1
|
Sun R, Lai Y, Zhang Q, Chen Y, Lai Z, Duan G, Wu Y, Liu Z, Zhang Y, Li S, Zhou K, Lin S, Qin H, Wu R, Chen Z, Liang L, Deng D. Altered functional connectivity of thalamic subregions in premenstrual syndrome. J Affect Disord 2025; 379:721-729. [PMID: 40081599 DOI: 10.1016/j.jad.2025.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE This article aims to explore the relationship between the symptoms of PMS and changes of thalamic subregions. METHODS AND MATERIALS 71 patients diagnosed with PMS and 81 healthy controls (HCs) were included in the study. Participant status was determined using the Daily Record of Severity of Problems (DRSP) scale. All participants underwent functional and structural scans, and peripheral venous blood samples were collected to assess the cytokine and hormone levels. Resting-state functional connectivity (rsFC) and grey matter volume (GMV) of thalamic subregions were calculated from the MRI data. Correlation analyses were then conducted to investigate the associations between these neuroimaging indicators and the clinical features of PMS. RESULTS The rsFC analysis revealed that PMS patients showed lower rsFC between the middle frontal gyrus (MFG) and the left thalamic medial posterior and ventral nuclei while higher rsFC between the insula and the left lateral posterior(LP) nuclei compared to HCs. Additionally, the findings demonstrated a correlation between the DRSP scores and rsFC, while the DRSP scores were positively correlated with (TNF-α) levels. Furthermore, the rsFC was found to be correlated with part of the inflammatory cytokines. CONCLUSION The findings suggest that the observed functional connectivity alterations of the thalamus subregions are associated with the score of DRSP. This relationship appears to be largely dependent on the inflammation affecting the thalamic neural circuit, particularly the thalamic-MFG-insula network.
Collapse
Affiliation(s)
- Ruijing Sun
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Radiology, China
| | - YinQi Lai
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Radiology, China
| | - Qingping Zhang
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Radiology, China
| | - Ya Chen
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Radiology, China
| | - Ziyan Lai
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Radiology, China
| | - Gaoxiong Duan
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Radiology, China
| | - Yuejuan Wu
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Neurology, China
| | - Zhen Liu
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Gynaecology, China
| | - Yan Zhang
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Radiology, China
| | - Shanshan Li
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Radiology, China
| | - Kaixuan Zhou
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Radiology, China
| | - Shihuan Lin
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Radiology, China
| | - Haixia Qin
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Radiology, China
| | - Rongcai Wu
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Laboratory Medicine, China
| | - Zhizhong Chen
- The People's Hospital of Guangxi Zhuang Autonomous Region, Joint Inspection Center of Precision Medicine, China
| | - Lingyan Liang
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Radiology, China
| | - Demao Deng
- The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Radiology, China.
| |
Collapse
|
2
|
Chen D, Yang X, Liang Y, Huang C, Zhang S, Li Y, Li Y, Li X, Mu W, Zhang D, Ma L. A free association semantic task for fNIRS-based perinatal depression assessment. Front Neurol 2025; 15:1491923. [PMID: 39882372 PMCID: PMC11778336 DOI: 10.3389/fneur.2024.1491923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Perinatal depression (PD) is a highly prevalent psychological disorder that has a detrimental effect on infant and maternal physical and mental health, but effective and objective assessment of PD is still insufficient. In recent years, the functional near-infrared spectroscopy (fNIRS) has been acknowledged as an effective non-invasive tool for clinical assessment of depression. This study proposed a free association semantic task (FAST) paradigm for fNIRS-based assessment of PD. To better address the emotion characteristics of PD, the participants are required to generate a dynamic concept chain based on positive, negative or neutral seed words, while 48-channel fNIRS recordings over frontal and bilateral temporal regions. Results from twenty-two late-pregnant women revealed that, the oxyhemoglobin (oxy-Hb) changes during the FAST with the positive and negative seed words over the frontal region were correlated with PD severity, which was different from the correlation patterns in the FAST with neutral seed word and the classical verbal fluency test (VFT). Furthermore, distinct correlation patterns were also observed in the FAST with the positive and negative seed words, manifested in fNIRS channels corresponding to the right dorsolateral prefrontal cortex (DLPFC) and right inferior frontal gyrus (IFG), respectively. Moreover, regression analyses showed that the FAST with positive and negative seed words can well explain the severity of PD. Our findings suggest the proposed FAST paradigm as a promising approach for PD assessment.
Collapse
Affiliation(s)
- Danni Chen
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Xuanjin Yang
- National Clinical Research Center for Obstetric & Gynecologic Diseases Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Liang
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Chen Huang
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Suhan Zhang
- National Clinical Research Center for Obstetric & Gynecologic Diseases Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yini Li
- National Clinical Research Center for Obstetric & Gynecologic Diseases Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Li
- National Clinical Research Center for Obstetric & Gynecologic Diseases Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofei Li
- School of Humanities and Social Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenting Mu
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Dan Zhang
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Liangkun Ma
- National Clinical Research Center for Obstetric & Gynecologic Diseases Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Dhar D, Chaturvedi M, Sehwag S, Malhotra C, Udit, Saraf C, Chakrabarty M. Gray Matter Volume Correlates of Co-Occurring Depression in Autism Spectrum Disorder. J Autism Dev Disord 2024:10.1007/s10803-024-06602-0. [PMID: 39441477 DOI: 10.1007/s10803-024-06602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Autism Spectrum Disorder (ASD) involves neurodevelopmental syndromes with significant deficits in communication, motor behaviors, emotional and social comprehension. Often, individuals with ASD exhibit co-occurring depression characterized by a change in mood and diminished interest in previously enjoyable activities. Due to communicative challenges and a lack of appropriate assessments in this cohort, co-occurring depression can often go undiagnosed during routine clinical examinations and, thus, its management neglected. The literature on co-occurring depression in adults with ASD is limited. Therefore, understanding the neural basis of the co-occurring psychopathology of depression in ASD is crucial for identifying brain-based markers for its timely and effective management. Using structural MRI and phenotypic data from the Autism Brain Imaging Data Exchange (ABIDE II) repository, we examined the pattern of relationship regional grey matter volume (rGMV) has with co-occurring depression and autism severity within regions of a priori interest in adults with ASD (n = 44; age = 17-28 years). Further, we performed an exploratory analysis of the rGMV differences between ASD and matched typically developed (TD, n = 39; age = 18-31 years) samples. The severity of co-occurring depression correlated negatively with the rGMV of the right thalamus. Additionally, a significant interaction was evident between the severity of co-occurring depression and core ASD symptoms towards explaining the rGMV in the left cerebellum crus II. The results further the understanding of the neurobiological underpinnings of co-occurring depression in adults with ASD towards exploring neuroimaging-based biomarkers in the same cohort.
Collapse
Affiliation(s)
- Dolcy Dhar
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Manasi Chaturvedi
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
- Centre for Design and New Media, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
- School of Information, University of Texas at Austin, Texas 78712, USA
| | - Saanvi Sehwag
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Chehak Malhotra
- Department of Mathematics, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Udit
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Chetan Saraf
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Mrinmoy Chakrabarty
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India.
- Centre for Design and New Media, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India.
| |
Collapse
|
4
|
Fu X, Chen Y, Luo X, Ide JS, Li CSR. Gray matter volumetric correlates of the polygenic risk of depression: A study of the Human Connectome Project data. Eur Neuropsychopharmacol 2024; 87:2-12. [PMID: 38936229 DOI: 10.1016/j.euroneuro.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Genetic factors confer risks for depression. Understanding the neural endophenotypes, including brain morphometrics, of genetic predisposition to depression would help in unraveling the pathophysiology of depression. We employed voxel-based morphometry (VBM) to examine how gray matter volumes (GMVs) were correlated with the polygenic risk score (PRS) for depression in 993 young adults of the Human Connectome Project. The phenotype of depression was quantified with a DSM-oriented scale of the Achenbach Adult Self-Report. The PRS for depression was computed for each subject using the Psychiatric Genomics Association Study as the base sample. In multiple regression with age, sex, race, drinking severity, and total intracranial volume as covariates, regional GMVs in positive correlation with the PRS were observed in bilateral hippocampi and right gyrus rectus. Regional GMVs in negative correlation with the PRS were observed in a wide swath of brain regions, including bilateral frontal and temporal lobes, anterior cingulate cortex, thalamus, lingual gyri, cerebellum, and the left postcentral gyrus, cuneus, and parahippocampal gyrus. We also found sex difference in anterior cingulate volumes in manifesting the genetic risk of depression. In addition, the GMV of the right cerebellum crus I partially mediated the link from PRS to depression severity. These findings add to the literature by highlighting 1) a more diverse pattern of the volumetric markers of depression, with most regions showing lower but others higher GMVs in association with the genetic risks of depression, and 2) the cerebellar GMV as a genetically informed neural phenotype of depression, in neurotypical individuals.
Collapse
Affiliation(s)
- Xiaoya Fu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA; Wu Tsai Institute, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
5
|
Liloia D, Zamfira DA, Tanaka M, Manuello J, Crocetta A, Keller R, Cozzolino M, Duca S, Cauda F, Costa T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci Biobehav Rev 2024; 164:105791. [PMID: 38960075 DOI: 10.1016/j.neubiorev.2024.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Despite over two decades of neuroimaging research, a unanimous definition of the pattern of structural variation associated with autism spectrum disorder (ASD) has yet to be found. One potential impeding issue could be the sometimes ambiguous use of measurements of variations in gray matter volume (GMV) or gray matter concentration (GMC). In fact, while both can be calculated using voxel-based morphometry analysis, these may reflect different underlying pathological mechanisms. We conducted a coordinate-based meta-analysis, keeping apart GMV and GMC studies of subjects with ASD. Results showed distinct and non-overlapping patterns for the two measures. GMV decreases were evident in the cerebellum, while GMC decreases were mainly found in the temporal and frontal regions. GMV increases were found in the parietal, temporal, and frontal brain regions, while GMC increases were observed in the anterior cingulate cortex and middle frontal gyrus. Age-stratified analyses suggested that such variations are dynamic across the ASD lifespan. The present findings emphasize the importance of considering GMV and GMC as distinct yet synergistic indices in autism research.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Denisa Adina Zamfira
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Szeged, Hungary
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Mauro Cozzolino
- Department of Humanities, Philosophical and Educational Sciences, University of Salerno, Fisciano, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
6
|
Zhou T, Zhao J, Ma Y, He L, Ren Z, Yang K, Tang J, Liu J, Luo J, Zhang H. Association of cognitive impairment with the interaction between chronic kidney disease and depression: findings from NHANES 2011-2014. BMC Psychiatry 2024; 24:312. [PMID: 38658863 PMCID: PMC11044494 DOI: 10.1186/s12888-024-05769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Cognitive impairment (CoI), chronic kidney disease (CKD), and depression are prevalent among older adults and are interrelated, imposing a significant disease burden. This study evaluates the association of CKD and depression with CoI and explores their potential interactions. METHOD Data for this study were sourced from the 2011-2014 National Health and Nutritional Examination Survey (NHANES). Multiple binary logistic regression models assessed the relationship between CKD, depression, and CoI while controlling for confounders. The interactions were measured using the relative excess risk of interaction (RERI), the attributable proportion of interaction (AP), and the synergy index (S). RESULTS A total of 2,666 participants (weighted n = 49,251,515) were included in the study, of which 700 (16.00%) had CoI. After adjusting for confounding factors, the risk of CoI was higher in patients with CKD compared to non-CKD participants (odds ratio [OR] = 1.49, 95% confidence interval [CI]:1.12-1.99). The risk of CoI was significantly increased in patients with depression compared to those without (OR = 2.29, 95% CI: 1.73-3.03). Furthermore, there was a significant additive interaction between CKD and depression in terms of the increased risk of CoI (adjusted RERI = 2.01, [95% CI: 0.31-3.71], adjusted AP = 0.50 [95% CI: 0.25-0.75], adjusted S = 2.97 [95% CI: 1.27-6.92]). CONCLUSION CKD and depression synergistically affect CoI, particularly when moderate-to-severe depression co-occurs with CKD. Clinicians should be mindful of the combined impact on patients with CoI. Further research is needed to elucidate the underlying mechanisms and assess the effects specific to different CKD stages.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan Road, Nanchong city, Sichuan Province, 637000, China
| | - Jiayu Zhao
- Department of physician, Nanchong Psychosomatic Hospital, Nanchong, China
| | - Yimei Ma
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan Road, Nanchong city, Sichuan Province, 637000, China
| | - Linqian He
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan Road, Nanchong city, Sichuan Province, 637000, China
| | - Zhouting Ren
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan Road, Nanchong city, Sichuan Province, 637000, China
| | - Kun Yang
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan Road, Nanchong city, Sichuan Province, 637000, China
| | - Jincheng Tang
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan Road, Nanchong city, Sichuan Province, 637000, China
| | - Jiali Liu
- Department of Clinical Medicine, North Sichuan Medical University, Nanchong, China
| | - Jiaming Luo
- Mental Health Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Psychiatry, North Sichuan Medical College, Nanchong, China
| | - Heping Zhang
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan Road, Nanchong city, Sichuan Province, 637000, China.
| |
Collapse
|
7
|
Liang J, Yu Q, Liu Y, Qiu Y, Tang R, Yan L, Zhou P. Gray matter abnormalities in patients with major depressive disorder and social anxiety disorder: a voxel-based meta-analysis. Brain Imaging Behav 2023; 17:749-763. [PMID: 37725323 PMCID: PMC10733224 DOI: 10.1007/s11682-023-00797-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Major depressive and social anxiety disorders have a high comorbidity rate and similar cognitive patterns. However, their unique and shared neuroanatomical characteristics have not been fully identified. METHODS Voxel-based morphometric studies comparing gray matter volume between patients with major depressive disorder/social anxiety disorder and healthy controls were searched using 4 electronic databases from the inception to March 2022. Stereotactic data were extracted and subsequently tested for convergence and differences using activation likelihood estimation. In addition, based on the result of the meta-analysis, behavioral analysis was performed to assess the functional roles of the regions affected by major depressive disorder and/or social anxiety disorder. RESULTS In total, 34 studies on major depressive disorder with 2873 participants, and 10 studies on social anxiety disorder with 1004 subjects were included. Gray matter volume conjunction analysis showed that the right parahippocampal gyrus region, especially the amygdala, was smaller in patients compared to healthy controls. The contrast analysis of major depressive disorder and social anxiety disorder revealed lower gray matter volume in the right lentiform nucleus and medial frontal gyrus in social anxiety disorder and lower gray matter volume in the left parahippocampal gyrus in major depressive disorder. Behavioral analysis showed that regions with lower gray matter volume in social anxiety disorder are strongly associated with negative emotional processes. CONCLUSIONS The shared and unique patterns of gray matter volume abnormalities in patients with major depressive and social anxiety disorder may be linked to the underlying neuropathogenesis of these mental illnesses and provide potential biomarkers. PROSPERO registration number: CRD42021277546.
