1
|
Ghibes P, Hagen F, Weissinger M, Wrazidlo R, Nikolaou K, Levitin A, Kirksey L, Artzner C, Grözinger G, Partovi S. Diagnostic performance of Photon-counting CT angiography in peripheral artery disease compared to DSA as gold standard. Eur J Radiol 2025; 182:111834. [PMID: 39557006 DOI: 10.1016/j.ejrad.2024.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Photon-counting (PC) CT has the potential to improve diagnostic confidence and image quality of CT angiography (CTA) in patients with peripheral artery disease (PAD). PURPOSE To retrospectively evaluate the diagnostic performance of Photon-counting CT angiography for the assessment of stenotic disease in patients with PAD compared to digital subtraction angiography (DSA) as gold standard. MATERIALS AND METHODS All patients undergoing PC CTA followed by DSA between November 2021 and November 2023 were included in this institutional review board approved HIPAA compliant retrospective analysis. The arterial vasculature of the lower extremity was divided into 10 segments from the iliac vasculature to the calf arterial vasculature. The images were evaluated independently by two experienced readers. Inter-reader agreement was determined using Cohen's kappa coefficient (κ). Sensitivity, specificity, positive (PPV) and negative predictive values (NPV) as well as accuracy were calculated for PC CTA and PC pure lumen reconstruction compared to DSA as gold standard. RESULTS 109 patients (mean age 74.68 ± 11.10 years; 77 males, 32 females) were included in the retrospective analysis. PC pure lumen reconstructions was available for 91 patients (83 %). A total of 933 vascular segments for PC CTA and 780 vascular segments for PC pure lumen reconstruction were evaluated. Good to perfect inter-reader agreement was found for PC CTA (κ = 0.791) and for PC pure lumen reconstruction (κ = 0.829). Sensitivity, Specificity and accuracy for PC CTA were 91 %; 95 % and 93 %, respectively. Sensitivity, Specificity and accuracy for PC pure lumen reconstruction were 85 %, 89 % and 88 %, respectively. CONCLUSION Photon-counting CTA demonstrates high sensitivity and specificity for the detection and diagnosis of stenotic lesions in PAD. PC non-calcium reconstruction does not further increase the accuracy compared to PC CTA.
Collapse
Affiliation(s)
- Patrick Ghibes
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, Germany.
| | - Florian Hagen
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, Germany
| | - Matthias Weissinger
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, Germany
| | - Robin Wrazidlo
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, Germany
| | - Konstantin Nikolaou
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, Germany
| | - Abraham Levitin
- Interventional Radiology, Cleveland Clinic Main Campus, Cleveland, OH, United States
| | - Levester Kirksey
- Vascular Surgery, Cleveland Clinic Main Campus, Cleveland, OH, United States
| | - Christoph Artzner
- Institute of Radiology: Diakonie Klinikum Stuttgart, Stuttgart, Germany
| | - Gerd Grözinger
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, Germany
| | - Sasan Partovi
- Interventional Radiology, Cleveland Clinic Main Campus, Cleveland, OH, United States
| |
Collapse
|
2
|
Unthan M, Ullrich BW, Heinen C, Kohler FC, Schenk P, Franiel T, Bürckenmeyer F. Comparison of Spectral CT and MRI in Pelvic Ring Fragility Fractures: A Prospective Diagnostic Accuracy Study. J Clin Med 2024; 13:5446. [PMID: 39336932 PMCID: PMC11432043 DOI: 10.3390/jcm13185446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Fragility fractures of the pelvis (FFP) are characterized by inadequate trauma to a structurally compromised bone, primarily in osteoporosis. Conventional CT studies can be inadequate in identifying FFPs. An MRI of the pelvis is considered the gold standard in diagnosing FFPs. Spectral CT or Dual-Energy CT may have comparable diagnostic accuracy. It provides additional insights into associated bone marrow edema. The aim of this prospective monocentric study is to evaluate the diagnostic accuracy of Spectral CT compared to the gold standard MRI in diagnosing FFP. Methods: Over a 2-year period, patients presenting in the emergency department with clinical suspicion of an FFP were consecutively included. They underwent Spectral CT (GE Revolution 16 cm GSI) upon admission, followed by an MRI. The