1
|
Sanguino Otero J, Rodríguez-Jiménez C, Mostaza Prieto J, Rodríguez-Antolín C, Carazo Alvarez A, Arrieta Blanco F, Rodríguez-Nóvoa S. Functional Analysis of 3'UTR Variants at the LDLR and PCSK9 Genes in Patients with Familial Hypercholesterolemia. Hum Mutat 2024; 2024:9964734. [PMID: 40225943 PMCID: PMC11918801 DOI: 10.1155/2024/9964734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 04/15/2025]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disease with an estimated prevalence of 1 in 200-250 individuals. Patients with FH are at increased risk of premature coronary artery disease. Early diagnosis and treatment are essential for improving clinical outcomes. In many cases, however, the genetic diagnosis is not confirmed. At present, routine genetic testing does not analyze the 3'UTR regions of LDLR and PCSK9. However, 3'UTR-single nucleotide variants could be of interest because they can modify the target sequence of miRNAs that regulate the expression of these genes. Our study fully characterizes the 3'UTR regions of LDLR and PCSK9 in 409 patients with a suspected diagnosis of FH using next-generation sequencing. In 30 of the 409 patients, we found 21 variants with an allelic frequency of <1%; 14 of them at 3'UTR-LDLR and 8 at 3'UTR-PCSK9. The variants' pathogenicity was studied in silico; subsequently, a number of the variants were functionally validated using luciferase reporter assays. LDLR:c.∗653G > C showed a 41% decrease in luciferase expression, while PCSK9:c.∗950C > T showed a 41% increase in PCSK9 expression, results that could explain the hypercholesterolemia phenotype. In summary, the genetic analysis of the 3'UTR regions of LDLR and PCSK9 could improve the genetic diagnosis of FH.
Collapse
Affiliation(s)
- Javier Sanguino Otero
- Department of Genetics of Metabolic Diseases, Hospital Universitario La Paz, Madrid, Spain
- Dyslipidemia of Genetic Origin and Metabolic Diseases Group, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Carmen Rodríguez-Jiménez
- Department of Genetics of Metabolic Diseases, Hospital Universitario La Paz, Madrid, Spain
- Dyslipidemia of Genetic Origin and Metabolic Diseases Group, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | | | - Carlos Rodríguez-Antolín
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Ana Carazo Alvarez
- Department of Genetics of Metabolic Diseases, Hospital Universitario La Paz, Madrid, Spain
- Dyslipidemia of Genetic Origin and Metabolic Diseases Group, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Francisco Arrieta Blanco
- Department of Endocrinology and Nutrition, Hospital Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Sonia Rodríguez-Nóvoa
- Department of Genetics of Metabolic Diseases, Hospital Universitario La Paz, Madrid, Spain
- Dyslipidemia of Genetic Origin and Metabolic Diseases Group, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
2
|
de Freitas RCC, Bortolin RH, Borges JB, de Oliveira VF, Dagli-Hernandez C, Marçal EDSR, Bastos GM, Gonçalves RM, Faludi AA, Silbiger VN, Luchessi AD, Hirata RDC, Hirata MH. LDLR and PCSK9 3´UTR variants and their putative effects on microRNA molecular interactions in familial hypercholesterolemia: a computational approach. Mol Biol Rep 2023; 50:9165-9177. [PMID: 37776414 DOI: 10.1007/s11033-023-08784-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/25/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is caused by pathogenic variants in low-density lipoprotein (LDL) receptor (LDLR) or its associated genes, including apolipoprotein B (APOB), proprotein convertase subtilisin/kexin type 9 (PCSK9), and LDLR adaptor protein 1 (LDLRAP1). However, approximately 40% of the FH patients clinically diagnosed (based on FH phenotypes) may not carry a causal variant in a FH-related gene. Variants located at 3' untranslated region (UTR) of FH-related genes could elucidate mechanisms involved in FH pathogenesis. This study used a computational approach to assess the effects of 3'UTR variants in FH-related genes on miRNAs molecular interactions and to explore the association of these variants with molecular diagnosis of FH. METHODS AND RESULTS Exons and regulatory regions of FH-related genes were sequenced in 83 FH patients using an exon-target gene sequencing strategy. In silico prediction tools were used to study the effects of 3´UTR variants on interactions between miRNAs and target mRNAs. Pathogenic variants in FH-related genes (molecular diagnosis) were detected in 44.6% FH patients. Among 59 3'UTR variants identified, LDLR rs5742911 and PCSK9 rs17111557 were associated with molecular diagnosis of FH, whereas LDLR rs7258146 and rs7254521 and LDLRAP1 rs397860393 had an opposite effect (p < 0.05). 3´UTR variants in LDLR (rs5742911, rs7258146, rs7254521) and PCSK9 (rs17111557) disrupt interactions with several miRNAs, and more stable bindings were found with LDLR (miR-4435, miR-509-3 and miR-502) and PCSK9 (miR-4796). CONCLUSION LDLR and PCSK9 3´UTR variants disturb miRNA:mRNA interactions that could affect gene expression and are potentially associated with molecular diagnosis of FH.