Collapse
Affiliation(s)
- Junquan Liang
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, 518101, Guangdong, China
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoyun Yu
- Jingzhou Traditional Chinese Medicine Hospital, Jingzhou, Hubei, China
| | - Yuchen Liu
- Shenzhen Luohu District Hospital of TCM, Shenzhen, Guangdong, China
| | - Yidan Qiu
- Centre for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, Guangdong, China
| | - Rundong Tang
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, 518101, Guangdong, China
| | - Luda Yan
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, 518101, Guangdong, China
| | - Peng Zhou
- Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical Medical School of Guangzhou University of Chinese Medicine, Shenzhen, 518101, Guangdong, China.
| |
Collapse
|
8
|
Zhang E, Hauson AO, Pollard AA, Meis B, Lackey NS, Carson B, Khayat S, Fortea L, Radua J. Lateralized grey matter volume changes in adolescents versus adults with major depression: SDM-PSI meta-analysis. Psychiatry Res Neuroimaging 2023; 335:111691. [PMID: 37837793 DOI: 10.1016/j.pscychresns.2023.111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 10/16/2023]
Abstract
The current study is the first meta-analysis to examine grey matter volume (GMV) changes in adolescents and across the lifespan in major depressive disorder (MDD). Seed-based d mapping-with permutation of subject images (SDM-PSI) has advantages over previous coordinate-based meta-analytical methods (CBMA), such as reducing bias (via the MetaNSUE algorithm) and including non-statistically significant unreported effects. SDM-PSI was used to analyze 105 whole-brain GMV voxel-based morphometry (VBM) studies comparing 6,530 individuals with MDD versus 6,821 age-matched healthy controls (HC). A laterality effect was observed in which adults with MDD showed lower GMV than adult HC in left fronto-temporo-parietal structures (superior temporal gyrus, insula, Rolandic operculum, and inferior frontal gyrus). However, these abnormalities were not statistically significant for adolescent MDD versus adolescent HC. Instead, adolescent MDD showed lower GMV than adult MDD in right temporo-parietal structures (angular gyrus and middle temporal gyrus). These regional differences may be used as potential biomarkers to predict and monitor treatment outcomes as well as to choose the most effective treatments in adolescents versus adults. Finally, due to the paucity of youth, older adult, and longitudinal studies, future studies should attempt to replicate these GMV findings and examine whether they correlate with treatment response and illness severity.
Collapse
Affiliation(s)
- Emily Zhang
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Alexander O Hauson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America; Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America.
| | - Anna A Pollard
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Benjamin Meis
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Nicholas S Lackey
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Bryce Carson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Sarah Khayat
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Li L, Jiang J, Wu B, Lin J, Roberts N, Sweeney JA, Gong Q, Jia Z. Distinct gray matter abnormalities in children/adolescents and adults with history of childhood maltreatment. Neurosci Biobehav Rev 2023; 153:105376. [PMID: 37643682 DOI: 10.1016/j.neubiorev.2023.105376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Gray matter (GM) abnormalities have been reported in both adults and children/adolescents with histories of childhood maltreatment (CM). A comparison of effects in youth and adulthood may be informative regarding life-span effects of CM. Voxel-wise meta-analyses of whole-brain voxel-based morphometry studies were conducted in all datasets and age-based subgroups respectively, followed by a quantitative comparison of the subgroups. Thirty VBM studies (31 datasets) were included. The pooled meta-analysis revealed increased GM in left supplementary motor area, and reduced GM in bilateral cingulate/paracingulate gyri, left occipital lobe, and right middle frontal gyrus in maltreated individuals compared to the controls. Maltreatment-exposed youth showed less GM in the cerebellum, and greater GM in bilateral middle cingulate/paracingulate gyri and bilateral visual cortex than maltreated adults. Opposite GM alterations in bilateral middle cingulate/paracingulate gyri were found in maltreatment-exposed adults (decreased) and children/adolescents (increased). Our findings demonstrate different patterns of GM changes in youth closer to maltreatment events than those seen later in life, suggesting detrimental effects of CM on the developmental trajectory of brain structure.
Collapse
Affiliation(s)
- Lei Li
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jing Jiang
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China; Department of Radiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jinping Lin
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| | - Zhiyun Jia
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China; Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Mo D, Guo P, Hu S, Tao R, Zhong H, Liu H. Characteristics and correlation of gray matter volume and somatic symptoms in adolescent patients with depressive disorder. Front Psychiatry 2023; 14:1197854. [PMID: 37559918 PMCID: PMC10407247 DOI: 10.3389/fpsyt.2023.1197854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Background Adolescent patients with depressive disorders commonly exhibit somatic symptoms, which have a significant negative impact on their treatment and prognosis. Despite this, specific brain imaging characteristics of these symptoms have been poorly studied. Methods The Hamilton Depression Rating scale (HAMD-17), Children's Functional Somatization scale (CSI), and Toronto Alexithymia scale (TAS) were used to evaluate the clinical symptoms of adolescent depression. We analyzed the correlation between brain gray matter volume (GMV) and clinical symptoms in adolescent patients with depression and somatic symptoms. Results The depression subgroups with and without functional somatic symptoms (FSS) had higher scores on the HAMD-17, CSI, and TAS than the normal control group. The group with FSS had higher HAMD-17, CSI, and TAS scores than the depression group without FSS (p < 0.05). CSI and TAS scores were positively correlated (r = 0.378, p < 0.05). The GMV of the right supplementary motor area was higher in the depression groups with and without FSSs than in the normal control group, and the GMV was higher in the group without FSS than in the group with FSS (F = 29.394, p < 0.05). The GMV of the right supplementary motor area was negatively correlated with CSI in the depressed group with FSS (r = -0.376, p < 0.05). In the group with depression exhibiting FSS, CSI scores were positively correlated with GMV of the middle occipital gyrus (pr = 0.665, p = 0.0001), and TAS scores were positively correlated with GMV of the caudate nucleus (pr = 0.551, p = 0.001). Conclusion Somatic symptoms of adolescent depressive disorder are associated with alexithymia; moreover, somatic symptoms and alexithymia in adolescent patients with depressive disorders are correlated with GMV changes in different brain regions.
Collapse
Affiliation(s)
- Daming Mo
- Department of Psychiatry, Chao hu Hospital of Anhui Medical University, Hefei, China
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Pengfei Guo
- Department of Psychiatry, Hangzhou Seventh People’s Hospital, Hangzhou, China
| | - Shuwen Hu
- Clinical Psychological Science, Anhui Provincial Children’s Hospital, Hefei, China
| | - Rui Tao
- Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Hui Zhong
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Huanzhong Liu
- Department of Psychiatry, Chao hu Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Chen C, Khanthiyong B, Charoenlappanit S, Roytrakul S, Reynolds GP, Thanoi S, Nudmamud-Thanoi S. Cholinergic-estrogen interaction is associated with the effect of education on attenuating cognitive sex differences in a Thai healthy population. PLoS One 2023; 18:e0278080. [PMID: 37471329 PMCID: PMC10358962 DOI: 10.1371/journal.pone.0278080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/30/2023] [Indexed: 07/22/2023] Open
Abstract
The development of human brain is shaped by both genetic and environmental factors. Sex differences in cognitive function have been found in humans as a result of sexual dimorphism in neural information transmission. Numerous studies have reported the positive effects of education on cognitive functions. However, little work has investigated the effect of education on attenuating cognitive sex differences and the neural mechanisms behind it based on healthy population. In this study, the Wisconsin Card Sorting Test (WCST) was employed to examine sex differences in cognitive function in 135 Thai healthy subjects, and label-free quantitative proteomic method and bioinformatic analysis were used to study sex-specific neurotransmission-related protein expression profiles. The results showed sex differences in two WCST sub-scores: percentage of Total corrects and Total errors in the primary education group (Bayes factor>100) with males performed better, while such differences eliminated in secondary and tertiary education levels. Moreover, 11 differentially expressed proteins (DEPs) between men and women (FDR<0.1) were presented in both education groups, with majority of them upregulated in females. Half of those DEPs interacted directly with nAChR3, whereas the other DEPs were indirectly connected to the cholinergic pathways through interaction with estrogen. These findings provided a preliminary indication that a cholinergic-estrogen interaction relates to, and might underpin, the effect of education on attenuating cognitive sex differences in a Thai healthy population.
Collapse
Affiliation(s)
- Chen Chen
- Medical Science Graduate Program, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | | | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Gavin P. Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Mae Ka, Phayao, Thailand
| | - Sutisa Nudmamud-Thanoi
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
12
|
Han S, Zheng R, Li S, Liu L, Wang C, Jiang Y, Wen M, Zhou B, Wei Y, Pang J, Li H, Zhang Y, Chen Y, Cheng J. Progressive brain structural abnormality in depression assessed with MR imaging by using causal network analysis. Psychol Med 2023; 53:2146-2155. [PMID: 34583785 DOI: 10.1017/s0033291721003986] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND As a neuroprogressive illness, depression is accompanied by brain structural abnormality that extends to many brain regions. However, the progressive structural alteration pattern remains unknown. METHODS To elaborate the progressive structural alteration of depression according to illness duration, we recruited 195 never-treated first-episode patients with depression and 130 healthy controls (HCs) undergoing T1-weighted MRI scans. Voxel-based morphometry method was adopted to measure gray matter volume (GMV) for each participant. Patients were first divided into three stages according to the length of illness duration, then we explored stage-specific GMV alterations and the causal effect relationship between them using causal structural covariance network (CaSCN) analysis. RESULTS Overall, patients with depression presented stage-specific GMV alterations compared with HCs. Regions including the hippocampus, the thalamus and the ventral medial prefrontal cortex (vmPFC) presented GMV alteration at onset of illness. Then as the illness advanced, others regions began to present GMV alterations. These results suggested that GMV alteration originated from the hippocampus, the thalamus and vmPFC then expanded to other brain regions. The results of CaSCN analysis revealed that the hippocampus and the vmPFC corporately exerted causal effect on regions such as nucleus accumbens, the precuneus and the cerebellum. In addition, GMV alteration in the hippocampus was also potentially causally related to that in the dorsolateral frontal gyrus. CONCLUSIONS Consistent with the neuroprogressive hypothesis, our results reveal progressive morphological alteration originating from the vmPFC and the hippocampus and further elucidate possible details about disease progression of depression.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Mengmeng Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Jianyue Pang
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hengfen Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| |
Collapse
|
13
|
Long X, Li L, Wang X, Cao Y, Wu B, Roberts N, Gong Q, Kemp GJ, Jia Z. Gray matter alterations in adolescent major depressive disorder and adolescent bipolar disorder. J Affect Disord 2023; 325:550-563. [PMID: 36669567 DOI: 10.1016/j.jad.2023.01.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Gray matter volume (GMV) alterations in several emotion-related brain areas are implicated in mood disorders, but findings have been inconsistent in adolescents with major depressive disorder (MDD) or bipolar disorder (BD). METHODS We conducted a comprehensive meta-analysis of 35 region-of-interest (ROI) and 18 whole-brain voxel-based morphometry (VBM) MRI studies in adolescent MDD and adolescent BD, and indirectly compared the results in the two groups. The effects of age, sex, and other demographic and clinical scale scores were explored using meta-regression analysis. RESULTS In the ROI meta-analysis, right putamen volume was decreased in adolescents with MDD, while bilateral amygdala volume was decreased in adolescents with BD compared to healthy controls (HC). In the whole-brain VBM meta-analysis, GMV was increased in right middle frontal gyrus and decreased in left caudate in adolescents with MDD compared to HC, while in adolescents with BD, GMV was increased in left superior frontal gyrus and decreased in limbic regions compared with HC. MDD vs BD comparison revealed volume alteration in the prefrontal-limbic system. LIMITATION Different clinical features limit the comparability of the samples, and small sample size and insufficient clinical details precluded subgroup analysis or meta-regression analyses of these variables. CONCLUSIONS Distinct patterns of GMV alterations in adolescent MDD and adolescent BD could help to differentiate these two populations and provide potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Lei Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xiuli Wang
- Department of Clinical Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu 610041, Sichuan, PR China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China
| | - Baolin Wu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Department of Radiology, West China Xiamen Hospital of Sichuan University, 699Jinyuan Xi Road, Jimei District, 361021 Xiamen, Fujian, PR China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Center (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
14
|
Brenner AM, Claudino FCDA, Burin LM, Scheibe VM, Padilha BL, de Souza GR, Duarte JA, da Rocha NS. Structural magnetic resonance imaging findings in severe mental disorders adult inpatients: A systematic review. Psychiatry Res Neuroimaging 2022; 326:111529. [PMID: 36058133 DOI: 10.1016/j.pscychresns.2022.111529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
Abstract
In severe presentations, major depressive disorder (MDD), schizophrenia (SZ), and bipolar disorder (BD) can be categorized as severe mental disorders (SMD). Our aim is to evaluate structural magnetic resonance imaging and computed tomography findings in adult inpatients diagnosed with SMD and hospitalized at psychiatric wards. PubMed, Embase, PsycInfo, Cochrane Library, and Web of Science were searched up to May 27th, 2021. Articles were screened and extracted by two independent groups, with third-party raters for discrepancies. Quality of evidence was evaluated with the Newcastle-Ottawa Scale. Synthesis was made by qualitative analysis. This study was registered on PROSPERO (CRD42020171718) and followed the PRISMA protocol. 35 studies were included, of which none was considered to likely introduce bias in our analyses. Overlapping areas in MDD, SZ, and Affective Psychosis (AP) patients, that include BD and MDD with psychotic features, are presented in the inferior temporal and cingulate gyri. MDD and SZ had commonly affected areas in the inferior and middle frontal gyri, transverse temporal gyrus, insula, and hippocampus. SZ and AP had commonly affected areas in the temporal pole. Overlapping affected areas among SMD patients are reported, but the heterogeneity of studies' designs and findings are still a limitation for clinically relevant guidelines.