gold standard for diagnosing FFP is pelvic MRI, showing sensitivity and specificity ranging from 97% to 100%. The acquired images were evaluated and classified using the osteoporotic fractures of the pelvis (OFP) classification. Results: Compared to the reference test, which was the MRI pelvis, the sensitivity of the CT pelvis was determined to be 86.8 (95% confidence interval (CI) 71.9-95.6%) with a specificity of 84.6% (95% CI: 54.6-98.1%, p = 0.453). Spectral CT could identify an additional FFP correctly, exhibiting a sensitivity of 89.5% (95% CI: 75.2-97.1%, p = 0.688), while maintaining the same specificity as the conventional CT. The inter-rater reliability assessment for Spectral CT, conducted by four independent raters, resulted in a Fleiss' Kappa value of 0.516 (95% CI: 0.450-0.582, p < 0.001). Conclusion: The sensitivity of Spectral CT in the detection of pelvic ring fragility fractures shows a slightly lower sensitivity compared to MRI. There were no statistically significant differences observed when compared to conventional CT or MRI. In conclusion, Spectral CT may be beneficial in distinguishing FFP, particularly in cases where a definitive diagnosis is uncertain. Level of Evidence: II.
Collapse
Affiliation(s)
- Mark Unthan
- Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Bernhard W. Ullrich
- Department of Trauma and Reconstructive Surgery, BG Klinikum Bergmannstrost Halle gGmbH, Merseburger Str. 165, 06112 Halle, Germany
| | - Camilla Heinen
- Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Felix C. Kohler
- Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Philipp Schenk
- Department of Research, BG Klinikum Bergmannstrost Halle gGmbH, Merseburger Str. 165, 06112 Halle, Germany
| | - Tobias Franiel
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Florian Bürckenmeyer
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
3
|
Foti G, Ascenti G, Agostini A, Longo C, Lombardo F, Inno A, Modena A, Gori S. Dual-Energy CT in Oncologic Imaging. Tomography 2024; 10:299-319. [PMID: 38535766 PMCID: PMC10975567 DOI: 10.3390/tomography10030024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 08/25/2024] Open
Abstract
Dual-energy CT (DECT) is an innovative technology that is increasingly widespread in clinical practice. DECT allows for tissue characterization beyond that of conventional CT as imaging is performed using different energy spectra that can help differentiate tissues based on their specific attenuation properties at different X-ray energies. The most employed post-processing applications of DECT include virtual monoenergetic images (VMIs), iodine density maps, virtual non-contrast images (VNC), and virtual non-calcium (VNCa) for bone marrow edema (BME) detection. The diverse array of images obtained through DECT acquisitions offers numerous benefits, including enhanced lesion detection and characterization, precise determination of material composition, decreased iodine dose, and reduced artifacts. These versatile applications play an increasingly significant role in tumor assessment and oncologic imaging, encompassing the diagnosis of primary tumors, local and metastatic staging, post-therapy evaluation, and complication management. This article provides a comprehensive review of the principal applications and post-processing techniques of DECT, with a specific focus on its utility in managing oncologic patients.
Collapse
Affiliation(s)
- Giovanni Foti
- Department of Radiology, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A. Sempreboni 5, 37024 Negrar, Italy; (C.L.); (F.L.)
| | - Giorgio Ascenti
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, 98122 Messina, Italy;
| | - Andrea Agostini
- Department of Clinical Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy
| | - Chiara Longo
- Department of Radiology, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A. Sempreboni 5, 37024 Negrar, Italy; (C.L.); (F.L.)
| | - Fabio Lombardo
- Department of Radiology, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A. Sempreboni 5, 37024 Negrar, Italy; (C.L.); (F.L.)
| | - Alessandro Inno
- Department of Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A. Sempreboni 5, 37024 Negrar, Italy; (A.I.); (A.M.); (S.G.)
| | - Alessandra Modena
- Department of Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A. Sempreboni 5, 37024 Negrar, Italy; (A.I.); (A.M.); (S.G.)
