1
|
Fu XP, Wu RK, Shah AP, Ladenheim B, Alt J, Cadet JL, Rais R, Chandra R, Cen XB, Baraban JM. Translin deletion impairs cocaine-induced locomotor sensitization and RGS8 expression in the nucleus accumbens. Acta Pharmacol Sin 2025:10.1038/s41401-025-01565-z. [PMID: 40355655 DOI: 10.1038/s41401-025-01565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025]
Abstract
Multiple lines of evidence show that the microRNA system plays a prominent role in regulating behavioral responses to psychostimulants. Suppressing microRNA degradation is an effective strategy for elucidating the impact of these intracellular messengers on cellular function. The translin/trax complex is an RNase that appears to mediate degradation of a small number of microRNAs. In this study we investigated the effect of deleting the translin/trax microRNA-degrading enzyme on cocaine-induced behavioral responses in mice. Wild type and Translin (Tsn) KO mice were injected with cocaine and their open-field locomotor activity was monitored. We found that the locomotor activity in response to repeated (5, 10 and 20 mg/kg, i.p.), but not acute (20 mg/kg, i.p.), cocaine exposure was significantly impaired in Tsn KO mice. We identified several microRNAs (412-5p, 412-3p, 93-3p, 7b-3p, and 204-5p) that were significantly increased in the NAc of Tsn KO mice. As regulator of G-protein signaling 8 (RGS8) is a predicted target gene shared by three of these microRNAs, and expressed in the NAc, we confirmed its reduced expression in this region in Tsn KO mice. Moreover, shRNA-mediated knockdown of RGS8 in the NAc attenuated locomotor sensitization to repeated cocaine administration. Taken together, our results suggest that microRNAs targeted by the translin/trax RNase inhibit cocaine-induced locomotor sensitization, in part, by silencing expression of RGS8.
Collapse
Affiliation(s)
- Xiu-Ping Fu
- School of Life Sciences, Tiangong University, Tianjin, 300387, China.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Ren-Kun Wu
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Aparna P Shah
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, Baltimore, MD, 21224, USA
| | - Jesse Alt
- John Hopkins Drug Discovery, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, Baltimore, MD, 21224, USA
| | - Rana Rais
- John Hopkins Drug Discovery, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Ramesh Chandra
- Department of Neurobiology, University of Maryland School of Medicine Baltimore, Baltimore, MD, 21201, USA
| | - Xiao-Bo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jay M Baraban
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Petrovick M, Shcherbina A, Farina EK, Thompson LA, Niro PJ, McClung JP, Lieberman HR. The minor allele of the serotonin transporter gene variant rs4251417 is associated with increased resilience in soldiers experiencing acute stress during survival training: preliminary findings. ANXIETY, STRESS, AND COPING 2025; 38:161-180. [PMID: 39165169 DOI: 10.1080/10615806.2024.2388850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Variation in cognitive, emotional and physical performance in response to stress is attributable to environmental and genetic factors. Ability to adapt to stress is resilience. OBJECTIVES This study investigated genetic factors associated with resilience in soldiers exposed to severe stress due to intense physical and mental demands at Survive, Evade, Resist and Escape school, a unique environment to study acute stress and resiliency in real-world circumstances. DESIGN A preliminary correlational study was conducted to identify genetic markers for resilience to stress. METHODS Mood state, resiliency and dissociative state of 73 soldiers were assessed using: Connor-Davidson Resilience Scale (CD-RISC); Profile of Mood States (POMS); and Clinician-Administered Dissociative States Scale (CADSS). Change scores for resilience-related stress markers were computed; 116 single nucleotide polymorphisms (SNPs) associated with stress, depression, anxiety, sleep, or psychiatric disorders were assessed. RESULTS A significant association between change in CD-RISC score and SNP rs4251417, present in an intron of SLC6A4, the serotonin transporter gene, was observed. CONCLUSIONS Individuals with the minor allele of SNP rs4251417 had a greater positive change in CD-RISC, indicating increased self-assessed resilience. This study suggests the minor allele of SNP rs4251417 of SLC6A4 is associated with resilience when individuals are exposed to high stress.