Collapse
Affiliation(s)
- Augusto Mädke Brenner
- Center for Clinical Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; School of Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Felipe Cesar de Almeida Claudino
- Center for Clinical Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luísa Monteiro Burin
- Center for Clinical Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Victória Machado Scheibe
- Center for Clinical Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; School of Medicine, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil
| | - Barbara Larissa Padilha
- Center for Clinical Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gianfranco Rizzotto de Souza
- Center for Clinical Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; School of Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Juliana Avila Duarte
- Center for Clinical Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Neusa Sica da Rocha
- Center for Clinical Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-graduation Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Xue K, Liang S, Yang B, Zhu D, Xie Y, Qin W, Liu F, Zhang Y, Yu C. Local dynamic spontaneous brain activity changes in first-episode, treatment-naïve patients with major depressive disorder and their associated gene expression profiles. Psychol Med 2022; 52:2052-2061. [PMID: 33121546 DOI: 10.1017/s0033291720003876] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a common debilitating disorder characterized by impaired spontaneous brain activity, yet little is known about its alterations in dynamic properties and the molecular mechanisms associated with these changes. METHODS Based on the resting-state functional MRI data of 65 first-episode, treatment-naïve patients with MDD and 66 healthy controls, we compared dynamic regional homogeneity (dReHo) of spontaneous brain activity between the two groups, and we investigated gene expression profiles associated with dReHo alterations in MDD by leveraging transcriptional data from the Allen Human Brain Atlas and weighted gene co-expression network analysis. RESULTS Compared with healthy controls, patients with MDD consistently showed reduced dReHo in both fusiform gyri and in the right temporal pole and hippocampus. The expression profiles of 16 gene modules were correlated with dReHo alterations in MDD. These gene modules were enriched for various biological process terms, including immune, synaptic signalling, ion channels, mitochondrial function and protein metabolism, and were preferentially expressed in different cell types. CONCLUSIONS Patients with MDD have reduced dReHo in brain areas associated with emotional and cognitive regulation, and these changes may be related to complex polygenetic and polypathway mechanisms.
Collapse
Affiliation(s)
- Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Sixiang Liang
- Tianjin Anding Hospital, Tianjin 300222, China
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Bingbing Yang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yong Zhang
- Tianjin Anding Hospital, Tianjin 300222, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
16
|
Wu Z, Wang C, Dai Y, Xiao C, Zhang N, Zhong Y. The effect of early cognitive behavior therapy for first-episode treatment-naive major depressive disorder. J Affect Disord 2022; 308:31-38. [PMID: 35398109 DOI: 10.1016/j.jad.2022.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/21/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is one of the most prevalent psychiatric disorders. Cognitive behavioral therapy (CBT) has been widely applied in MDD treatment, yet mechanistic understanding toward CBT remains limited. METHODS Twenty-two MDD patients and twenty-seven matched healthy controls were enrolled. Patients with MDD were given structural early CBT treatment once a week for 6 weeks. Cognitive reconstruction, emotional transformation and behavioral training were included in the treatment process. Local and long-range brain functional connectivity densities (FCD) were obtained to identify abnormal connectivity of MDD by using resting-state functional magnetic resonance imaging (RS-fMRI). RESULTS After CBT treatment, MDD patients showed increased FCD in the bilateral dorsolateral prefrontal cortex (dlPFC). Functional connectivity (FC) was used to further explore the role of dlPFC in CBT. The results revealed that by the completion of CBT treatment course, the FC between the dlPFC and hippocampus was enhanced. CONCLUSIONS Cognitive behavioral therapy played significant role in alleviating depressive symptoms of MDD patients, evidenced by improved brain connectivity between dlPFC and hippocampus. Further study of dlPFC pathophysiology is needed to better understand these abnormalities in patients with depressive symptoms and the effect of early CBT treatment.
Collapse
Affiliation(s)
- Zhou Wu
- School of Psychology, Nanjing Normal University, Nanjing 210097, Jiangsu, China; Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing 210097, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yingliang Dai
- School of Psychology, Nanjing Normal University, Nanjing 210097, Jiangsu, China; Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing 210097, China
| | - Chaoyong Xiao
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing 210097, Jiangsu, China; Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing 210097, China.
| |
Collapse
|
17
|
Auerbach RP, Pagliaccio D, Hubbard NA, Frosch I, Kremens R, Cosby E, Jones R, Siless V, Lo N, Henin A, Hofmann SG, Gabrieli JDE, Yendiki A, Whitfield-Gabrieli S, Pizzagalli DA. Reward-Related Neural Circuitry in Depressed and Anxious Adolescents: A Human Connectome Project. J Am Acad Child Adolesc Psychiatry 2022; 61:308-320. [PMID: 33965516 PMCID: PMC8643367 DOI: 10.1016/j.jaac.2021.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Although depression and anxiety often have distinct etiologies, they frequently co-occur in adolescence. Recent initiatives have underscored the importance of developing new ways of classifying mental illness based on underlying neural dimensions that cut across traditional diagnostic boundaries. Accordingly, the aim of the study was to clarify reward-related neural circuitry that may characterize depressed-anxious youth. METHOD The Boston Adolescent Neuroimaging of Depression and Anxiety Human Connectome Project tested group differences regarding subcortical volume and nucleus accumbens activation during an incentive processing task among 14- to 17-year-old adolescents presenting with a primary depressive and/or anxiety disorder (n = 129) or no lifetime history of mental disorders (n = 64). In addition, multimodal modeling examined predictors of depression and anxiety symptom change over a 6-month follow-up period. RESULTS Our findings highlighted considerable convergence. Relative to healthy youth, depressed-anxious adolescents exhibited reduced nucleus accumbens volume and activation following reward receipt. These findings remained when removing all medicated participants (∼59% of depressed-anxious youth). Subgroup analyses comparing anxious-only, depressed-anxious, and healthy youth also were largely consistent. Multimodal modeling showed that only structural alterations predicted depressive symptoms over time. CONCLUSION Multimodal findings highlight alterations within nucleus accumbens structure and function that characterize depressed-anxious adolescents. In the current hypothesis-driven analyses, however, only reduced nucleus accumbens volume predicted depressive symptoms over time. An important next step will be to clarify why structural alterations have an impact on reward-related processes and associated symptoms.
Collapse
|
18
|
Wang H, Zhu WF, Xia LX. Brain structural correlates of aggression types from the perspective of disinhibition–control: A voxel-based morphometric study. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-02712-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Ibrahim HM, Kulikova A, Ly H, Rush AJ, Sherwood Brown E. Anterior cingulate cortex in individuals with depressive symptoms: A structural MRI study. Psychiatry Res Neuroimaging 2022; 319:111420. [PMID: 34856454 PMCID: PMC8724389 DOI: 10.1016/j.pscychresns.2021.111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/03/2023]
Abstract
Several magnetic resonance imaging (MRI) studies have reported reduction in anterior cingulate cortex (ACC) volume in individuals with major depressive disorder (MDD). However, some MRI studies did not find significant ACC volumetric changes in MDD, and sample sizes were generally small. This cross-sectional structural MRI study examined the relationship between current depressive symptoms and ACC volume in a large community sample of 1803 adults. A series of multiple linear regression analyses were conducted to predict right and left ACC volumes using Quick Inventory of Depressive Symptomatology Self-Report (QIDS-SR) scores, intracranial volume, age, sex, race/ethnicity, alcohol use, tobacco use, and psychotropic medications as predictor variables. Right ACC volume was significantly negatively associated with QIDS-SR scores, while no significant association was found between left ACC volume and QIDS-SR scores. In addition, there was a significant negative association between QIDS-SR scores and right but not left ACC volumes in males, and no significant association between QIDS-SR scores and right or left ACC volumes in females. These findings suggest that right ACC volume is reduced in people with greater self-reported depressive symptom severity, and that this association is only significant in men.
Collapse
Affiliation(s)
- Hicham M Ibrahim
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandra Kulikova
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huy Ly
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A John Rush
- Curbstone Consultant, LLC, Santa Fe, NM, USA
| | - E Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Brosch K, Stein F, Schmitt S, Pfarr JK, Ringwald KG, Thomas-Odenthal F, Meller T, Steinsträter O, Waltemate L, Lemke H, Meinert S, Winter A, Breuer F, Thiel K, Grotegerd D, Hahn T, Jansen A, Dannlowski U, Krug A, Nenadić I, Kircher T. Reduced hippocampal gray matter volume is a common feature of patients with major depression, bipolar disorder, and schizophrenia spectrum disorders. Mol Psychiatry 2022; 27:4234-4243. [PMID: 35840798 PMCID: PMC9718668 DOI: 10.1038/s41380-022-01687-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia spectrum disorder (SSD, schizophrenia, and schizoaffective disorder) overlap in symptomatology, risk factors, genetics, and other biological measures. Based on previous findings, it remains unclear what transdiagnostic regional gray matter volume (GMV) alterations exist across these disorders, and with which factors they are associated. GMV (3-T magnetic resonance imaging) was compared between healthy controls (HC; n = 110), DSM-IV-TR diagnosed MDD (n = 110), BD (n = 110), and SSD patients (n = 110), matched for age and sex. We applied a conjunction analysis to identify shared GMV alterations across the disorders. To identify potential origins of identified GMV clusters, we associated them with early and current risk and protective factors, psychopathology, and neuropsychology, applying multiple regression models. Common to all diagnoses (vs. HC), we identified GMV reductions in the left hippocampus. This cluster was associated with the neuropsychology factor working memory/executive functioning, stressful life events, and with global assessment of functioning. Differential effects between groups were present in the left and right frontal operculae and left insula, with volume variances across groups highly overlapping. Our study is the first with a large, matched, transdiagnostic sample to yield shared GMV alterations in the left hippocampus across major mental disorders. The hippocampus is a major network hub, orchestrating a range of mental functions. Our findings underscore the need for a novel stratification of mental disorders, other than categorical diagnoses.