| | - Stefania Gori
- Department of Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Via Don A. Sempreboni 5, 37024 Negrar, Italy; (A.I.); (A.M.); (S.G.)
| |
Collapse
|
4
|
Kazimierczak W, Kazimierczak N, Serafin Z. Review of Clinical Applications of Dual-Energy CT in Patients after Endovascular Aortic Repair. J Clin Med 2023; 12:7766. [PMID: 38137834 PMCID: PMC10743598 DOI: 10.3390/jcm12247766] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a significant cause of mortality in developed countries. Endovascular aneurysm repair (EVAR) is currently the leading treatment method for AAAs. Due to the high sensitivity and specificity of post-EVAR complication detection, CT angiography (CTA) is the reference method for imaging surveillance in patients after EVAR. Many studies have shown the advantages of dual-energy CT (DECT) over standard polyenergetic CTA in vascular applications. In this article, the authors briefly discuss the technical principles and summarize the current body of literature regarding dual-energy computed tomography angiography (DECTA) in patients after EVAR. The authors point out the most useful applications of DECTA in this group of patients and its advantages over conventional CTA. To conduct this review, a search was performed using the PubMed, Google Scholar, and Web of Science databases.
Collapse
Affiliation(s)
- Wojciech Kazimierczak
- Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009 Bydgoszcz, Poland
| | - Natalia Kazimierczak
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009 Bydgoszcz, Poland
| | - Zbigniew Serafin
- Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland
| |
Collapse
|
5
|
Li B, Ni J, Chen F, Lu F, Zhang L, Wu W, Zhang Z. Evaluation of three-dimensional dual-energy CT cholangiopancreatography image quality in patients with pancreatobiliary dilatation: Comparison with conventional single-energy CT. Eur J Radiol Open 2023; 11:100537. [PMID: 37942123 PMCID: PMC10628547 DOI: 10.1016/j.ejro.2023.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Objective This study aimed to evaluate three-dimensional (3D) negative-contrast CT cholangiopancreatography (nCTCP) image quality using dual-energy CT (DECT) with iterative reconstruction (IR) technique in patients with pancreatobiliary dilatation compared with single-energy CT (SECT). Methods Of the patients, 67 and 56 underwent conventional SECT (SECT set) and DECT with IR technique (DECT set), respectively. All patients were retrospectively analyzed during the portal phase to compare objective image quality and other data including patient demographics, hepatic and pancreatic parenchymal enhancement, noise, and attenuation difference (AD) between dilated ducts and enhanced hepatic parenchyma, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and CT volume dose index (CTDIvol). Two radiologists used the five-point Likert scale to evaluate the subjective image quality of 3D nCTCP regarding image noise, sharpness of dilated ducts, and overall image quality. Statistical analyses used the Mann-Whitney U test. Results No significant difference in patient demographics in either CT set was showed during objective evaluation (p > 0.05). However, higher hepatic and pancreatic parenchymal enhancement, AD, SNR, and CNR and lower hepatic and pancreatic noise (p < 0.005) as well as CTDIvol (p = 0.005) on DECT than on SECT were observed. Higher mean grades on DECT than on SECT were showed for image noise (4.65 vs 3.92), sharpness of dilated ducts (4.52 vs 3.94), and overall image quality (4.45 vs 3.91; p < 0.001), respectively during subjective evaluation. Conclusion A higher overall image quality and lower radiation dose on 3D nCTCP can be obtained by DECT with IR technique than with conventional SECT in patients with pancreatobiliary dilatation.