Collapse
Affiliation(s)
- Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jessica Bassani Borges
- Department of Research, Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo, 01323-001, Brazil
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
| | - Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
| | - Elisangela da Silva Rodrigues Marçal
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
- Laboratory of Molecular Research in Cardiology, Institute of Cardiology Dante Pazzanese, Sao Paulo, 04012-909, Brazil
| | - Gisele Medeiros Bastos
- Department of Research, Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo, 01323-001, Brazil
| | | | - Andre Arpad Faludi
- Medical Division, Institute of Cardiology Dante Pazzanese, Sao Paulo, 04012-909, Brazil
| | - Vivian Nogueira Silbiger
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, 59012-570, Brazil
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, 59078-900, Brazil
| | - André Ducati Luchessi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, 59012-570, Brazil
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, 59078-900, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
3
|
Pleiotropic Effects of APOB Variants on Lipid Profiles, Metabolic Syndrome, and the Risk of Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms232314963. [PMID: 36499290 PMCID: PMC9735756 DOI: 10.3390/ijms232314963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Apolipoprotein B (ApoB) plays a crucial role in lipid and lipoprotein metabolism. The effects of APOB locus variants on lipid profiles, metabolic syndrome, and the risk of diabetes mellitus (DM) in Asian populations are unclear. We included 1478 Taiwan Biobank participants with whole-genome sequence (WGS) data and 115,088 TWB participants with Axiom genome-wide CHB array data and subjected them to genotype-phenotype analyses using APOB locus variants. Five APOB nonsynonymous mutations, including Asian-specific rs144467873 and rs13306194 variants, were selected from participants with the WGS data. Using a combination of regional association studies, a linkage disequilibrium map, and multivariate analysis, we revealed that the APOB locus variants rs144467873, rs13306194, and rs1367117 were independently associated with total, low-density lipoprotein (LDL), and non-high-density lipoprotein (non-HDL) cholesterol levels; rs1318006 was associated with HDL cholesterol levels; rs13306194 and rs35131127 were associated with serum triglyceride levels; rs144467873, rs13306194, rs56213756, and rs679899 were associated with remnant cholesterol levels; and rs144467873 and rs4665709 were associated with metabolic syndrome. Mendelian randomization (MR) analyses conducted using weighted genetic risk scores from three or two LDL-cholesterol-level-associated APOB variants revealed significant association with prevalent DM (p = 0.0029 and 8.2 × 10-5, respectively), which became insignificant after adjustment for LDL-C levels. In conclusion, these results indicate that common and rare APOB variants are independently associated with various lipid levels and metabolic syndrome in Taiwanese individuals. MR analyses supported APOB variants associated with the risk of DM through their associations with LDL cholesterol levels.
