DOI: 10.1016/j.jaci.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Climate change has increased the frequency of extreme weather events and compounded natural disasters. Heat, wildfires, flooding, and pollen are already threatening public health and disproportionately affecting individuals in susceptible situations and vulnerable locations. In this theme issue of the Journal of Allergy and Clinical Immunology, we address what is known and not known about the biologic as well as clinical upstream and downstream effects of climate change on asthma and allergy development and exacerbation. We present potential actions that individuals can take at the family, neighborhood, community, health care system, and national and international levels to build climate resilience and protect their own health and the health and welfare of others. We emphasize the importance of actions and policies that are context specific and just. We emphasize the need for the health care system, which contributes between 3% and 5% of global greenhouse gas emissions, to reduce its carbon footprint and build resiliency. Health care providers play a pivotal role in helping policymakers understand the effects of climate on the health of our patients. There is still a window to avoid the most serious effects of climate change on human health and our planet.
Collapse
Affiliation(s)
- Nicholas J Nassikas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Mass.
| | - Diane R Gold
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Mass; Channing Division of Network Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Mass
| |
Collapse
|