Collapse
Affiliation(s)
- Bin Li
- Department of Radiology, Wuxi No.2 People’s Hospital, 68 Zhong shan Rd., Wuxi 214002, Jiangsu, PR China
| | - JianMing Ni
- Department of Radiology, Wuxi No.2 People’s Hospital, 68 Zhong shan Rd., Wuxi 214002, Jiangsu, PR China
| | - FangMing Chen
- Department of Radiology, Wuxi No.2 People’s Hospital, 68 Zhong shan Rd., Wuxi 214002, Jiangsu, PR China
| | - FengQi Lu
- Department of Radiology, Wuxi No.2 People’s Hospital, 68 Zhong shan Rd., Wuxi 214002, Jiangsu, PR China
| | - Lei Zhang
- Department of Radiology, Wuxi No.2 People’s Hospital, 68 Zhong shan Rd., Wuxi 214002, Jiangsu, PR China
| | - WenJuan Wu
- Department of Radiology, Wuxi No.2 People’s Hospital, 68 Zhong shan Rd., Wuxi 214002, Jiangsu, PR China
| | - ZhuiYang Zhang
- Department of Radiology, Wuxi No.2 People’s Hospital, 68 Zhong shan Rd., Wuxi 214002, Jiangsu, PR China
| |
Collapse
|
6
|
Ananthakrishnan L, Kulkarni N, Toshav A. Dual-Energy Computed Tomography: Integration Into Clinical Practice and Cost Considerations. Radiol Clin North Am 2023; 61:963-971. [PMID: 37758363 DOI: 10.1016/j.rcl.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Optimization of dual-energy CT (DECT) workflow is critical for successful integration of DECT into practice. Patient selection strategies differ by scanner type and may be based on patient size, exam indication, or both. All stakeholders involved in patient scheduling and scan acquisition should be involved in patient triage to DECT. Automation of DECT postprocessing frees up technologist and radiologist time, but care must be taken to avoid sending unnecessary reconstructions to PACS. DECT use in the Emergency Department aids in incidentaloma characterization and improves reader diagnostic confidence, and results in quantifiable cost savings by eliminating the need for follow-up exams.
Collapse
Affiliation(s)
- Lakshmi Ananthakrishnan
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Naveen Kulkarni
- Department of Radiology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Aran Toshav
- Department of Radiology, Southeast Louisiana Veterans Healthcare System, LSUHSC, New Orleans, LA 70119, USA
| |
Collapse
|
7
|
Schierenbeck M, Grözinger M, Reichardt B, Jansen O, Kauczor HU, Campbell GM, Sedaghat S. Detecting Bone Marrow Edema of the Extremities on Spectral Computed Tomography Using a Three-Material Decomposition. Diagnostics (Basel) 2023; 13:2745. [PMID: 37685282 PMCID: PMC10486895 DOI: 10.3390/diagnostics13172745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Detecting bone marrow edema (BME) as a sign of acute fractures is challenging on conventional computed tomography (CT). This study evaluated the diagnostic performance of a three-material decomposition (TMD) approach for detecting traumatic BME of the extremities on spectral computed tomography (SCT). METHODS This retrospective diagnostic study included 81 bone compartments with and 80 without BME. A TMD application to visualize BME was developed in collaboration with Philips Healthcare. The following bone compartments were included: distal radius, proximal femur, proximal tibia, distal tibia and fibula, and long bone diaphysis. Two blinded radiologists reviewed each case independently in random order for the presence or absence of BME. RESULTS The interrater reliability was 0.84 (p < 0.001). The different bone compartments showed sensitivities of 86.7% to 93.8%, specificities of 84.2% to 94.1%, positive predictive values of 82.4% to 94.7%, negative predictive values of 87.5% to 93.3%, and area under the curve (AUC) values of 85.7% to 93.1%. The distal radius showed the highest sensitivity and the proximal femur showed the lowest sensitivity, while the proximal femur presented the highest specificity and the distal tibia presented the lowest specificity. CONCLUSIONS Our TMD approach provides high diagnostic performance for detecting BME of the extremities. Therefore, this approach could be used routinely in the emergency setting.