Collapse
|
4
|
Nayara Góes de Araújo J, Fernandes de Oliveira V, Bassani Borges J, Dagli-Hernandez C, da Silva Rodrigues Marçal E, Caroline Costa de Freitas R, Medeiros Bastos G, Marques Gonçalves R, Arpad Faludi A, Elim Jannes C, da Costa Pereira A, Dominguez Crespo Hirata R, Hiroyuki Hirata M, Ducati Luchessi A, Nogueira Silbiger V. In silico analysis of upstream variants in Brazilian patients with Familial Hypercholesterolemia. Gene X 2022; 849:146908. [PMID: 36167182 DOI: 10.1016/j.gene.2022.146908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/16/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a prevalent autosomal genetic disease associated with increased risk of early cardiovascular events and death due to chronic exposure to very high levels of low-density lipoprotein cholesterol (LDL-c). Pathogenic variants in the coding regions of LDLR, APOB and PCSK9 account for most FH cases, and variants in non-coding regions maybe involved in FH as well. Variants in the upstream region of LDLR, APOB and PCSK9 were screened by targeted next-generation sequencing and their effects were explored using in silico tools. Twenty-five patients without pathogenic variants in FH-related genes were selected. 3 kb upstream regions of LDLR, APOB and PCSK9 were sequenced using the AmpliSeq (Illumina) and Miseq Reagent Nano Kit v2 (Illumina). Sequencing data were analyzed using variant discovery and functional annotation tools. Potentially regulatory variants were selected by integrating data from public databases, published data and context-dependent regulatory prediction score. Thirty-four single nucleotide variants (SNVs) in upstream regions were identified (6 in LDLR, 15 in APOB, and 13 in PCSK9). Five SNVs were prioritized as potentially regulatory variants (rs934197, rs9282606, rs36218923, rs538300761, g.55038486A>G). APOB rs934197 was previously associated with increased rate of transcription, which in silico analysis suggests that could be due to reducing binding affinity of a transcriptional repressor. Our findings highlight the importance of variant screening outside of coding regions of all relevant genes. Further functional studies are necessary to confirm that prioritized variants could impact gene regulation and contribute to the FH phenotype.
Collapse
Affiliation(s)
- Jéssica Nayara Góes de Araújo
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Jéssica Bassani Borges
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo, 04012-909, Brazil
| | - Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | | - Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Gisele Medeiros Bastos
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo, 04012-909, Brazil; Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | | | - André Arpad Faludi
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - Cinthia Elim Jannes
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo 05403-900, Brazil
| | - Alexandre da Costa Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo 05403-900, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - André Ducati Luchessi
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Vivian Nogueira Silbiger
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| |
Collapse
|
5
|
Los B, Borges JB, Oliveira VF, Freitas RC, Dagli-Hernandez C, Bortolin RH, Gonçalves RM, Faludi AA, Rodrigues AC, Bastos GM, Jannes CE, Pereira AC, Hirata RD, Hirata MH. Functional analysis of PCSK9 3'UTR variants and mRNA-miRNA interactions in patients with familial hypercholesterolemia. Epigenomics 2021; 13:779-791. [PMID: 33899508 DOI: 10.2217/epi-2020-0462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: Functional analysis of PCSK9 3'UTR variants and mRNA-miRNA interactions were explored in patients with familial hypercholesterolemia (FH). Materials & methods: PCSK9 3'UTR variants were identified by exon-targeted gene sequencing. Functional effects of 3'UTR variants and mRNA-miRNA interactions were analyzed using in silico and in vitro studies in HEK293FT and HepG2 cells. Results: Twelve PCSK9 3'UTR variants were detected in 88 FH patients. c.*75C >T and c.*345C >T disrupted interactions with miR-6875, miR-4721 and miR-564. Transient transfection of the c.*345C >T decreased luciferase activity in HEK293FT cells. miR-4721 and miR-564 mimics reduced PCSK9 expression in HepG2 cells. Conclusion: PCSK9 c.*345C >T has a possible role as loss-of-function variant. miR-4721 and miR-564 downregulate PCSK9 and may be useful to improve lipid profile in FH patients.
