1
|
Ramalho AR, Moreira S, Ramos LC, de Moura JP. A novel variant in the ABCA1 gene for Tangier Disease with diffuse histiocytosis of bone marrow. J Clin Lipidol 2025; 19:372-376. [PMID: 39863479 DOI: 10.1016/j.jacl.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/08/2024] [Accepted: 12/07/2024] [Indexed: 01/27/2025]
Abstract
Tangier disease is an extremely rare autosomal recessive monogenic disorder caused by mutations in the ATP binding cassette transporter A1 gene (ABCA1). It is characterized by severe deficiency or absence of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1 (ApoA1), with highly variable clinical presentations depending on cholesterol accumulation in macrophages across different tissues. We report a case of a 47-year-old man with very low HDL-C and very high triglyceride levels, initially attributed to the patient's metabolic syndrome, alcohol abuse, and splenomegaly. He had pancytopenia and splenomegaly for over 14 years and developed premature myocardial infarction during his diagnostic workup. Suspecting of Tangier disease, we sequenced the ABCA1 gene, which revealed a homozygous new variant c.164A>G p (His5Arg) in the exon 4. Given the limited number of published cases, there are no reliable data on genotype-phenotype correlations in Tangier disease, highlighting the importance of reporting new variants and associated clinical features.
Collapse
Affiliation(s)
- Ana Rita Ramalho
- Internal Medicine Department, Coimbra's Healthcare Integrated Delivery System, Praceta Professor Mota Pinto, Coimbra, Portugal (Ramalho, Moreira, de Moura).
| | - Sónia Moreira
- Internal Medicine Department, Coimbra's Healthcare Integrated Delivery System, Praceta Professor Mota Pinto, Coimbra, Portugal (Ramalho, Moreira, de Moura)
| | - Lina C Ramos
- Genetics Department, Coimbra's Healthcare Integrated Delivery System, Praceta Professor Mota Pinto, Coimbra, Portugal (Ramos)
| | - José Pereira de Moura
- Internal Medicine Department, Coimbra's Healthcare Integrated Delivery System, Praceta Professor Mota Pinto, Coimbra, Portugal (Ramalho, Moreira, de Moura)
| |
Collapse
|
2
|
Chao C, Qian Y, Lv H, Mei K, Wang M, Liu Y, Wang B, Di D. Whole exome sequencing and proteomics-based investigation of the pathogenesis of coronary artery disease with diffuse long lesion. J Cardiothorac Surg 2024; 19:280. [PMID: 38715006 PMCID: PMC11075290 DOI: 10.1186/s13019-024-02760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/30/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVES The long-term prognosis of patients with coronary artery disease (CAD) with diffuse long lesion underwent coronary artery bypass graft (CABG) or percutaneous coronary intervention (PCI) remains worse. Here, we aimed to identify distinctive genes involved and offer novel insights into the pathogenesis of diffuse long lesion. MATERIALS AND METHODS Whole exome sequencing was performed on peripheral blood samples from 20 CAD patients with diffuse long lesion (CAD-DLL) and from 10 controls with focal lesion (CAD-FL) through a uniform pipeline. Proteomics analysis was conducted on the serum samples from 10 CAD-DLL patients and from 10 controls with CAD-FL by mass spectrometry. Bioinformatics analysis was performed to elucidate the involved genes, including functional annotation and protein-protein interaction analysis. RESULTS A total of 742 shared variant genes were found in CAD-DLL patients but not in controls. Of these, 46 genes were identified as high-frequency variant genes (≥ 4/20) distinctive genes. According to the consensus variant site, 148 shared variant sites were found in the CAD-DLL group. The lysosome and cellular senescence-related pathway may be the most significant pathway in diffuse long lesion. Following the DNA-protein combined analysis, eight genes were screened whose expression levels were altered at both DNA and protein levels. Among these genes, the MAN2A2 gene, the only one that was highly expressed at the protein level, was associated with metabolic and immune-inflammatory dysregulation. CONCLUSIONS Compared to individuals with CAD-FL, patients with CAD-DLL show additional variants. These findings contribute to the understanding of the mechanism of CAD-DLL and provide potential targets for the diagnosis and treatment of CAD-DLL.