Collapse
Affiliation(s)
- Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany. .,Center for Mind, Brain and Behavior (CMBB), Marburg, Germany.
| | - Frederike Stein
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Simon Schmitt
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany ,grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Julia-Katharina Pfarr
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Kai G. Ringwald
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Florian Thomas-Odenthal
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Tina Meller
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Olaf Steinsträter
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.10253.350000 0004 1936 9756Core-Facility BrainImaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
| | - Lena Waltemate
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany ,grid.5949.10000 0001 2172 9288Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Alexandra Winter
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Andreas Jansen
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany ,grid.10253.350000 0004 1936 9756Core-Facility BrainImaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
| | - Udo Dannlowski
- grid.5949.10000 0001 2172 9288Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Axel Krug
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.10388.320000 0001 2240 3300Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Igor Nenadić
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Tilo Kircher
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, University Hospital Marburg, UKGM, Marburg, Germany ,grid.513205.0Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| |
Collapse
|
21
|
Amidfar M, Quevedo J, Z Réus G, Kim YK. Grey matter volume abnormalities in the first depressive episode of medication-naïve adult individuals: a systematic review of voxel based morphometric studies. Int J Psychiatry Clin Pract 2021; 25:407-420. [PMID: 33351672 DOI: 10.1080/13651501.2020.1861632] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND To identify the reliable and consistent grey matter volume (GMV) abnormalities associated with major depressive disorder (MDD), we excluded the influence of confounding clinical characteristics, comorbidities and brain degeneration on brain morphological abnormalities by inclusion of non-comorbid and non-geriatric drug-naïve MDD individuals experiencing first episode depressive. METHODS The PubMed, Scopus, Web of Science, Science Direct and Google scholar databases were searched for papers published in English up to April 2020. RESULTS A total of 21 voxel based morphometric (VBM) studies comparing 845 individuals in the first depressive episode and medication-naïve with 940 healthy control subjects were included. The results showed a grey matter volumes reductions in the orbitofrontal cortex (OFC), prefrontal cortex (PFC), frontal and temporal gyri, temporal pole, insular lobe, thalamus, basal ganglia, cerebellum, hippocampus, cingulate cortex, and amygdala. In addition, increased grey matter volumes in the postcentral gyrus, superior frontal gyrus, insula, basal ganglia, thalamus, amygdala, cuneus, and precuneus differentiated the first depressive episode in medication-naïve individuals from healthy subjects. CONCLUSION The present systematic review provided additional support for the involvement of grey matter structural abnormalities in limbic-cortical circuits as possibly specific structural abnormalities in the early stage of MDD.Key pointsDistinct brain regions in MDD patients might be associated with the early stages of illness, and thus it is critical to study the causal relationship between brain structures and the onset of the disease to improve the evaluation in clinic.Grey matter alterations in the fronto-limbic networks in the first episode, medication-naïve MDD might suggest that these abnormalities may play an important role in the neuropathophysiology of MDD at its onset.First episode, medically naïve depressive patients show grey matter volume alterations in brain regions mainly associated with emotion regulation including parietal-temporal regions, PFC, insular lobe, thalamus, basal ganglia, cerebellum and limbic structures that may be specific changes in early stage of MDD.Genotype-diagnosis interaction effects on brain morphology in the cortico-limbic-striatal circuits, including the PFC, amygdala, hippocampus and striatum that might be implicated in the dysfunctional regulation of emotion in first-episode MDD patients.Future longitudinal and prospective studies should be conducted to identify the core structural brain changes in people at-risk for MDD and explore the association of their brain volumes with symptom onset.
Collapse
Affiliation(s)
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Yong-Ku Kim
- Departments of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
22
|
Xu D, Xu G, Zhao Z, Sublette ME, Miller JM, Mann JJ. Diffusion tensor imaging brain structural clustering patterns in major depressive disorder. Hum Brain Mapp 2021; 42:5023-5036. [PMID: 34312935 PMCID: PMC8449115 DOI: 10.1002/hbm.25597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
Using magnetic resonance diffusion tensor imaging data from 45 patients with major depressive disorder (MDD) and 41 healthy controls (HCs), network indices based on a 246-region Brainnetcome Atlas were investigated in the two groups, and in the MDD subgroups that were subgrouped based on their duration of the disease. Correlation between the network indices and the duration of illness was also examined. Differences were observed between the MDDS subgroup (short disease duration) and the HC group, but not between the MDD and HC groups. Compared with the HCs, the clustering coefficient (CC) values of MDDS were higher in precentral gyrus, and caudal lingual gyrus; the CC of MDDL subgroup (long disease duration) was higher in postcentral gyrus and dorsal granular insula in the right hemisphere. Network resilience analyses showed that the MDDS group was higher than the HC group, representing relatively more randomized networks in the diseased brains. The correlation analyses showed that the caudal lingual gyrus in the right hemisphere and the rostral lingual gyrus in the left hemisphere were particularly correlated with disease duration. The analyses showed that duration of the illness appears to have an impact on the networking patterns. Networking abnormalities in MDD patients could be blurred or hidden by the heterogeneity of the MDD clinical subgroups. Brain plasticity may introduce a recovery effect to the abnormal network patterns seen in patients with a relative short term of the illness, as the abnormalities may disappear in MDDL .
Collapse
Affiliation(s)
- Dongrong Xu
- Department of Psychiatry, Columbia University & Molecular Imaging and Neuropathology DivisionNew York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Guojun Xu
- Department of Psychiatry, Columbia University & Molecular Imaging and Neuropathology DivisionNew York State Psychiatric InstituteNew YorkNew YorkUSA
- Shanghai Key Laboratory of Magnetic Resonance ImagingEast China Normal UniversityShanghaiChina
| | - Zhiyong Zhao
- Department of Psychiatry, Columbia University & Molecular Imaging and Neuropathology DivisionNew York State Psychiatric InstituteNew YorkNew YorkUSA
- Shanghai Key Laboratory of Magnetic Resonance ImagingEast China Normal UniversityShanghaiChina
| | - M. Elizabeth Sublette
- Department of Psychiatry, Columbia University & Molecular Imaging and Neuropathology DivisionNew York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Jeffrey M. Miller
- Department of Psychiatry, Columbia University & Molecular Imaging and Neuropathology DivisionNew York State Psychiatric InstituteNew YorkNew YorkUSA
| | - J. John Mann
- Department of Psychiatry, Columbia University & Molecular Imaging and Neuropathology DivisionNew York State Psychiatric InstituteNew YorkNew YorkUSA
- Department of RadiologyColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
23
|
Zacková L, Jáni M, Brázdil M, Nikolova YS, Marečková K. Cognitive impairment and depression: Meta-analysis of structural magnetic resonance imaging studies. Neuroimage Clin 2021; 32:102830. [PMID: 34560530 PMCID: PMC8473769 DOI: 10.1016/j.nicl.2021.102830] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/05/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022]
Abstract
Longitudinal comorbidity of depression and cognitive impairment has been reported by number of epidemiological studies but the underlying mechanisms explaining the link between affective problems and cognitive decline are not very well understood. Imaging studies have typically investigated patients with major depressive disorder (MDD) and mild cognitive impairment (MCI) separately and thus have not identified a structural brain signature common to these conditions that may illuminate potentially targetable shared biological mechanisms. We performed a meta-analysis of. 48 voxel-based morphometry (VBM) studies of individuals with MDD, MCI, and age-matched controls and demonstrated that MDD and MCI patients had shared volumetric reductions in a number of regions including the insula, superior temporal gyrus (STG), inferior frontal gyrus, amygdala, hippocampus, and thalamus. We suggest that the shared volumetric reductions in the insula and STG might reflect communication deficits and infrequent participation in mentally or socially stimulating activities, which have been described as risk factors for both MCI and MDD. We also suggest that the disease-specific structural changes might reflect the disease-specific symptoms such as poor integration of emotional information, feelings of helplessness and worthlessness, and anhedonia in MDD. These findings could contribute to better understanding of the origins of MDD-MCI comorbidity and facilitate development of early interventions.
Collapse
Affiliation(s)
- Lenka Zacková
- Brain and Mind Research Programme, Central European Institute of Technology, Masaryk University (CEITEC MU), 5 Kamenice, Brno 62500, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, 664/53 Pekarska, Brno 65691, Czech Republic.
| | - Martin Jáni
- Brain and Mind Research Programme, Central European Institute of Technology, Masaryk University (CEITEC MU), 5 Kamenice, Brno 62500, Czech Republic; Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Jihlavská 20, Brno 62500, Czech Republic
| | - Milan Brázdil
- Brain and Mind Research Programme, Central European Institute of Technology, Masaryk University (CEITEC MU), 5 Kamenice, Brno 62500, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, 664/53 Pekarska, Brno 65691, Czech Republic
| | - Yuliya S Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1L8, Canada
| | - Klára Marečková
- Brain and Mind Research Programme, Central European Institute of Technology, Masaryk University (CEITEC MU), 5 Kamenice, Brno 62500, Czech Republic; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1L8, Canada
| |
Collapse
|
24
|
Depping MS, Schmitgen MM, Bach C, Listunova L, Kienzle J, Kubera KM, Roesch-Ely D, Wolf RC. Abnormal Cerebellar Volume in Patients with Remitted Major Depression with Persistent Cognitive Deficits. THE CEREBELLUM 2021; 19:762-770. [PMID: 32642931 PMCID: PMC8214579 DOI: 10.1007/s12311-020-01157-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cerebellar involvement in major depressive disorder (MDD) has been demonstrated by a growing number of studies, but it is unknown whether cognitive functioning in depressed individuals is related to cerebellar gray matter volume (GMV) abnormalities. Impaired attention and executive dysfunction are characteristic cognitive deficits in MDD, and critically, they often persist despite remission of mood symptoms. In this study, we investigated cerebellar GMV in patients with remitted MDD (rMDD) that showed persistent cognitive impairment. We applied cerebellum-optimized voxel-based morphometry in 37 patients with rMDD and with cognitive deficits, in 12 patients with rMDD and without cognitive deficits, and in 36 healthy controls (HC). Compared with HC, rMDD patients with cognitive deficits had lower GMV in left area VIIA, crus II, and in vermal area VIIB. In patients with rMDD, regression analyses demonstrated significant associations between GMV reductions in both regions and impaired attention and executive dysfunction. Compared with HC, patients without cognitive deficits showed increased GMV in bilateral area VIIIB. This study supports cerebellar contributions to the cognitive dimension of MDD. The data also point towards cerebellar area VII as a potential target for non-invasive brain stimulation to treat cognitive deficits related to MDD.
Collapse
Affiliation(s)
- Malte S Depping
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany
| | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany
| | - Claudia Bach
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany
| | - Lena Listunova
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany
| | - Johanna Kienzle
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany
| | - Daniela Roesch-Ely
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany
| | - R Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Vossstr. 4, 69115, Heidelberg, Germany.
| |
Collapse
|
25
|
Serra-Blasco M, Radua J, Soriano-Mas C, Gómez-Benlloch A, Porta-Casteràs D, Carulla-Roig M, Albajes-Eizagirre A, Arnone D, Klauser P, Canales-Rodríguez EJ, Hilbert K, Wise T, Cheng Y, Kandilarova S, Mataix-Cols D, Vieta E, Via E, Cardoner N. Structural brain correlates in major depression, anxiety disorders and post-traumatic stress disorder: A voxel-based morphometry meta-analysis. Neurosci Biobehav Rev 2021; 129:269-281. [PMID: 34256069 DOI: 10.1016/j.neubiorev.2021.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
The high comorbidity of Major Depressive Disorder (MDD), Anxiety Disorders (ANX), and Posttraumatic Stress Disorder (PTSD) has hindered the study of their structural neural correlates. The authors analyzed specific and common grey matter volume (GMV) characteristics by comparing them with healthy controls (HC). The meta-analysis of voxel-based morphometry (VBM) studies showed unique GMV diminutions for each disorder (p < 0.05, corrected) and less robust smaller GMV across diagnostics (p < 0.01, uncorrected). Pairwise comparison between the disorders showed GMV differences in MDD versus ANX and in ANX versus PTSD. These results endorse the hypothesis that unique clinical features characterizing MDD, ANX, and PTSD are also reflected by disorder specific GMV correlates.
Collapse
Affiliation(s)
- Maria Serra-Blasco
- Mental Health Department, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT), Spain; Department of Psychology, Abat Oliba CEU University, Spain; Programa E-Health ICOnnecta't, Institut Català d'Oncologia, Barcelona, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | - Carles Soriano-Mas
- Institut d'Investigació Biomèdica De Bellvitge-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma De Barcelona, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | | | - Daniel Porta-Casteràs
- Mental Health Department, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT), Spain
| | - Marta Carulla-Roig
- Psychiatry and Psychology Department, Hospital Sant Joan De Déu, Barcelona, Spain
| | | | - Danilo Arnone
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), United Arab Emirates; Centre for Affective Disorders, Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paul Klauser
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Department of Psychiatry, Service of Child and Adolescent Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Australia
| | - Eric J Canales-Rodríguez
- FIDMAG Research Foundation, Germanes Hospitalàries, Spain; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale De Lausanne (EPFL), Switzerland; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | - Kevin Hilbert
- Humboldt-Universität Zu Berlin, Department of Psychology, Berlin, Germany
| | - Toby Wise
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London & Division of the Humanities and Social Sciences, California Institute of Technology, Caltech, United States
| | - Yuqui Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, and Research Institute at Medical University of Plovdiv, Bulgaria
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain
| | - Esther Via
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan De Déu, Barcelona, Spain; Child and Adolescent Mental Health Research Group, Institut De Recerca Sant Joan De Déu, Barcelona, Spain.
| | - Narcís Cardoner
- Mental Health Department, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT), Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma De Barcelona, Spain; Carlos III Health Institute, Mental Health Networking Biomedical Research Centre (CIBERSAM), Spain.
| |
Collapse
|
26
|
Stein F, Meller T, Brosch K, Schmitt S, Ringwald K, Pfarr JK, Meinert S, Thiel K, Lemke H, Waltemate L, Grotegerd D, Opel N, Jansen A, Nenadić I, Dannlowski U, Krug A, Kircher T. Psychopathological Syndromes Across Affective and Psychotic Disorders Correlate With Gray Matter Volumes. Schizophr Bull 2021; 47:1740-1750. [PMID: 33860786 PMCID: PMC8530386 DOI: 10.1093/schbul/sbab037] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION More than a century of research on the neurobiological underpinnings of major psychiatric disorders (major depressive disorder [MDD], bipolar disorder [BD], schizophrenia [SZ], and schizoaffective disorder [SZA]) has been unable to identify diagnostic markers. An alternative approach is to study dimensional psychopathological syndromes that cut across categorical diagnoses. The aim of the current study was to identify gray matter volume (GMV) correlates of transdiagnostic symptom dimensions. METHODS We tested the association of 5 psychopathological factors with GMV using multiple regression models in a sample of N = 1069 patients meeting Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria for MDD (n = 818), BD (n = 132), and SZ/SZA (n = 119). T1-weighted brain images were acquired with 3-Tesla magnetic resonance imaging and preprocessed with CAT12. Interactions analyses (diagnosis × psychopathological factor) were performed to test whether local GMV associations were driven by DSM-IV diagnosis. We further tested syndrome specific regions of interest (ROIs). RESULTS Whole brain analysis showed a significant negative association of the positive formal thought disorder factor with GMV in the right middle frontal gyrus, the paranoid-hallucinatory syndrome in the right fusiform, and the left middle frontal gyri. ROI analyses further showed additional negative associations, including the negative syndrome with bilateral frontal opercula, positive formal thought disorder with the left amygdala-hippocampus complex, and the paranoid-hallucinatory syndrome with the left angular gyrus. None of the GMV associations interacted with DSM-IV diagnosis. CONCLUSIONS We found associations between psychopathological syndromes and regional GMV independent of diagnosis. Our findings open a new avenue for neurobiological research across disorders, using syndrome-based approaches rather than categorical diagnoses.