Collapse
Affiliation(s)
- Marie Schierenbeck
- Department for Radiology and Neuroradiology, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany
| | - Martin Grözinger
- German Cancer Research Center, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Benjamin Reichardt
- Department of Interventional Radiology and Neuroradiology, Klinikum Hochsauerland, 59821 Arnsberg, Germany
| | - Olav Jansen
- Department for Radiology and Neuroradiology, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Sam Sedaghat
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Franco PN, Spasiano CM, Maino C, De Ponti E, Ragusi M, Giandola T, Terrani S, Peroni M, Corso R, Ippolito D. Principles and Applications of Dual-Layer Spectral CT in Gastrointestinal Imaging. Diagnostics (Basel) 2023; 13:diagnostics13101740. [PMID: 37238224 DOI: 10.3390/diagnostics13101740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The advance in technology allows for the development of different CT scanners in the field of dual-energy computed tomography (DECT). In particular, a recently developed detector-based technology can collect data from different energy levels, thanks to its layers. The use of this system is suited for material decomposition with perfect spatial and temporal registration. Thanks to post-processing techniques, these scanners can generate conventional, material decomposition (including virtual non-contrast (VNC), iodine maps, Z-effective imaging, and uric acid pair images) and virtual monoenergetic images (VMIs). In recent years, different studies have been published regarding the use of DECT in clinical practice. On these bases, considering that different papers have been published using the DECT technology, a review regarding its clinical application can be useful. We focused on the usefulness of DECT technology in gastrointestinal imaging, where DECT plays an important role.
Collapse
Affiliation(s)
- Paolo Niccolò Franco
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| | - Chiara Maria Spasiano
- Department of Diagnostic Radiology, Istituti Clinici Zucchi, Via Zucchi 24, 20900 Monza, Italy
| | - Cesare Maino
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| | - Elena De Ponti
- Department of Medical Physics, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| | - Maria Ragusi
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| | - Teresa Giandola
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| | | | - Marta Peroni
- Philips Healtcare, Viale Sarca 54, 20126 Milano, Italy
| | - Rocco Corso
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| | - Davide Ippolito
- Department of Diagnostic Radiology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
- School of Medicine, Università Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20100 Milano, Italy
| |
Collapse
|
9
|
Borges AP, Antunes C, Curvo-Semedo L. Pros and Cons of Dual-Energy CT Systems: "One Does Not Fit All". Tomography 2023; 9:195-216. [PMID: 36828369 PMCID: PMC9964233 DOI: 10.3390/tomography9010017] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Dual-energy computed tomography (DECT) uses different energy spectrum x-ray beams for differentiating materials with similar attenuation at a certain energy. Compared with single-energy CT, it provides images with better diagnostic performance and a potential reduction of contrast agent and radiation doses. There are different commercially available DECT technologies, with machines that may display two x-ray sources and two detectors, a single source capable of fast switching between two energy levels, a specialized detector capable of acquiring high- and low-energy data sets, and a filter splitting the beam into high- and low-energy beams at the output. Sequential acquisition at different tube voltages is an alternative approach. This narrative review describes the DECT technique using a Q&A format and visual representations. Physical concepts, parameters influencing image quality, postprocessing methods, applicability in daily routine workflow, and radiation considerations are discussed. Differences between scanners are described, regarding design, image quality variabilities, and their advantages and limitations. Additionally, current clinical applications are listed, and future perspectives for spectral CT imaging are addressed. Acknowledging the strengths and weaknesses of different DECT scanners is important, as these could be adapted to each patient, clinical scenario, and financial capability. This technology is undoubtedly valuable and will certainly keep improving.
Collapse
Affiliation(s)
- Ana P. Borges
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
- Correspondence:
| | - Célia Antunes
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Luís Curvo-Semedo
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
10
|
Toia GV, Mileto A, Wang CL, Sahani DV. Quantitative dual-energy CT techniques in the abdomen. Abdom Radiol (NY) 2022; 47:3003-3018. [PMID: 34468796 DOI: 10.1007/s00261-021-03266-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Advances in dual-energy CT (DECT) technology and spectral techniques are catalyzing the widespread implementation of this technology across multiple radiology subspecialties. The inclusion of energy- and material-specific datasets has ushered overall improvements in CT image contrast and noise as well as artifacts reduction, leading to considerable progress in radiologists' ability to detect and characterize pathologies in the abdomen. The scope of this article is to provide an overview of various quantitative clinical DECT applications in the abdomen and pelvis. Several of the reviewed applications have not reached mainstream clinical use and are considered investigational. Nonetheless awareness of such applications is critical to having a fully comprehensive knowledge base to DECT and fostering future clinical implementation.