Collapse
Affiliation(s)
- Bruna Los
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Jéssica B Borges
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.,Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - Victor F Oliveira
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Renata Cc Freitas
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Carolina Dagli-Hernandez
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Raul H Bortolin
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Rodrigo M Gonçalves
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - André A Faludi
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - Alice C Rodrigues
- Department of Pharmacology, University of Sao Paulo Institute of Biomedical Sciences, Sao Paulo 05508-000, Brazil
| | - Gisele M Bastos
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil.,Department of Teaching and Research, Real e Benemerita Associaçao Portuguesa de Beneficiencia, Sao Paulo 01323-001, Brazil
| | - Cinthia E Jannes
- Laboratory of Genetics and Molecular Cardiology,HeartInstitute, University of Sao Paulo, Sao Paulo 05403-900 , Brazil
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology,HeartInstitute, University of Sao Paulo, Sao Paulo 05403-900 , Brazil
| | - Rosario Dc Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mario H Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
6
|
Tada H, Kawashiri MA, Nomura A, Teramoto R, Hosomichi K, Nohara A, Inazu A, Mabuchi H, Tajima A, Yamagishi M. Oligogenic familial hypercholesterolemia, LDL cholesterol, and coronary artery disease. J Clin Lipidol 2018; 12:1436-1444. [PMID: 30241732 DOI: 10.1016/j.jacl.2018.08.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND The genetic background of severe familial hypercholesterolemia (FH) has yet to be determined. OBJECTIVE We tested if genetic variants associated with low-density lipoprotein (LDL)-altering autosomal recessive diseases influenced LDL cholesterol levels and the odds for coronary artery disease in patients with high LDL cholesterol. METHODS We recruited 500 individuals with elevated LDL cholesterol levels (≥180 mg/dL or ≥140 mg/dL for subjects <15 years). We sequenced the exons of 3 FH genes (LDLR, apolipoprotein B, and proprotein convertase subtilisin/kexin type 9) and 4 LDL-altering accessory genes (ABCG5, ABCG8, APOE, and LDL receptor adaptor protein 1). In addition, 4 single nucleotide polymorphisms associated with polygenic FH in East Asian subjects were genotyped. Oligogenic FH patients were defined as those who harbored damaging variants of both conventional FH genes and LDL-altering accessory genes. RESULTS We identified damaging variants of conventional FH genes in 248 participants (50%). We also detected damaging variants in accessory genes in 57 patients (11%) and identified oligogenic FH in 27 of these patients (5%). Polygenic score in the subjects without any FH mutations was significantly higher than those in any other groups. Compared with monogenic FH, oligogenic FH exhibited significantly higher LDL cholesterol (265 mg/dL, 95% confidence interval [CI] 216-312, and 210 mg/dL, 95% CI 189-243; P = .04). Oligogenic FH exhibited higher odds for coronary artery disease when compared with monogenic FH, although it did not reach statistical significance (odds ratio 1.41, 95% CI 0.68-2.21, P = .24). CONCLUSIONS Among patients with elevated LDL cholesterol, those with oligogenic FH had higher LDL cholesterol than monogenic FH.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.