Collapse
Affiliation(s)
- Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany,To whom correspondence should be addressed; Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; tel: +49-6421-58-63831, fax: +49-6421-58-68939, e-mail:
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| | - Kai Ringwald
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| | - Julia Katharina Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| | - Susanne Meinert
- Department of Psychiatry University of Münster, Münster, Germany
| | - Katharina Thiel
- Department of Psychiatry University of Münster, Münster, Germany
| | - Hannah Lemke
- Department of Psychiatry University of Münster, Münster, Germany
| | - Lena Waltemate
- Department of Psychiatry University of Münster, Münster, Germany
| | | | - Nils Opel
- Department of Psychiatry University of Münster, Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Department of Psychiatry University of Münster, Münster, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany,Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind Brain and Behavior, University of Marburg, Marburg, Germany
| |
Collapse
|
27
|
Cho SE, Kim N, Na KS, Kang CK, Kang SG. Thalamo-Habenular Connection Differences Between Patients With Major Depressive Disorder and Normal Controls. Front Psychiatry 2021; 12:699416. [PMID: 34539461 PMCID: PMC8440934 DOI: 10.3389/fpsyt.2021.699416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/09/2021] [Indexed: 01/18/2023] Open
Abstract
Background: The thalamus and habenula are thought to be key brain regions in the etiology of major depressive disorder (MDD); however, few studies have investigated the structural connection between them. We compared the number of white matter tracts between the thalamus and habenula between patient with MDD and normal controls (NCs). Methods: The habenula and thalamus region of interest masks were extracted from brain magnetic resonance imaging data and individual tractography analysis was performed. First, we compared the number of fiber connections from the habenula to the thalamus between the MDD (n = 34) and NC (n = 37) groups and also compared hemispherical differences to investigate possible asymmetries. Results: There was a significant difference in the number of tracts in the right habenula-left mediodorsal thalamus pair between the two groups. For hemispherical fiber connections, the waytotal ratio of the right ipsilateral tract between the thalamus and habenula was significantly higher than that of the left ipsilateral tract in both groups. Conclusion: The number of right habenula-left mediodorsal thalamus tracts was higher in patients with MDD than in NCs. These results indicate that MDD is related to the disintegration of the left thalamus-right habenula tract function with an increased number of tracts as a compensational mechanism.
Collapse
Affiliation(s)
- Seo-Eun Cho
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Nambeom Kim
- Department of Biomedical Engineering Research Center, Gachon University, Incheon, South Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Chang-Ki Kang
- Department of Radiological Science, College of Health Science, Gachon University, Incheon, South Korea
| | - Seung-Gul Kang
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
28
|
Zhao S, Xia Y, Huang Y, Zou H, Wang X, Chen Z, Zhou H, Han Y, Tang H, Yan R, Yao Z, Lu Q. The Correlation Between Thyroid Function, Frontal Gray Matter, and Executive Function in Patients With Major Depressive Disorder. Front Endocrinol (Lausanne) 2021; 12:779693. [PMID: 34887837 PMCID: PMC8649711 DOI: 10.3389/fendo.2021.779693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
The present study was aimed to investigate the relationships between serum thyroid hormones (THs), frontal gray matter volume, and executive function in selected patients with major depressive disorder (MDD). One hundred and four MDD patients and seventy-five healthy controls (HCs) were subjected to thyroid-stimulating hormone (TSH), free Triiodothyronine (fT3), free Thyroxine (fT4), and executive function tests and underwent structural magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) analysis was performed to compare group differences in the gray matter for the frontal lobe. Furthermore, mediation analysis was used to investigate whether gray matter volumes of the frontal gyrus mediated the relationship between serum THs and executive function in MDD patients. MDD patients exhibited significant gray matter volume reduction in several brain regions, including the left rectus, right middle frontal cortex, and left middle frontal cortex. Serum TSH levels are positively associated with altered regional gray matter volume patterns within MFG and executive function. Importantly, gray matter in the right MFG was a significant mediator between serum TSH levels and executive function. These findings expand our understanding of how thyroid function affects brain structure changes and executive function in MDD patients.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yinghong Huang
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haowen Zou
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xumiao Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhilu Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yinglin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Zhijian Yao, ; Qing Lu,
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
- *Correspondence: Zhijian Yao, ; Qing Lu,
| |
Collapse
|
29
|
Alzoubi KH, Abdel-Hafiz L, Khabour OF, El-Elimat T, Alzubi MA, Alali FQ. Evaluation of the Effect of Hypericum triquetrifolium Turra on Memory Impairment Induced by Chronic Psychosocial Stress in Rats: Role of BDNF. Drug Des Devel Ther 2020; 14:5299-5314. [PMID: 33299301 PMCID: PMC7720289 DOI: 10.2147/dddt.s278153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/14/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chronic psychosocial stress impairs memory function and leads to a depression-like phenotype induced by a persistent status of oxidative stress. Hypericum perforatum L. (St. John's wort) is widely used to relieve symptoms of anxiety and depression; however, its long-term use is associated with adverse effects. Hypericum triquetrifolium Turra is closely related to H. perforatum. Both plants belong to Hypericaceae family and share many biologically active compounds. Previous work by our group showed that methanolic extracts of H. triquetrifolium have potent antioxidant activity as well as high hypericin content, a component that proved to have stress-relieving and antidepressant effects by other studies. Therefore, we hypothesized that H. triquetrifolium would reduce stress-induced cognitive impairment in a rat model of chronic stress. OBJECTIVE To determine whether chronic treatment with H. triquetrifolium protects against stress-associated memory deficits and to investigate a possible mechanism. METHODS The radial arm water maze (RAWM) was used to test learning and memory in rats exposed to daily stress using the resident-intruder paradigm. Stressed and unstressed rats received chronic H. triquetrifolium or vehicle. We also measured levels of brain-derived neurotrophic factor (BDNF) in the hippocampus, cortex and cerebellum. RESULTS Neither chronic stress nor chronic H. triquetrifolium administration affected performance during acquisition. However, memory tests in the RAWM showed that chronic stress impaired different post-encoding memory stages. H. triquetrifolium prevented this impairment. Furthermore, hippocampal BDNF levels were markedly lower in stressed animals than in unstressed animals, and chronic administration of H triquetrifolium chronic administration protected against this reduction. No significant difference was observed in the effects of chronic stress and/or H. triquetrifolium treatment on BDNF levels in the cerebellum and cortex. CONCLUSION H. triquetrifolium extract can oppose stress-associated hippocampus-dependent memory deficits in a mechanism that may involve BDNF in the hippocampus.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, Heinrich Heine Universität, Düsseldorf, Germany
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Mohammad A Alzubi
- Integrative Life Sciences Doctoral Program, Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Feras Q Alali
- College of Pharmacy, QU Health, Qatar University, DohaQatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
30
|
Ang YS, Frontero N, Belleau E, Pizzagalli DA. Disentangling vulnerability, state and trait features of neurocognitive impairments in depression. Brain 2020; 143:3865-3877. [PMID: 33176359 PMCID: PMC7805803 DOI: 10.1093/brain/awaa314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Depression is a debilitating disorder that often starts manifesting in early childhood and peaks in onset during adolescence. Neurocognitive impairments have emerged as clinically important characteristics of depression, but it remains controversial which domains specifically index pre-existing vulnerability, state-related or trait-related markers. Here, we disentangled these effects by analysing the Adolescent Brain Cognitive Development dataset (n = 4626). Using information of participants' current and past mental disorders, as well as family mental health history, we identified low-risk healthy (n = 2100), high-risk healthy (n = 2023), remitted depressed (n = 401) and currently depressed children (n = 102). Factor analysis of 11 cognitive variables was performed to elucidate latent structure and canonical correlation analyses conducted to probe regional brain volumes reliably associated with the cognitive factors. Bayesian model comparison of various a priori hypotheses differing in how low-risk healthy, high-risk healthy, remitted depressed and currently depressed children performed in various cognitive domains was performed. Factor analysis revealed three domains: language and reasoning, cognitive flexibility and memory recall. Deficits in language and reasoning ability, as well as in volumes of associated regions such as the middle temporal and superior frontal gyrus, represented state- and trait-related markers of depression but not pre-existing vulnerability. In contrast, there was no compelling evidence of impairments in other domains. These findings-although cross-sectional and specific to 9-10-year-old children-might have important clinical implications, suggesting that cognitive dysfunction may not be useful targets of preventive interventions. Depressed patients, even after remission, might also benefit from less commonly used treatments such as cognitive remediation therapy.
Collapse
Affiliation(s)
- Yuen-Siang Ang
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA 02478, USA
| | - Nicole Frontero
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA 02478, USA
| | - Emily Belleau
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA 02478, USA
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
31
|
Batail JM, Coloigner J, Soulas M, Robert G, Barillot C, Drapier D. Structural abnormalities associated with poor outcome of a major depressive episode: The role of thalamus. Psychiatry Res Neuroimaging 2020; 305:111158. [PMID: 32889511 DOI: 10.1016/j.pscychresns.2020.111158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022]
Abstract
An identification of precise biomarkers contributing to poor outcome of a major depressive episode (MDE) has the potential to improve therapeutic strategies by reducing time to symptomatic relief. In a cross-sectional volumetric study with a 6 month clinical follow-up, we performed baseline brain grey matter volume analysis between 2 groups based on illness improvement: 27 MDD patients in the "responder" (R) group (Clinical Global Impression- Improvement (CGI-I) score ≤ 2) and 30 in the "non-responder" (NR) group (CGI-I > 2), using a Voxel Based-Morphometry analysis. NR had significantly smaller Grey Matter (GM) volume in the bilateral thalami, in precentral gyrus, middle temporal gyrus, precuneus and middle cingulum compared to R at baseline. Additionally, they exhibited significant greater GM volume increase in the left anterior lobe of cerebellum and posterior cingulate cortex. The latter result was not significant when participants with bipolar disorder were excluded from the analysis. NR group had higher baseline anxiety scores. Our study has pointed out the role of thalamus in prognosis of MDE. These findings highlight the involvement of emotion regulation in the outcome of MDE. The present study provides a step towards the understanding of neurobiological processes of treatment resistant depression.
Collapse
Affiliation(s)
- J M Batail
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France.
| | - J Coloigner
- Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France
| | - M Soulas
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France
| | - G Robert
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France
| | - C Barillot
- Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France
| | - D Drapier
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France
| |
Collapse
|
32
|
Brain Volume Abnormalities in Youth at High Risk for Depression: Adolescent Brain and Cognitive Development Study. J Am Acad Child Adolesc Psychiatry 2020; 59:1178-1188. [PMID: 31634568 PMCID: PMC7165045 DOI: 10.1016/j.jaac.2019.09.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Children of parents with depression are two to three times more likely to develop major depressive disorder than children without parental history; however, subcortical brain volume abnormalities characterizing major depressive disorder risk remain unclear. The Adolescent Brain and Cognitive Development (ABCD) Study provides an opportunity to identify subcortical differences associated with parental depressive history. METHOD Structural magnetic resonance data were acquired from 9- and 10-year-old children (N = 11,876; release 1.1, n = 4,521; release 2.0.1, n = 7,355). Approximately one-third of the children had a parental depressive history, providing sufficient power to test differences in subcortical brain volume between low- and high-risk youths. Children from release 1.1 were examined as a discovery sample, and we sought to replicate effects in release 2.0.1. Secondary analyses tested group differences in the prevalence of depressive disorders and clarified whether subcortical brain differences were present in youths with a lifetime depressive disorder history. RESULTS Parental depressive history was related to smaller right putamen volume in the discovery (release 1.1; d = -0.10) and replication (release 2.0.1; d = -0.10) samples. However, in release 1.1, this effect was driven by maternal depressive history (d = -0.14), whereas in release 2.0.1, paternal depressive history showed a stronger relationship with putamen volume (d = -0.09). Furthermore, high-risk children exhibited a near twofold greater occurrence of depressive disorders relative to low-risk youths (maternal history odds ratio =1.99; paternal history odds ratio = 1.45), but youths with a lifetime depressive history did not exhibit significant subcortical abnormalities. CONCLUSION A parental depressive history was associated with smaller putamen volume, which may affect reward learning processes that confer increased risk for major depressive disorder.