Collapse
Affiliation(s)
- Giuseppe V Toia
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Mailbox 3252, Madison, WI, 53792, USA.
| | - Achille Mileto
- Department of Radiology, Mayo Clinic, 200 First Street, SW, Rochester, MN, 55905, USA
| | - Carolyn L Wang
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| |
Collapse
|
11
|
Dual-energy CT of acute bowel ischemia. Abdom Radiol (NY) 2022; 47:1660-1683. [PMID: 34191075 DOI: 10.1007/s00261-021-03188-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Acute bowel ischemia is a condition with high mortality and requires rapid intervention to avoid catastrophic outcomes. Swift and accurate imaging diagnosis is essential because clinical findings are commonly nonspecific. Conventional contrast enhanced CT of the abdomen has been the imaging modality of choice to evaluate suspected acute bowel ischemia. However, subtlety of image findings and lack of non-contrast or arterial phase images can make correct diagnosis challenging. Dual-energy CT provides valuable information toward assessing bowel ischemia. Dual-energy CT exploits the differential X-ray attenuation at two different photon energy levels to characterize the composition of tissues and reveal the presence or absence of faint intravenous iodinated contrast to improve reader confidence in detecting subtle bowel wall enhancement. With the same underlying technique, virtual non-contrast images can help to show non-enhancing hyperdense hemorrhage of the bowel wall in intravenous contrast-enhanced scans without the need to acquire actual non-contrast scans. Dual-energy CT derived low photon energy (keV) virtual monoenergetic images emphasize iodine contrast and provide CT angiography-like images from portal venous phase scans to better evaluate abdominal arterial patency. In Summary, dual-energy CT aids diagnosing acute bowel ischemia in multiple ways, including improving visualization of the bowel wall and mesenteric vasculature, revealing intramural hemorrhage in contrast enhanced scans, or possibly reducing intravenous contrast dose.
Collapse
|
12
|
Zhang X, Zhang G, Xu L, Bai X, Lu X, Yu S, Sun H, Jin Z. Utilisation of virtual non-contrast images and virtual mono-energetic images acquired from dual-layer spectral CT for renal cell carcinoma: image quality and radiation dose. Insights Imaging 2022; 13:12. [PMID: 35072807 PMCID: PMC8787008 DOI: 10.1186/s13244-021-01146-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/18/2021] [Indexed: 12/23/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is the most common renal malignant tumour. We evaluated the potential value and dose reduction of virtual non-contrast (VNC) images and virtual monoenergetic images (VMIs) from dual-layer spectral CT (DL-CT) in the diagnosis of RCC. Results Sixty-two patients with pathologically confirmed RCC who underwent contrast-enhanced DL-CT were retrospectively analysed. For the comparison between true non-contrast (TNC) and VNC images of the excretory phase, the attenuation, image noise, signal-to-noise ratio (SNR) and subjective image quality of tumours and different abdominal organs and tissues were evaluated. To compare corticomedullary phase images and low keV VMIs (40 to 100 keV) from the nephrographic phase, the attenuation, image noise, SNR and subjective lesion visibility of the tumours and renal arteries were evaluated. For the tumours, significant differences were not observed in attenuation, noise or SNR between TNC and VNC images (p > 0.05). For the abdominal organs and tissues, except for fat, the difference in attenuation was 100% within 15 HU and 96.78% within 10 HU. The subjective image quality of TNC and VNC images was equivalent (p > 0.05). The attenuation of lesions in 40 keV VMIs and renal arteries in 60 keV VMIs were similar to those in the corticomedullary images (p > 0.05). The subjective lesion visibility in low keV VMIs is slightly lower than that in the corticomedullary images (p < 0.05). Using VNC and VMIs instead of TNC and corticomedullary phase images could decrease the radiation dose by 50.5%. Conclusion VNC images and VMIs acquired from DL-CT can maintain good image quality and decrease the radiation dose for diagnosis of RCC.