Collapse
Affiliation(s)
- Martha Petrovick
- Biological & Chemical Technologies, MIT Lincoln Laboratory, Lexington, MA, USA
| | - Anna Shcherbina
- Biological & Chemical Technologies, MIT Lincoln Laboratory, Lexington, MA, USA
| | - Emily K Farina
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Lauren A Thompson
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Philip J Niro
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - James P McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Harris R Lieberman
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
3
|
Arčan IŠ, Kouter K, Zupanc T, Paska AV. Epigenetics and suicide: investigating altered H3K14ac unveiled differential expression in ADORA2A, B4GALT2 and MMP14. Epigenomics 2024; 16:701-714. [PMID: 38545853 PMCID: PMC11318710 DOI: 10.2217/epi-2023-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Background: Environmental factors make an important contribution to suicide. Histone tails are prone to different modifications, leading to changes of chromatin (de)condensation and consequently gene expression. Materials & methods: Level of H3K14ac was studied with chromatin immunoprecipitation followed by high-throughput DNA sequencing. Genes were further validated with RT-qPCR; using hippocampal tissue. Results: We showed lowered H3K14ac levels in individuals who died by suicide. The genes ADORA2A, B4GALT2 and MMP14 showed differential expression in individuals who died by suicide. Identified genetic and protein interactions among genes show interactions with suicide-related genes. Conclusion: Further investigations of histone modifications in association with DNA methylation and miRNA are needed to expand our knowledge of the genes that could significantly contribute to suicide.
Collapse
Affiliation(s)
- Iris Šalamon Arčan
- Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Kouter
- Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Microbiology & Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alja Videtič Paska
- Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Hemmat N, Asadzadeh H, Asadzadeh Z, Shadbad MA, Baradaran B. The Analysis of Herpes Simplex Virus Type 1 (HSV-1)-Encoded MicroRNAs Targets: A Likely Relationship of Alzheimer's Disease and HSV-1 Infection. Cell Mol Neurobiol 2022; 42:2849-2861. [PMID: 34661780 PMCID: PMC11421598 DOI: 10.1007/s10571-021-01154-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD), the most frequently diagnosed dementia, is a senile neurodegenerative disorder characterized by amnesia and cognitive dysfunction. Unfortunately, there are still no successful strategies to prevent AD progression. Thus, the vast majority of research focuses on recognizing risk factors for developing and progressing this disease. Human spirochetes, fungi, Borrelia burgdorferi, Chlamydophila pneumoniae, Helicobacter pylori, and human herpes simplex virus type 1 (HSV-1) have all been implicated in the development and progression of AD. Identifying microRNAs (miRs) encoded by DNA viruses has indicated that viruses can be evolved to exploit RNA silencing to regulate host and viral genes. Similar to host miR, v-miR can interact with the 3' untranslated region (UTR) of the target mRNA to regulate gene expression. Although HSV-1 can also encode various miRs, their significance in the development and progression of AD is still unclear. In the present study, utilizing the bioinformatics approach (R software and related packages), we analyzed the differentially expressed genes (DEGs) in AD samples (grey matter) of GSE37263 dataset obtained from the NCBI Gene Expression Omnibus (GEO). Then, the sequences of HSV-1-encoded-miRs were retrieved from miRbase, and their targets were predicted by miRDB. Afterward, the common genes between downregulated DEGs in AD and targets of HSV-1-encoded miRs were identified to shed new light on the relationship between HSV-1 infection and AD development. Our results have indicated that HSV-1-encoded-miRs can target the downregulated DEGs in AD, and these aberrant interactions can offer valuable diagnostic/prognostic biomarkers for affected patients.
Collapse
Affiliation(s)
- Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haniyeh Asadzadeh
- Department of Psychology, Ardabil Branch of Islamic Azad University, Ardabil, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Kung PL, Chou TW, Lindman M, Chang NP, Estevez I, Buckley BD, Atkins C, Daniels BP. Zika virus-induced TNF-α signaling dysregulates expression of neurologic genes associated with psychiatric disorders. J Neuroinflammation 2022; 19:100. [PMID: 35462541 PMCID: PMC9036774 DOI: 10.1186/s12974-022-02460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) is an emerging flavivirus of global concern. ZIKV infection of the central nervous system has been linked to a variety of clinical syndromes, including microcephaly in fetuses and rare but serious neurologic disease in adults. However, the potential for ZIKV to influence brain physiology and host behavior following apparently mild or subclinical infection is less well understood. Furthermore, though deficits in cognitive function are well-documented after recovery from neuroinvasive viral infection, the potential impact of ZIKV on other host behavioral domains has not been thoroughly explored. METHODS We used transcriptomic profiling, including unbiased gene ontology enrichment analysis, to assess the impact of ZIKV infection on gene expression in primary cortical neuron cultures. These studies were extended with molecular biological analysis of gene expression and inflammatory cytokine signaling. In vitro observations were further confirmed using established in vivo models of ZIKV infection in immunocompetent hosts. RESULTS Transcriptomic profiling of primary neuron cultures following ZIKV infection revealed altered expression of key genes associated with major psychiatric disorders, such as bipolar disorder and schizophrenia. Gene ontology enrichment analysis also revealed significant changes in gene expression associated with fundamental neurobiological processes, including neuronal development, neurotransmission, and others. These alterations to neurologic gene expression were also observed in the brain in vivo using several immunocompetent mouse models of ZIKV infection. Mechanistic studies identified TNF-α signaling via TNFR1 as a major regulatory mechanism controlling ZIKV-induced changes to neurologic gene expression. CONCLUSIONS Our studies reveal that cell-intrinsic innate immune responses to ZIKV infection profoundly shape neuronal transcriptional profiles, highlighting the need to further explore associations between ZIKV infection and disordered host behavioral states.