Collapse
|
33
|
Vandermeer MRJ, Liu P, Mohamed Ali O, Daoust AR, Joanisse MF, Barch DM, Hayden EP. Orbitofrontal cortex grey matter volume is related to children's depressive symptoms. Neuroimage Clin 2020; 28:102395. [PMID: 32889399 PMCID: PMC7479290 DOI: 10.1016/j.nicl.2020.102395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/10/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
Adults with a history of depression show distinct patterns of grey matter volume (GMV) in frontal cortical (e.g., prefrontal cortex, orbitofrontal cortex) and limbic (e.g., anterior cingulate, amygdala, hippocampus, dorsal striatum) structures, regions relevant to the processing and regulation of reward, which is impaired in the context of depression. However, it is unclear whether these GMV associations with depression precede depressive disorder onset or whether GMV is related to early emerging symptoms or familial depression. To address these questions, we used voxel-based morphometry (VBM) to examine GMV in 85 community-dwelling children (M = 11.12 years, SD = 0.63 years) screened for current and lifetime depression. Associations between children's depressive symptoms (self- and mother-report of children's symptoms), children's maternal depression history, and GMV were examined. Although maternal depression history was unrelated to children's GMV, child GMV in the orbitofrontal cortex (OFC) was negatively related to children's self-reported depressive symptoms, using both a priori ROI and whole-brain analyses. Moderated regression analyses indicated that girls' GMV was negatively related to girls' depressive symptoms (as indexed by both self- and mother-report of girls' symptoms), whereas boys' symptoms were positively related to GMV. Our findings suggest that brain morphology in the OFC, a region with functional roles in processes relevant to depressive symptoms (i.e., reward-based learning and reward processing), is associated with early depressive symptoms prior to the development of clinically significant depression.
Collapse
Affiliation(s)
- Matthew R J Vandermeer
- Department of Psychology, The Brain and Mind Institute, Western University, Western Interdisciplinary Research Building, Room 3190, 1151 Richmond St., London, ON N6A 3K7, Canada.
| | - Pan Liu
- Department of Psychology, The Brain and Mind Institute, Western University, Western Interdisciplinary Research Building, Room 3190, 1151 Richmond St., London, ON N6A 3K7, Canada
| | - Ola Mohamed Ali
- Department of Psychology, The Brain and Mind Institute, Western University, Western Interdisciplinary Research Building, Room 3190, 1151 Richmond St., London, ON N6A 3K7, Canada
| | - Andrew R Daoust
- Department of Psychology, The Brain and Mind Institute, Western University, Western Interdisciplinary Research Building, Room 3190, 1151 Richmond St., London, ON N6A 3K7, Canada
| | - Marc F Joanisse
- Department of Psychology, The Brain and Mind Institute, Western University, Western Interdisciplinary Research Building, Room 3190, 1151 Richmond St., London, ON N6A 3K7, Canada
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, 4444 Forest Park Avenue, Suite 2100, St. Louis, MO, USA; Department of Psychology, Washington University, St. Louis, MO, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth P Hayden
- Department of Psychology, The Brain and Mind Institute, Western University, Western Interdisciplinary Research Building, Room 3190, 1151 Richmond St., London, ON N6A 3K7, Canada
| |
Collapse
|
34
|
Upthegrove R, Lalousis P, Mallikarjun P, Chisholm K, Griffiths SL, Iqbal M, Pelton M, Reniers R, Stainton A, Rosen M, Ruef A, Dwyer DB, Surman M, Haidl T, Penzel N, Kambeitz-llankovic L, Bertolino A, Brambilla P, Borgwardt S, Kambeitz J, Lencer R, Pantelis C, Ruhrmann S, Schultze-Lutter F, Salokangas RKR, Meisenzahl E, Wood SJ, Koutsouleris N. The Psychopathology and Neuroanatomical Markers of Depression in Early Psychosis. Schizophr Bull 2020; 47:249-258. [PMID: 32634220 PMCID: PMC7825071 DOI: 10.1093/schbul/sbaa094] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Depression frequently occurs in first-episode psychosis (FEP) and predicts longer-term negative outcomes. It is possible that this depression is seen primarily in a distinct subgroup, which if identified could allow targeted treatments. We hypothesize that patients with recent-onset psychosis (ROP) and comorbid depression would be identifiable by symptoms and neuroanatomical features similar to those seen in recent-onset depression (ROD). Data were extracted from the multisite PRONIA study: 154 ROP patients (FEP within 3 months of treatment onset), of whom 83 were depressed (ROP+D) and 71 who were not depressed (ROP-D), 146 ROD patients, and 265 healthy controls (HC). Analyses included a (1) principal component analysis that established the similar symptom structure of depression in ROD and ROP+D, (2) supervised machine learning (ML) classification with repeated nested cross-validation based on depressive symptoms separating ROD vs ROP+D, which achieved a balanced accuracy (BAC) of 51%, and (3) neuroanatomical ML-based classification, using regions of interest generated from ROD subjects, which identified BAC of 50% (no better than chance) for separation of ROP+D vs ROP-D. We conclude that depression at a symptom level is broadly similar with or without psychosis status in recent-onset disorders; however, this is not driven by a separable depressed subgroup in FEP. Depression may be intrinsic to early stages of psychotic disorder, and thus treating depression could produce widespread benefit.
Collapse
Affiliation(s)
- Rachel Upthegrove
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK,To whom correspondence should be addressed; Institute for Mental Health, University of Birmingham, 52 Prichatts Road, Edgbaston, Birmingham B152TT, UK; tel: +44-(0)121-414-4932, fax:+44-(0)121-414-4897, e-mail:
| | - Paris Lalousis
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Pavan Mallikarjun
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Katharine Chisholm
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK,Department of Psychology, Aston University, Birmingham, UK
| | - Sian Lowri Griffiths
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Mariam Iqbal
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Mirabel Pelton
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Renate Reniers
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK,Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Alexandra Stainton
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Australia,Centre for Youth Mental Health, University of Melbourne, Parkville, Australia
| | - Marlene Rosen
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Anne Ruef
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Dominic B Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Marian Surman
- Department of Mental Health, University of Münster, Münster, Germany
| | - Theresa Haidl
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Nora Penzel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Lana Kambeitz-llankovic
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany,Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari “Aldo Moro,” Bari, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefan Borgwardt
- Department of Psychiatry (Psychiatric University Hospital, UPK), University of Basel, Basel, Switzerland
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Rebekka Lencer
- Department of Mental Health, University of Münster, Münster, Germany,Department of Psychiatry and Psychotherapy, University Lübeck, Germany
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Stephen J Wood
- Institute for Mental Health and Centre for Human Brain Health, University of Birmingham, Birmingham, UK,Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Australia,Centre for Youth Mental Health, University of Melbourne, Parkville, Australia
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | | |
Collapse
|
35
|
Abnormal functional connectivity strength in first-episode, drug-naïve adult patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109759. [PMID: 31499128 DOI: 10.1016/j.pnpbp.2019.109759] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/14/2019] [Accepted: 09/03/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND The pathogenesis of major depressive disorder (MDD) is complicated and equivocal. Previous studies have found an incidence of abnormal changes of neural networks, with plentiful evidence pointing the finger of suspicion firmly at the default mode network (DMN) and cortico-limbic networks. The aim of the present study was to use the approach of functional connectivity strength (FCS) to directly investigate the features of spontaneous brain activity in the case of first-episode, drug-naïve adult patients with MDD at rest. METHODS Resting-state functional magnetic resonance imaging (MRI) scans were performed on 23 first-episode drug-naïve major depressive disorder (MDD) patients and 20 healthy controls (HCs). In this study, using graph-theory approaches(FCS), we computed the characteristics of brain connectivity. Simultaneously, we used a series of validated test procedures to evaluate the patients' cognitive function. Subsequently, the results were compared with the peak of FCS value and a correlation analysis was conducted. RESULTS Compared with the HCs group, MDD patients showed significantly decreased FCS in bilateral posterior cingulate cortex (PCC)/precuneus and bilateral prefrontal cortex(PFC) and increased FCS in right posterior central gyrus, left thalamus and left temporal lobe. These brain regions belongs to the default-mode network and cortico-limbic networks. Finally, the correlation analyses showed the negative correlation of the FCS values in the left posterior cingulate cortex (PCC)/precuneus and Hamilton Anxiety Rating Scale (HAMA, r = -0.472, p = .023), Stroop Color Word Test-A(SCWT-A, r = -0.451, p = .031), Stroop Color Word Test-B(SCWT-B, r = -0.588, p = .003).Meanwhile, there was negative correlation between the FCS values in the left thalamus and SCWT-A(r = -0.473, p = .023), SCWT-B(r = -0.465, p = .025), SCWTC(r = -0.524, p = .010).In addition, the FCS values in the right PCC has negative correlation with Montgomery Asberg Depression Rating Scale (MADRS) (r = -0.433, p = .039). CONCLUSIONS DMN is an important node of MDD. FCS within the default mode network and cortico-limbic networks in patients with major depressive disorder has been changed in the early stage of MDD. FCS can provide favourable and additional evidence in the investigation of brain pathophysiology and therapy in depression.
Collapse
|
36
|
Choi KW, Han KM, Kim H, Kim A, Kang W, Kang Y, Tae WS, Ham BJ. Comparison of shape alterations of the thalamus and caudate nucleus between drug-naïve major depressive disorder patients and healthy controls. J Affect Disord 2020; 264:279-285. [PMID: 32056762 DOI: 10.1016/j.jad.2020.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although structural alterations have been reported in patients with major depressive disorder (MDD), very few studies have compared the shape alterations of the subcortical regions between drug-naïve MDD patients and healthy controls (HCs). Therefore, we investigated and compared the subcortical shape alterations and volumetric changes between drug-naïve MDD patients and HCs in this study. METHODS This study included 45 drug-naïve MDD patients and 83 HCs, who underwent three-dimensional (3-D) T1-weighted structural magnetic resonance imaging. Surface-based vertex analysis (SVA) was performed with automated segmentation of the bilateral caudate nuclei, putamina, nuclei accumbens, thalami, pallidum, hippocampi, amygdalae, and brainstem. SVA revealed regional contractions of the thalamus (bilateral medial and lateral nuclei) and right caudate nucleus (medial wall and anterosuperior areas) in the drug-naïve MDD patients when compared to HCs RESULTS: In volume analysis, the drug-naïve MDD patients showed a significant decrease in the volume of bilateral thalami compared with HCs (after Bonferroni correction p < 0.003). We identified morphometric contractions in bilateral thalami and right caudate nucleus in the drug-naïve MDD patients (p < 0.05). CONCLUSIONS The present study implied that with cortical shape changes, the subcortical brain alterations could contribute to emotional dysregulation in the drug-naïve MDD patients.
Collapse
Affiliation(s)
- Kwan Woo Choi
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University College of Medicine, #73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University College of Medicine, #73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
37
|
Keilp JG, Corbera K, Gorlyn M, Oquendo MA, Mann JJ, Fallon BA. Neurocognition in Post-Treatment Lyme Disease and Major Depressive Disorder. Arch Clin Neuropsychol 2019; 34:466-480. [PMID: 30418507 DOI: 10.1093/arclin/acy083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/10/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Neurocognitive dysfunction in patients with residual or emergent symptoms after treatment for Lyme Disease is often attributed to comorbid depression. In this study, patients with Post-Treatment Lyme Disease Syndrome (PTLDS) were compared to patients with Major Depressive Disorder (MDD), as well as healthy comparison subjects (HC), on neurocognitive measures administered through the same laboratory, to determine if patterns of performance were similar. METHODS Two analyses were conducted. First, performance on the Wechsler Adult Intelligence Scale (WAIS-III) and on subtests from the Wechsler Memory Scale (WMS-III) was compared among the groups. Second, comparable subgroups of PTLDS and MDD patients with at least one low WMS-III score were compared on an additional set of measures assessing motor function, psychomotor performance, attention, memory, working memory, and language fluency, to determine if the overall profile of performance was similar in the two subgroups. RESULTS In the first analysis, PTLDS patients performed more poorly than both MDD and HC on tasks assessing verbal abilities, working memory, and paragraph learning. Processing speed in the two patient groups, however, was equally reduced. In the second analysis, MDD patients with low WMS-III exhibited concomitantly greater difficulties in psychomotor speed and attention, while low-WMS-III PTLDS patients exhibited greater difficulties in language fluency. CONCLUSIONS MDD and PTLDS can be confused neuropsychologically because both exhibit similar levels of psychomotor slowing. However, problems on memory-related tasks, though mild, are more pronounced in PTLDS. PTLDS patients with poorer memory also exhibit poorer language fluency, and less deficit in processing speed and attention compared to MDD.