Collapse
|
13
|
Rogers NB, Karam WN, Kumaravel M, Warner SJ, Gary JL. Dual-Energy CT to Diagnose Occult Femoral Neck Fracture in MRI-Contraindicated Patient: A Case Report. JBJS Case Connect 2021; 11:01709767-202112000-00013. [PMID: 34648465 DOI: 10.2106/jbjs.cc.21.00404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CASE A 79-year-old woman presented after a ground level fall with the inability to bear weight on her right hip. Radiographs and computed tomography (CT) imaging were negative for a femoral neck fracture. Her medical comorbidities precluded magnetic resonance imaging (MRI), so dual-energy CT with focused evaluation for bone edema was performed, identifying a femoral neck fracture that was stabilized surgically. CONCLUSION Dual-energy CT with processing for edema can successfully identify nondisplaced femoral neck fractures in MRI-contraindicated patients. This imaging modality could be useful for diagnosing femoral neck stress fractures and ipsilateral femoral neck fractures in patients sustaining high-energy femoral shaft fractures.
Collapse
Affiliation(s)
- Nathan B Rogers
- Orthopaedic Surgery Resident, McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Wade N Karam
- Orthopaedic Surgery Resident, McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Manickam Kumaravel
- Department of Radiology, McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Stephen J Warner
- Orthopaedic Trauma Service, McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Joshua L Gary
- Orthopaedic Trauma Service, Keck Medical Center of University of Southern California, Los Angeles, California
| |
Collapse
|
14
|
Campo CA, Czajkowski B, Sodickson AD. Advantages of Colour-Coded Dual-Energy CT Venography in Emergency Neuroimaging. Br J Radiol 2021; 94:20201309. [PMID: 34379491 DOI: 10.1259/bjr.20201309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The objective of this Pictorial Review is to describe the use of colour-coded Dual-Energy CT (DECT) to aid in the interpretation of CT Venography (CTV) of the head for emergent indications. We describe a DE CTV acquisition and post-processing technique that can be readily incorporated into clinical workflow. Colour-coded DE CTV may aid the identification and characterization of dural venous sinus abnormalities and other cerebrovascular pathologies, which can improve diagnostic confidence in emergent imaging settings.
Collapse
Affiliation(s)
- Camilo A Campo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.,Harvard Medical School, Boston, MA, USA
| | - Bryan Czajkowski
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Aaron D Sodickson
- Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
15
|
Yoo J, Lee JM, Yoon JH, Joo I, Lee ES, Jeon SK, Jang S. Comparison of low kVp CT and dual-energy CT for the evaluation of hypervascular hepatocellular carcinoma. Abdom Radiol (NY) 2021; 46:3217-3226. [PMID: 33713160 DOI: 10.1007/s00261-020-02888-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023]
Abstract
PURPOSE To compare lesion conspicuity and image quality of arterial phase images obtained from low kVp (90-kVp) and dual-energy (DE) scans for the evaluation of hypervascular hepatocellular carcinoma (HCC). METHODS This retrospective study included 229 patients with HCC who underwent either 90 kVp (n = 106) or DE scan (80- and 150-kVp with a tin filter) (n = 123) during the arterial phase. DE scans were reconstructed into a linearly blended image with a mixed ratio of 0.6 (60% 80kVp and 40% 150 kVp) and post-processed for 40 keV and 50 keV images. The contrast-to-noise ratio (CNR) of HCC to the liver and image noise was measured. Lesion conspicuity, liver parenchymal image quality, and overall image preference were assessed qualitatively by three independent radiologists. RESULTS DE 40 keV images had the highest CNR of HCC, and DE blended images had the lowest image noise among four image sets (p = 0.01 and p < 0.001, respectively). There was no significant difference in mean volume CT dose index and dose-length product between DE and low kVp scan (ps > 0.05). For qualitative analyses, DE blended images had the highest scores for image quality and overall image preference (ps < 0.001). CONCLUSION At an equal radiation dose, DE 40 keV showed higher CNR of HCC and DE blended image showed higher image quality and image preference compared with low kVp CT.
Collapse
Affiliation(s)
- Jeongin Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
- Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, Daehak-ro 101, Jongno-gu, Seoul, 03080, Korea.