Collapse
Affiliation(s)
- Po-Lun Kung
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Tsui-Wen Chou
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Marissa Lindman
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Nydia P. Chang
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Irving Estevez
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Benjamin D. Buckley
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Colm Atkins
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Brian P. Daniels
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| |
Collapse
|
6
|
Calabrò M, Mandelli L, Crisafulli C, Nicola MD, Colombo R, Janiri L, Lee SJ, Jun TY, Wang SM, Masand PS, Patkar AA, Han C, Pae CU, Serretti A. ZNF804A Gene Variants Have a Cross-diagnostic Influence on Psychosis and Treatment Improvement in Mood Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:231-240. [PMID: 32329304 PMCID: PMC7242106 DOI: 10.9758/cpn.2020.18.2.231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Objective Genetic variations in the gene encoding zinc finger protein 804A gene (ZNF804A) have been associated with major depression and bipolar disorder. In this work we focused on the potential influence of ZNF804A variations on the risk of developing specific sub-phenotypes as well as the individual response to available treatments. Methods We used two samples of different ethnic origin: a Korean sample, composed by 242 patients diagnosed with major depression and 132 patients diagnosed with bipolar disorder and 326 healthy controls; an Italian sample composed 151 major depression subjects, 189 bipolar disorder subjects and 38 outpatients diagnosed for a primary anxiety disorder. Results Our analyses reported an association of rs1344706 with psychotic phenotype in the cross-diagnostic pooled sample (geno p = 4.15 × 10−4, allelic p = 1.06 × 10−4). In the cross-diagnosis Italian sample but not in the Korean one, rs7597593 was involved with depressive symptoms improvement after treatment (geno p = 0.025, allelic p = 0.007). Conclusion The present study evidenced the role of ZNF804A alterations in symptoms improvement after treatment. Both manic and depressive symptoms seem to be modulated by ZNF804A, though the latter was observed in the bipolar pooled sample only. The role of this factor is likely related to synaptic development and maintenance; however, further analyses will be needed to better understand the molecular mechanics involved with ZNF804A.
Collapse
Affiliation(s)
| | - Laura Mandelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Marco Di Nicola
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberto Colombo
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Janiri
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Soo-Jung Lee
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae-Youn Jun
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sheng-Min Wang
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Ashwin A Patkar
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA
| | - Changsu Han
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Korea
| | - Chi-Un Pae
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA.,Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Abstract
Psychiatric disorders are disturbances of cognitive and behavioral processes mediated by the brain. Emerging evidence suggests that accurate biomarkers for psychiatric disorders might benefit from incorporating information regarding multiple brain regions and their interactions with one another, rather than considering local perturbations in brain structure and function alone. Recent advances in the field of applied mathematics generally - and network science specifically - provide a language to capture the complexity of interacting brain regions, and the application of this language to fundamental questions in neuroscience forms the emerging field of network neuroscience. This chapter provides an overview of the use and utility of network neuroscience for building biomarkers in psychiatry. The chapter begins with an overview of the theoretical frameworks and tools that encompass network neuroscience before describing applications of network neuroscience to the study of schizophrenia and major depressive disorder. With reference to work on genetic, molecular, and environmental correlates of network neuroscience features, the promises and challenges of network neuroscience for providing tools that aid in the diagnosis and the evaluation of treatment response in psychiatric disorders are discussed.