Collapse
Affiliation(s)
- Ce Chao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Yongxiang Qian
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Hao Lv
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Kun Mei
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Min Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Yang Liu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China
| | - Bin Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China.
| | - Dongmei Di
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Tianning District, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
3
|
Prone-Olazabal D, Davies I, González-Galarza FF. Metabolic Syndrome: An Overview on Its Genetic Associations and Gene-Diet Interactions. Metab Syndr Relat Disord 2023; 21:545-560. [PMID: 37816229 DOI: 10.1089/met.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors that includes central obesity, hyperglycemia, hypertension, and dyslipidemias and whose inter-related occurrence may increase the odds of developing type 2 diabetes and cardiovascular diseases. MetS has become one of the most studied conditions, nevertheless, due to its complex etiology, this has not been fully elucidated. Recent evidence describes that both genetic and environmental factors play an important role on its development. With the advent of genomic-wide association studies, single nucleotide polymorphisms (SNPs) have gained special importance. In this review, we present an update of the genetics surrounding MetS as a single entity as well as its corresponding risk factors, considering SNPs and gene-diet interactions related to cardiometabolic markers. In this study, we focus on the conceptual aspects, diagnostic criteria, as well as the role of genetics, particularly on SNPs and polygenic risk scores (PRS) for interindividual analysis. In addition, this review highlights future perspectives of personalized nutrition with regard to the approach of MetS and how individualized multiomics approaches could improve the current outlook.
Collapse
Affiliation(s)
- Denisse Prone-Olazabal
- Postgraduate Department, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Ian Davies
- Research Institute of Sport and Exercise Science, The Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom
| | | |
Collapse
|
4
|
Affiliation(s)
- Federico Oldoni
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Richard J. Sinke
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Albert Kuivenhoven
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Weissglas-Volkov D, Pajukanta P. Genetic causes of high and low serum HDL-cholesterol. J Lipid Res 2010; 51:2032-57. [PMID: 20421590 DOI: 10.1194/jlr.r004739] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Plasma levels of HDL cholesterol (HDL-C) have a strong inherited basis with heritability estimates of 40-60%. The well-established inverse relationship between plasma HDL-C levels and the risk of coronary artery disease (CAD) has led to an extensive search for genetic factors influencing HDL-C concentrations. Over the past 30 years, candidate gene, genome-wide linkage, and most recently genome-wide association (GWA) studies have identified several genetic variations for plasma HDL-C levels. However, the functional role of several of these variants remains unknown, and they do not always correlate with CAD. In this review, we will first summarize what is known about HDL metabolism, monogenic disorders associated with both low and high HDL-C levels, and candidate gene studies. Then we will focus this review on recent genetic findings from the GWA studies and future strategies to elucidate the remaining substantial proportion of HDL-C heritability. Comprehensive investigation of the genetic factors conferring to low and high HDL-C levels using integrative approaches is important to unravel novel pathways and their relations to CAD, so that more effective means of diagnosis, treatment, and prevention will be identified.
Collapse
|
6
|
Brown WV. High-density lipoprotein and transport of cholesterol and triglyceride in blood. J Clin Lipidol 2007; 1:7-19. [PMID: 21291664 DOI: 10.1016/j.jacl.2007.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Accepted: 02/06/2007] [Indexed: 01/03/2023]
Abstract
High-density lipoproteins (HDL) contain approximately 25% of the cholesterol and <5% of the triglyceride in the plasma of human blood. However, the dynamic exchange of lipids and lipid-binding proteins is not revealed by simply considering the mass of material at any point in time. HDL are the most complex of lipoprotein species with multiple protein constituents, which facilitate cholesterol secretion from cells, cholesterol esterification in plasma, and transfer of cholesterol to other lipoproteins and to the liver for excretion. They also play a major role in triglyceride transport by providing for activation of lipoprotein lipase, exchange of triglyceride among the lipoproteins, and removal of triglyceride rich remnants of chylomicrons and very-low-density lipoproteins after lipase action. In addition, antioxidative enzymes and phospholipid transfer proteins are important components of HDL. Many of the proteins of HDL are exchangeable with other lipoproteins, including chylomicrons and very-low-density lipoproteins. The constantly changing content of lipids and apolipoproteins in HDL particles generate a series of structures that can be analyzed by using separation techniques that depend on size or charge of the particles. Interaction of these various structures can be very different with cell surfaces depending on the size or apolipoprotein content. A series of different transport proteins preferentially exchange lipids with specific structures among the HDL but interact poorly or not at all with others. The role of these differing forms of HDL and their interactions with cells and other lipoprotein species in plasma is the subject of intense study stimulated by the potential for reducing atherogenesis. The strength of this is only partially indicated by the correlation of higher total levels of the HDL particles with reduced incidence of vascular disease in various clinical trials and epidemiological studies.
Collapse
Affiliation(s)
- William Virgil Brown
- Emory University School of Medicine and the Atlanta Veterans Affairs Medical Center 111, 1670 Clairmont Road, Atlanta, GA 30033, USA
| |
Collapse
|