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Eun Sun Lee
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Siwon Jang
- Department of Radiology, Seoul National University Boramae Hospital, Seoul, Korea
| |
Collapse
|
16
|
Kayano S. [5. Principles of Dual-energy CT]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:515-523. [PMID: 34011795 DOI: 10.6009/jjrt.2021_jsrt_77.5.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shingo Kayano
- Department of Radiological Technology, Tohoku University Hospital
| |
Collapse
|
17
|
Spectral CT in clinical routine imaging of neuroendocrine neoplasms. Clin Radiol 2021; 76:348-357. [PMID: 33610290 DOI: 10.1016/j.crad.2020.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
AIM To evaluate the potential of new spectral computed tomography (SCT)-based tools in patients with neuroendocrine neoplasms (NEN). MATERIAL AND METHODS Eighty-eight consecutive patients with NENs were included prospectively. The patients underwent multiphase CT with spectral and standard mode. The signal-to-noise ratio (SNR)/contrast-to-noise-ratio (CNR)tumour-to-liver, iodine concentrations (ICs, total tumour/hotspot) and attenuation slopes in virtual monochromatic images (VMIs) were used to assess NEN-specific SCT values in primary tumours and metastatic lesions and investigate a possible lesion contrast improvement as well as possible correlations of SCT parameters to primary tumour location and tumour grade. Furthermore, the usability of SCT parameters to differentiate between the primary tumour and metastatic lesions, and to predict tumour response after 6-months follow-up was analyzed. The applied dose of spectral and standard mode was compared intra-individually. RESULTS SNR/CNRtumour-to-liver significantly increased in low-energy VMIs. NENs showed significant differences in ICs between primary and metastatic lesions for both absolute and normalised values (p<0.001) regardless of whether the total tumour or the hotspot was measured. There was also a significant difference in the attenuation slope (p<0.001). No significant correlations were found between SCT and tumour grade. A tumour response prediction by SCT parameters was not possible. The applied dose was comparable between the scan modes. CONCLUSION SCT was comparable regarding applied dose, improved tumour contrast, and contributed to differentiation between primary NEN and metastasis.
Collapse
|
18
|
McCollough CH, Boedeker K, Cody D, Duan X, Flohr T, Halliburton SS, Hsieh J, Layman RR, Pelc NJ. Principles and applications of multienergy CT: Report of AAPM Task Group 291. Med Phys 2020; 47:e881-e912. [DOI: 10.1002/mp.14157] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/11/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Kirsten Boedeker
- Canon (formerly Toshiba) Medical Systems Corporation 1440 Warnall Ave Los Angeles CA 90024 USA
| | - Dianna Cody
- University of Texas, M.D. Anderson Cancer Center 7163 Spanish Grant Galveston TX 77554‐7756 USA
| | - Xinhui Duan
- Southwestern Medical Center University of Texas 5323 Harry Hines Blvd Dallas TX 75390‐9071 USA
| | - Thomas Flohr
- Siemens Healthcare GmbH Siemensstr. 3 Forchheim BY 91031 Germany
| | | | - Jiang Hsieh
- GE Healthcare Technologies 3000 N. Grandview Blvd. W-1190 Waukesha WI 53188 USA
| | - Rick R. Layman
- University of Texas, M.D. Anderson Cancer Center 7163 Spanish Grant Galveston TX 77554‐7756 USA
| | - Norbert J. Pelc
- Stanford University 443 Via Ortega, Room 203 Stanford CA 94305‐4125 USA
| |
Collapse
|
19
|
El Kayal N, Lennartz S, Ekdawi S, Holz J, Slebocki K, Haneder S, Wybranski C, Mohallel A, Eid M, Grüll H, Persigehl T, Borggrefe J, Maintz D, Heneweer C. Value of spectral detector computed tomography for assessment of pancreatic lesions. Eur J Radiol 2019; 118:215-222. [DOI: 10.1016/j.ejrad.2019.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023]
|
20
|
Reher T. Dual-Energy CT and Radiation Dose. J Am Coll Radiol 2019; 17:95-96. [PMID: 31400315 DOI: 10.1016/j.jacr.2019.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Thomas Reher
- Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|