Collapse
Affiliation(s)
- John G Keilp
- Lyme Disease Research Center, Columbia University College of Physicians and Surgeons, New York, NY, USA.,Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA.,Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Kathy Corbera
- Lyme Disease Research Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Marianne Gorlyn
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Maria A Oquendo
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA.,Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J John Mann
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA.,Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Brian A Fallon
- Lyme Disease Research Center, Columbia University College of Physicians and Surgeons, New York, NY, USA.,Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA.,Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
38
|
Zhao W, Zhu DM, Zhang Y, Zhang C, Wang Y, Yang Y, Bai Y, Zhu J, Yu Y. Pineal gland abnormality in major depressive disorder. Psychiatry Res Neuroimaging 2019; 289:13-17. [PMID: 31121531 DOI: 10.1016/j.pscychresns.2019.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 01/16/2023]
Abstract
Patients with major depressive disorder (MDD) often have circadian rhythm alteration and sleep disturbance. The pineal gland regulates the circadian rhythm and sleep by the secretion of melatonin neurohormone. However, the relationship between pineal abnormality and MDD remains elusive. 50 patients with MDD and 35 gender- and age-matched healthy controls underwent high-resolution structural MRI. Pineal parenchymal volume (PPV) was measured manually. Inter-group differences in prevalence of pineal cyst and PPV were examined. In addition, we investigated the correlations between PPV and symptom severity as well as sleep variables in the patient group. Compared to healthy controls, patients with MDD had a higher prevalence of pineal cyst. Moreover, patients had significantly decreased PPV relative to controls. However, no significant correlations were observed between PPV and symptom severity as well as sleep variables. Our findings suggest that pineal abnormality may play a critical role in depression.
Collapse
Affiliation(s)
- Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Dao-Min Zhu
- Department of Sleep Disorders, Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Yu Zhang
- Department of Sleep Disorders, Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yajun Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ying Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ya Bai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
39
|
Profound and reproducible patterns of reduced regional gray matter characterize major depressive disorder. Transl Psychiatry 2019; 9:176. [PMID: 31341158 PMCID: PMC6656728 DOI: 10.1038/s41398-019-0512-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/01/2019] [Indexed: 12/22/2022] Open
Abstract
Reduced gray matter (GM) volume may represent a hallmark of major depressive disorder (MDD) neuropathology, typified by wide-ranging distribution of structural alteration. In the study, we aimed to replicate and extend our previous finding of profound and widespread GM loss in MDD, and evaluate the diagnostic accuracy of a structural biomarker derived from GM volume in an interconnected pattern across the brain. In a sub-study of the International Study to Predict Optimized Treatment in Depression (iSPOT-D), two cohorts of clinically defined MDD participants "Test" (n = 98) and "Replication" (n = 131) were assessed alongside healthy controls (n = 66). Using 3T MRI T1-weighted volumes, GM volume differences were evaluated using voxel-based morphometry. Sensitivity, specificity, and area under the receiver operating characteristic curve were used to evaluate an MDD diagnostic biomarker based on a precise spatial pattern of GM loss constructed using principal component analysis. We demonstrated a highly conserved symmetric widespread pattern of reduced GM volume in MDD, replicating our previous findings. Three bilateral dominant clusters were observed: Cluster 1: midline/cingulate (GM reduction: Test: 6.4%, Replication: 5.3%), Cluster 2: medial temporal lobe (GM reduction: Test: 8.2%, Replication: 11.9%), Cluster 3: prefrontal cortex (GM reduction: Test: 12.1%, Replication: 23.2%). We developed a biomarker reflecting the global pattern of GM reduction, achieving good diagnostic classification performance (AUC: Test = 0.75, Replication = 0.84). This study establishes that a highly specific pattern of reduced GM volume is a feature of MDD, suggestive of a structural basis for this disease. We introduce and validate a novel diagnostic biomarker based on this pattern.
Collapse
|
40
|
The neural markers of MRI to differentiate depression and panic disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 91:72-78. [PMID: 29705713 DOI: 10.1016/j.pnpbp.2018.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022]
Abstract
Depression and panic disorder (PD) share the common pathophysiology from the perspectives of neurotransmitters. The relatively high comorbidity between depression and PD contributes to the substantial obstacles to differentiate from depression and PD, especially for the brain pathophysiology. There are significant differences in the diagnostic criteria between depression and PD. However, the paradox of similar pathophysiology and different diagnostic criteria in these two disorders were still the issues needing to be addressed. Therefore the clarification of potential difference in the field of neuroscience and pathophysiology between depression and PD can help the clinicians and scientists to understand more comprehensively about significant differences between depression and PD. The researchers should be curious about the underlying difference of pathophysiology beneath the significant distinction of clinical symptoms. In this review article, I tried to find some evidences for the differences between depression and PD, especially for neural markers revealed by magnetic resonance imaging (MRI). The distinctions of structural and functional alterations in depression and PD are reviewed. From the structural perspectives, PD seems to have less severe gray matter alterations in frontal and temporal lobes than depression. The study of white matter microintegrity reveals more widespread alterations in fronto-limbic circuit of depression patients than PD patients, such as the uncinate fasciculus and anterior thalamic radiation. PD might have a more restrictive pattern of structural alterations when compared to depression. For the functional perspectives, the core site of depression pathophysiology is the anterior subnetwork of resting-state network, such as anterior cingulate cortex, which is not significantly altered in PD. A possibly emerging pattern of fronto-limbic distinction between depression and PD has been revealed by these explorative reports. The future trend for machine learning and pattern recognition might confirm the differentiation pattern between depression and PD based on the explorative results.
Collapse
|
41
|
Moench KM, Breach MR, Wellman CL. Chronic stress produces enduring sex- and region-specific alterations in novel stress-induced c-Fos expression. Neurobiol Stress 2019; 10:100147. [PMID: 30937353 PMCID: PMC6430515 DOI: 10.1016/j.ynstr.2019.100147] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Prolonged or repeated exposure to stress increases risk for a variety of psychological disorders, many of which are marked by dysfunction of corticolimbic brain regions. Notably, women are more likely than men to be diagnosed with these disorders, especially when onset of symptoms follows stressful life events. Using rodent models, investigators have recently begun to elucidate sex-specific changes in the brain and behavior that occur immediately following chronic stress. However, little is known regarding the lasting sequelae of chronic stress, as well as how potential changes may impact responsivity to future stressors. We recently demonstrated that male and female rats show different patterns of dendritic reorganization in medial prefrontal cortex in the days following chronic stress. Here, we examined the immediate and lasting effects of chronic restraint stress (CRS; 3 h/day, 10 days) on neuronal activation, across several corticolimbic brain regions, induced by novel acute stress exposure. Chronically stressed male and female rats were exposed to acute elevated platform stress (EPS) either 1 (CRS-EPS) or 7 (CRS-Rest-EPS) days after CRS. Compared to rats exposed to EPS only, significant reductions in acute stress-induced c-Fos expression were observed in the medial prefrontal cortex, hippocampus, and paraventricular nucleus of the hypothalamus (PVN) in CRS-EPS male rats, some of which persisted to 7 days post-stress. In contrast, we found little modulation of novel stress-induced c-Fos expression in CRS-EPS female rats. However, CRS-Rest-EPS female rats exhibited a significant enhancement of acute stress-induced neuronal activity in the PVN. Together, these data show that prior chronic stress produces sex- and region-specific alterations in novel stress-induced neuronal activation, which are dependent on the presence or absence of a rest period following chronic stress. These findings suggest that the post-stress rest period may give rise to sex-specific neuroadaptations to stress, which may underlie sex differences in stress susceptibility versus resilience. In males, chronic stress blunts corticolimbic activation to a novel stressor. A post-stress rest period restores acute stress responsivity in male rats. In females, chronic stress blunts activation to novel stress in OFC only. After a post-stress rest period, novel stress enhances c-Fos in PVN and BLA in females. The post-stress rest period may give rise to sex-specific neuroadaptations to stress.
Collapse
Affiliation(s)
- Kelly M Moench
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA.,Program in Neuroscience, Indiana University, Bloomington, IN, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Michaela R Breach
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Cara L Wellman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA.,Program in Neuroscience, Indiana University, Bloomington, IN, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| |
Collapse
|
42
|
Satomura Y, Sakakibara E, Takizawa R, Koike S, Nishimura Y, Sakurada H, Yamagishi M, Shimojo C, Kawasaki S, Okada N, Matsuoka J, Kinoshita A, Jinde S, Kondo S, Kasai K. Severity-dependent and -independent brain regions of major depressive disorder: A long-term longitudinal near-infrared spectroscopy study. J Affect Disord 2019; 243:249-254. [PMID: 30248636 DOI: 10.1016/j.jad.2018.09.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/12/2018] [Accepted: 09/15/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Long-term longitudinal studies are necessary to establish neuroimaging indicators which contribute to the detection of severity changes over time in patients with major depressive disorder (MDD). METHODS One hundred sixty-five patients with MDD underwent clinical assessments and near-infrared spectroscopy (NIRS) examination at the initial evaluation (T0). After 1.5 years, 45 patients who visited for the follow-up evaluation (T1.5) were included in the analysis. The authors conducted analyses using the 17-item Hamilton Rating Scale for Depression (HAMD) scores and mean oxy-hemoglobin concentration ([oxy-Hb]) changes during a cognitive task in NIRS at T0 (T0_HAMD, T0_[oxy-Hb]) and at T1.5 (T1.5_HAMD, T1.5_[oxy-Hb]), and their intra-individual longitudinal changes (ΔHAMD = T1.5_HAMD - T0_HAMD, Δ[oxy-Hb] = T1.5_[oxy-Hb] - T0_[oxy-Hb]). RESULTS For severity-dependent regions, the Δ[oxy-Hb] in the right inferior frontal gyrus (IFG) was negatively correlated with the ΔHAMD. For severity-independent regions, the intra-class correlation coefficients between T0_ and T1.5_[oxy-Hb] were moderate in the bilateral middle frontal gyri (MFG). LIMITATIONS The percentage of patients included in the follow-up examination was relatively small. CONCLUSIONS Brain activation in the right IFG and the bilateral MFG as measured by NIRS may differentially indicate clinical severity and trait-related abnormalities in MDD.
Collapse
Key Words
- Abbreviations: MDD, major depressive disorder
- Biological marker
- CBF, cerebral blood flow
- CH, channel
- DSM-IV, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
- FDR, false-discovery rate
- GAF, Global Assessment of Functioning
- HAMD, Hamilton Rating Scale for Depression
- ICCs, intra-class correlation coefficients
- IFG, inferior frontal gyrus
- IQ, Intelligence Quotient
- JART, Japanese Adult Reading Test
- Long-term longitudinal study
- MFG, middle frontal gyrus
- MRI, magnetic resonance imaging
- Major depressive disorder (MDD)
- Mood disorder
- NIRS, near-infrared spectroscopy
- Near-infrared spectroscopy (NIRS)
- PET, positron emission tomography
- PFC, prefrontal cortex
- SCID, Structured Clinical Interview for DSM-IV
- VFT, verbal fluency test
Collapse
Affiliation(s)
- Yoshihiro Satomura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Eisuke Sakakibara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Ryu Takizawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Clinical Psychology, Graduate School of Education, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Yukika Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Hanako Sakurada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Mika Yamagishi
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Chie Shimojo
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shingo Kawasaki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Application Development Office, Hitachi Medical Corporation, 2-1 Shintoyofuta, Kashiwa City, Chiba 277-0804, Japan.
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Jun Matsuoka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akihide Kinoshita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Shinsuke Kondo
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
43
|
Tripathi SJ, Chakraborty S, Srikumar BN, Raju TR, Shankaranarayana Rao BS. Basolateral amygdalar inactivation blocks chronic stress-induced lamina-specific reduction in prefrontal cortex volume and associated anxiety-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:194-207. [PMID: 30036565 DOI: 10.1016/j.pnpbp.2018.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 12/20/2022]
Abstract
Chronic exposure to stress causes cognitive deficits, anxiety and depression. Earlier studies have suggested that the prefrontal cortex (PFC) and basolateral amygdala (BLA) can differentially modulate the stress-induced alterations either by their action on HPA axis or via direct reciprocal connections between them. The PFC dysfunction and BLA hypertrophy following stress are known to cause anxiety and affective symptoms. Recent studies indicate that inactivation of BLA projections to PFC remarkably decreases anxiety. However, the effect of BLA inactivation on stress-induced anxiety and associated volume loss in prelimbic (PrL) and anterior cingulate (ACC) subregions of PFC is not known. Accordingly, we evaluated the effect of BLA lesion or inactivation during chronic immobilization stress (CIS) on an approach-avoidance task and associated volume loss in the PFC. The stressed rats showed a significant volumetric reduction in layer I and II of the PrL and ACC. Interestingly, BLA lesion prior to stress prevented the volume loss in PrL and ACC. Further, BLA lesion blocked the anxiety-like behavior in stressed rats. However, in the absence of stress, BLA lesion increased the number of shocks as compared to controls. As BLA lesion produced an anticonflict effect, we performed temporary inactivation of BLA specifically during stress. Similar to BLA lesion, lidocaine-induced inactivation prevented the stress-induced volume loss and anxiety-like behavior. We demonstrate that inactivation of BLA during stress prevents CIS-induced anxiety and associated structural correlates in the PFC. The present study extends the hypothesis of amygdalar silencing as a possible management strategy for stress and associated disorders.