| | - Masa-Aki Kawashiri
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Akihiro Nomura
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan; Innovative Clinical Research Center, Kanazawa University, Kanazawa, Japan
| | - Ryota Teramoto
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Nohara
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Akihiro Inazu
- Department of Laboratory Science, Molecular Biochemistry and Molecular Biology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Mabuchi
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masakazu Yamagishi
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| |
Collapse
|
7
|
Pek SLT, Dissanayake S, Fong JCW, Lin MX, Chan EZL, Tang JIS, Lee CW, Ong HY, Sum CF, Lim SC, Tavintharan S. Spectrum of mutations in index patients with familial hypercholesterolemia in Singapore: Single center study. Atherosclerosis 2017; 269:106-116. [PMID: 29353225 DOI: 10.1016/j.atherosclerosis.2017.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolemia (FH) is an autosomal dominant genetic disease characterized by the presence of high plasma low density lipoproteins cholesterol (LDL-c). Patients with FH, with mutation detected, are at increased risk of premature cardiovascular disease compared to those without mutations. The aim of the study was to assess the type of mutations in patients, clinically diagnosed with FH in Singapore. METHODS Patients (probands) with untreated/highest on-treatment LDL-c>4.9 mmol/l were recruited (June 2015 to April 2017). Anthropometric, biochemical indices, blood and family history were collected. DNA was extracted and Next Generation Sequencing (NGS) was performed in 26 lipid-related genes, including LDLR, APOB and PCSK9, and validated using Sanger. Multiplex-ligation probe analyses for LDLR were performed to identify large mutation derangements. Based on HGVS nomenclature, LDLR mutations were classified as "Null"(nonsense, frameshift, large rearrangements) and "Defective"(point mutations which are pathogenic). RESULTS Ninety-six probands were recruited: mean age: (33.5 ± 13.6) years. 52.1% (n = 50) of patients had LDLR mutations, with 15 novel mutations, and 4.2% (n = 4) had APOB mutations. Total cholesterol (TC) and LDL-c were significantly higher in those with LDLR mutations compared to APOB and no mutations [(8.53 ± 1.52) vs. (6.93 ± 0.47) vs. (7.80 ± 1.32)] mmol/l, p = 0.012 and [(6.74 ± 0.35) vs. (5.29 ± 0.76) vs. (5.98 ± 1.23)] mmol/l, p=0.005, respectively. Patients with "null LDLR" mutations (n = 13) had higher TC and LDL-c than "defective LDLR" mutations (n = 35): [(9.21 ± 1.60) vs. (8.33 ± 1.41)]mmol/l, p = 0.034 and [(7.43 ± 1.47) vs. (6.53 ± 1.21)]mmol/l, p=0.017, respectively. CONCLUSIONS To our knowledge, this is the first report of mutation detection in patients with clinically suspected FH by NGS in Singapore. While percentage of mutations is similar to other countries, the spectrum locally differs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chee Wan Lee
- Cardiology, Khoo Teck Puat Hospital, 768828, Singapore
| | - Hean Yee Ong
- Cardiology, Khoo Teck Puat Hospital, 768828, Singapore
| | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, 730676, Singapore; Division of Endocrinology, Khoo Teck Puat Hospital, 768828, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828, Singapore; Diabetes Centre, Admiralty Medical Centre, 730676, Singapore; Division of Endocrinology, Khoo Teck Puat Hospital, 768828, Singapore; Saw Swee Hock School of Public Health, National University Hospital, 117549, Singapore
| | - Subramaniam Tavintharan
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828, Singapore; Diabetes Centre, Admiralty Medical Centre, 730676, Singapore; Division of Endocrinology, Khoo Teck Puat Hospital, 768828, Singapore.
| |
Collapse
|
8
|
Yao Y, Xu Y, Wang W, Zhang J, Li Q. Glucagon-like peptide-1 improves β-cell dysfunction by suppressing the miR-27a-induced downregulation of ATP-binding cassette transporter A1. Biomed Pharmacother 2017; 96:497-502. [DOI: 10.1016/j.biopha.2017.10.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 02/08/2023] Open
|
9
|
Lamiquiz-Moneo I, Baila-Rueda L, Bea AM, Mateo-Gallego R, Pérez-Calahorra S, Marco-Benedí V, Martín-Navarro A, Ros E, Cofán M, Rodríguez-Rey JC, Pocovi M, Cenarro A, Civeira F. ABCG5/G8 gene is associated with hypercholesterolemias without mutation in candidate genes and noncholesterol sterols. J Clin Lipidol 2017; 11:1432-1440.e4. [DOI: 10.1016/j.jacl.2017.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
|