Collapse
Affiliation(s)
- Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India.
| |
Collapse
|
44
|
Katsuki A, Kakeda S, Watanabe K, Igata R, Otsuka Y, Kishi T, Nguyen L, Ueda I, Iwata N, Korogi Y, Yoshimura R. A single-nucleotide polymorphism influences brain morphology in drug-naïve patients with major depressive disorder. Neuropsychiatr Dis Treat 2019; 15:2425-2432. [PMID: 31692503 PMCID: PMC6711561 DOI: 10.2147/ndt.s204461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Recently, a genome-wide association study successfully identified genetic variants associated with major depressive disorder (MDD). The study identified 17 independent single-nucleotide polymorphisms (SNPs) significantly associated with diagnosis of MDD. These SNPs were predicted to be enriched in genes that are expressed in the central nervous system and function in transcriptional regulation associated with neurodevelopment. The study aimed to investigate associations between 17 SNPs and brain morphometry using magnetic resonance imaging (MRI) in drug-naïve patients with MDD and healthy controls (HCs). METHODS Forty-seven patients with MDD and 42 HCs were included. All participants underwent T1-weighted structural MRI and genotyping. The genotype-diagnosis interactions associated with regional cortical thicknesses were evaluated using voxel-based morphometry for the 17 SNPs. RESULTS Regarding rs301806, an SNP in the RERE genomic regions, we found a significant difference in a genotype effect in the right-lateral orbitofrontal and postcentral lobes between diagnosis groups. After testing every possible diagnostic comparison, the genotype-diagnosis interaction in these areas revealed that the cortical thickness reductions in the MDD group relative to those in the HC group were significantly larger in T/T individuals than in C-carrier ones. For the other SNPs, no brain area was noted where a genotype effect significantly differed between the two groups. CONCLUSIONS We found that a RERE gene SNP was associated with cortical thickness reductions in the right-lateral orbitofrontal and postcentral lobes in drug-naïve patients with MDD. The effects of RERE gene polymorphism and gene-environment interactions may exist in brain structures of patients with MDD.
Collapse
Affiliation(s)
- Asuka Katsuki
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Ryohei Igata
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Yuka Otsuka
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Taro Kishi
- Department of Psychiatry, Fujita Health University, Toyoake, Aichi 4701192, Japan
| | - LeHoa Nguyen
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Issei Ueda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University, Toyoake, Aichi 4701192, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| |
Collapse
|
45
|
Depping MS, Thomann PA, Wolf ND, Vasic N, Sosic-Vasic Z, Schmitgen MM, Sambataro F, Wolf RC. Common and distinct patterns of abnormal cortical gyrification in major depression and borderline personality disorder. Eur Neuropsychopharmacol 2018; 28:1115-1125. [PMID: 30119924 DOI: 10.1016/j.euroneuro.2018.07.100] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/15/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Abstract
Abnormal gray matter volume has been consistently reported in patients with major depressive disorder (MDD), but markers of cortical neurodevelopment have been rarely investigated. Also, it is unclear whether there exist common versus distinct spatial patterns of abnormal cortical development across different disorders presenting with negative emotions and deficient affective regulation. In this study, we used structural MRI at 3T to investigate the local gyrification index (LGI), a marker of fetal/infant neurodevelopment, in adult female patients with MDD (n = 22), in adult female patients with borderline personality disorder (BPD) (n = 17), and in controls (n = 22). Reduced cortical folding of the precuneus, the superior parietal gyrus and the parahippocampal gyrus was found in both MDD and BPD patients when compared to controls (p < 0.05, cluster-wise probability [CWP] corrected). MDD patients showed additional hypogyrification of the middle frontal gyrus and the fusiform gyrus when compared to both controls and BPD patients (p < 0.05, CWP corrected). In MDD patients, lower LGI of prefrontal regions was significantly associated with the age of disease onset and with the number of depressive episodes. In BPD patients, lower LGI of orbitofrontal regions was associated with impulsivity. Our findings suggest abnormal early cortical development in MDD, affecting brain regions that have been frequently implied in MDD pathophysiology. However, LGI abnormalities may not be specific for MDD, since MDD and BPD patients also exhibited common patterns of hypogyrification. Hypogyrification of cortical regions associated with higher-order cognition appears to be most pronounced in MDD. Abnormal early cortical neurodevelopment may mediate vulnerability to disorders of emotion.
Collapse
Affiliation(s)
- Malte S Depping
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | | | - Nadine D Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Nenad Vasic
- Clinical Center Christophsbad, Department of Psychiatry and Psychotherapy, Göppingen, Germany
| | | | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, Italy
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany.
| |
Collapse
|
46
|
Smolker HR, Friedman NP, Hewitt JK, Banich MT. Neuroanatomical Correlates of the Unity and Diversity Model of Executive Function in Young Adults. Front Hum Neurosci 2018; 12:283. [PMID: 30083098 PMCID: PMC6064948 DOI: 10.3389/fnhum.2018.00283] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/25/2018] [Indexed: 01/23/2023] Open
Abstract
Understanding the neuroanatomical correlates of individual differences in executive function (EF) is integral to a complete characterization of the neural systems supporting cognition. While studies have investigated EF-neuroanatomy relationships in adults, these studies often include samples with wide variation in age, which may mask relationships between neuroanatomy and EF specific to certain neurodevelopmental time points, and such studies often use unreliable single task measures of EF. Here we address both issues. First, we focused on a specific age at which the majority of neurodevelopmental changes are complete but at which age-related atrophy is not likely (N = 251; mean age of 28.71 years, SD = 0.57). Second, we assessed EF through multiple tasks, deriving three factors scores guided by the unity/diversity model of EF, which posits a common EF factor that influences all EF tasks, as well as an updating-specific and shifting-specific factor. We found that better common EF was associated with greater volume and surface area of regions in right middle frontal gyrus/frontal pole, right inferior temporal gyrus, as well as fractional anisotropy in portions of the right superior longitudinal fasciculus (rSLF) and the left anterior thalamic radiation. Better updating-specific ability was associated with greater cortical thickness of a cluster in left cuneus/precuneus, and reduced cortical thickness in regions of right superior frontal gyrus and right middle/superior temporal gyrus, but no aspects of white matter diffusion. In contrast, better shifting-specific ability was not associated with gray matter characteristics, but rather was associated with increased mean diffusivity and reduced radial diffusivity throughout much of the brain and reduced axial diffusivity in distinct clusters of the left superior longitudinal fasciculus, the corpus callosum, and the right optic radiation. These results demonstrate that associations between individual differences in EF ability and regional neuroanatomical properties occur not only within classic brain networks thought to support EF, but also in a variety of other regions and white matter tracts. These relationships appear to differ from observations made in emerging adults (Smolker et al., 2015), which might indicate that the brain systems associated with EF continue to experience behaviorally relevant maturational process beyond the early 20s.
Collapse
Affiliation(s)
- Harry R Smolker
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
| | - Naomi P Friedman
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
| | - John K Hewitt
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
| | - Marie T Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
47
|
Schultz IZ, Sepehry AA, Greer SC. Impact of Common Mental Health Disorders on Cognition: Depression and Posttraumatic Stress Disorder in Forensic Neuropsychology Context. PSYCHOLOGICAL INJURY & LAW 2018. [DOI: 10.1007/s12207-018-9322-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Qi S, Yang X, Zhao L, Calhoun VD, Perrone-Bizzozero N, Liu S, Jiang R, Jiang T, Sui J, Ma X. MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder. Brain 2018; 141:916-926. [PMID: 29408968 PMCID: PMC5837315 DOI: 10.1093/brain/awx366] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/22/2017] [Accepted: 11/09/2017] [Indexed: 02/05/2023] Open
Abstract
There is compelling evidence that epigenetic factors contribute to the manifestation of depression, in which microRNA132 (miR-132) is suggested to play a pivotal role in the pathogenesis and neuronal mechanisms underlying the symptoms of depression. Additionally, several depression-associated genes [MECP2, ARHGAP32 (p250GAP), CREB, and period genes] were experimentally validated as miR-132 targets. However, most studies regarding miR-132 in major depressive disorder are based on post-mortem, animal models or genetic comparisons. This work will be the first attempt to investigate how miR-132 dysregulation may impact covariation of multimodal brain imaging data in 81 unmedicated major depressive patients and 123 demographically-matched healthy controls, as well as in a medication-naïve subset of major depressive patients. MiR-132 values in blood (patients > controls) was used as a prior reference to guide fusion of three MRI features: fractional amplitude of low frequency fluctuations, grey matter volume, and fractional anisotropy. The multimodal components correlated with miR-132 also show significant group difference in loadings. Results indicate that (i) higher miR-132 levels in major depressive disorder are associated with both lower fractional amplitude of low frequency fluctuations and lower grey matter volume in fronto-limbic network; and (ii) the identified brain regions linked with increased miR-132 levels were also associated with poorer cognitive performance in attention and executive function. Using a data-driven, supervised-learning method, we determined that miR-132 dysregulation in major depressive disorder is associated with multi-facets of brain function and structure in fronto-limbic network (the key network for emotional regulation and memory), which deepens our understanding of how miR-132 dysregulation in major depressive disorders contribute to the loss of specific brain areas and is linked to relevant cognitive impairments.
Collapse
Affiliation(s)
- Shile Qi
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
| | - Xiao Yang
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, China
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA
- Department of Electronical and Computer Engineering, University of New Mexico, USA
- Department of Neurosciences and Psychiatry, University of New Mexico, USA
- Department of Psychiatry, Yale University, CT, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences and Psychiatry, University of New Mexico, USA
- Department of Psychiatry, Yale University, CT, USA
| | - Shengfeng Liu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
| | - Rongtao Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
- CAS Centre for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, China
| | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
- The Mind Research Network, Albuquerque, NM, USA
- CAS Centre for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, China
| |
Collapse
|
49
|
Effects of a brief cognitive behavioural therapy group intervention on baseline brain perfusion in adolescents with major depressive disorder. Neuroreport 2018; 28:348-353. [PMID: 28328739 DOI: 10.1097/wnr.0000000000000770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A number of neuroimaging studies have identified altered regional cerebral blood flow (rCBF) related to major depressive disorder (MDD) in adult samples, particularly in the lateral prefrontal, cingular and temporal regions. In contrast, neuroimaging investigations in adolescents with MDD are rare, although investigating young patients during a significant period of brain maturation might offer valuable insights into the neural mechanisms of MDD. We acquired perfusion images obtained with continuous arterial spin labelling in 21 medication-naive adolescents with MDD before and after a five-session cognitive behavioural group therapy (group CBT). A control group included medication-naive patients under treatment as usual while waiting for the psychotherapy. We found relatively increased rCBF in the right dorsolateral prefrontal cortex (DLPFC; BA 46), the right caudate nucleus and the left inferior parietal lobe (BA 40) after CBT compared with before CBT. Relatively increased rCBF in the right DLPFC postgroup CBT was confirmed by time (post vs. pre)×group (intervention/waiting list) interaction analyses. In the waiting group, relatively increased rCBF was found in the thalamus and the anterior cingulate cortex (BA 24). The relatively small number of patients included in this pilot study has to be considered. Our findings indicate that noninvasive resting perfusion scanning is suitable to identify CBT-related changes in adolescents with MDD. rCBF increase in the DLPFC following a significant reduction in MDD symptoms in adolescents might represent the core neural correlate of changes in 'top-down' cognitive processing, a possible correlate of improved self-regulation and cognitive control.
Collapse
|
50
|
Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA. Stress and Loss of Adult Neurogenesis Differentially Reduce Hippocampal Volume. Biol Psychiatry 2017; 82:914-923. [PMID: 28629541 PMCID: PMC5683934 DOI: 10.1016/j.biopsych.2017.05.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/18/2017] [Accepted: 05/05/2017] [Indexed: 12/09/2022]
Abstract
BACKGROUND Hippocampal volume loss is a hallmark of clinical depression. Chronic stress produces volume loss in the hippocampus in humans and atrophy of CA3 pyramidal cells and suppression of adult neurogenesis in rodents. METHODS To investigate the relationship between decreased adult neurogenesis and stress-induced changes in hippocampal structure and volume, we compared the effects of chronic unpredictable restraint stress and inhibition of neurogenesis in a rat pharmacogenetic model. RESULTS Chronic unpredictable restraint stress over 4 weeks decreased total hippocampal volume, reflecting loss of volume in all hippocampal subfields and in both dorsal and ventral hippocampus. In contrast, complete inhibition of adult neurogenesis for 4 weeks led to volume reduction only in the dentate gyrus. With prolonged inhibition of neurogenesis for 8 or 16 weeks, volume loss spread to the CA3 region, but not CA1. Combining stress and inhibition of adult neurogenesis did not have additive effects on the magnitude of volume loss but did produce a volume reduction throughout the hippocampus. One month of chronic unpredictable restraint stress and inhibition of adult neurogenesis led to atrophy of pyramidal cell apical dendrites in dorsal CA3 and to neuronal reorganization in ventral CA3. Stress also significantly affected granule cell dendrites. CONCLUSIONS The findings suggest that adult neurogenesis is required to maintain hippocampal volume but is not responsible for stress-induced volume loss.
Collapse
Affiliation(s)
- Timothy J Schoenfeld
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
| | - Hayley C McCausland
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - H Douglas Morris
- Nuclear Magnetic Resonance Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Varun Padmanaban
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|