Collapse
|
8
|
Salagre E, Arango C, Artigas F, Ayuso-Mateos JL, Bernardo M, Castro-Fornieles J, Bobes J, Desco M, Fañanás L, González-Pinto A, Haro JM, Leza JC, Mckenna PJ, Meana JJ, Menchón JM, Micó JA, Palomo T, Pazos Á, Pérez V, Saiz-Ruiz J, Sanjuán J, Tabarés-Seisdedos R, Crespo-Facorro B, Casas M, Vilella E, Palao D, Olivares JM, Rodriguez-Jimenez R, Vieta E. CIBERSAM: Ten years of collaborative translational research in mental disorders. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2018; 12:1-8. [PMID: 30416047 DOI: 10.1016/j.rpsm.2018.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Estela Salagre
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Servicio de Psiquiatría y Psicología, Hospital Clínic, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España
| | - Celso Arango
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Servicio de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón (IiSGM), Facultad de Medicina, Universidad Complutense, CIBERSAM, Madrid, España
| | - Francesc Artigas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Departamento de Neuroquímica y Neurofarmacología, Institut d'Investigacions Biomèdiques de Barcelona IIBB-CSIC, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España
| | - José Luis Ayuso-Mateos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Departamento de Psiquiatría, Universidad Autónoma de Madrid, Madrid, España
| | - Miquel Bernardo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Unidad Esquizofrenia Clínic, Institut Clínic de Neurociencias, Hospital Clínic, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España
| | - Josefina Castro-Fornieles
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Servicio de Psiquiatría y Psicología Infantil y Juvenil, Institut Clínic de Neurociencias, IDIBAPS, Hospital Clínic de Barcelona, Barcelona, España
| | - Julio Bobes
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Área de Psiquiatría, Universidad de Oviedo, Servicio de Salud del Principado de Asturias, Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Asturias, España
| | - Manuel Desco
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Instituto de Investigación Sanitaria Gregorio Marañón, Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, España
| | - Lourdes Fañanás
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Secció Zoologia i Antropologia Biològica, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, España
| | - Ana González-Pinto
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Departamento de Psiquiatría, Hospital Universitario Araba, Instituto de Investigación Sanitaria Bioaraba; Universidad del País Vasco, Vitoria, España
| | - Josep María Haro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Sant Boi de Llobregat, Barcelona, España
| | - Juan Carlos Leza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto Universitario de Investigación en Neuroquímica UCM, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, España
| | - Peter J Mckenna
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; FIDMAG Germanes Hospitalàries Research Foundation, Sant Boi de Llobregat, Barcelona, España
| | - José Javier Meana
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Departamento de Farmacología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Barakaldo, Bizkaia, España
| | - José Manuel Menchón
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Servicio de Psiquiatría, Hospital Universitari de Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat; Departamento de Ciencias Clínicas, Universitat de Barcelona, Barcelona, España
| | - Juan Antonio Micó
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Grupo de Investigación en Neuropsicofarmacología y Psicobiología,, Departamento de Neurociencias, Universidad de Cádiz, Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, España
| | - Tomás Palomo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Departamento de Psiquiatría, Hospital 12 de Octubre, Madrid, España
| | - Ángel Pazos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Cantabria, España
| | - Víctor Pérez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, Universitat Autònoma de Barcelona, Neurosciences Research Programme, Hospital del Mar Medical Research Institute (IMIM), Barcelona, España
| | - Jerónimo Saiz-Ruiz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Departamento de Psiquiatría, Hospital Ramon y Cajal, Universidad de Alcalá, IRYCIS, Madrid, España
| | - Julio Sanjuán
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; INCLIVA, Universidad de Valencia, Hospital Clínico Universitario de Valencia, Valencia, España
| | - Rafael Tabarés-Seisdedos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Departamento de Medicina, INCLIVA, Universidad de Valencia, Valencia, España
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Cantabria, España
| | - Miquel Casas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Servicio de Psiquiatría, Hospital Universitari Vall d'Hebron, Departamento de Psiquiatría y Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, España
| | - Elisabet Vilella
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Tarragona, España
| | - Diego Palao
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Servei de Salut Mental, Parc Taulí Hospital Universitari, Institut de Recerca i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Barcelona, España
| | - Jose Manuel Olivares
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Unidad de Psiquiatría, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Instituto Biomédico Galicia Sur, Vigo, Pontevedra, España
| | - Roberto Rodriguez-Jimenez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Departamento de Psiquiatría, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), CogPsy-Group, Universidad Complutense de Madrid (UCM), Madrid, España
| | - Eduard Vieta
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, España; Servicio de Psiquiatría y Psicología, Hospital Clínic, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, España.
| |
Collapse
|
9
|
Weng YT, Chien T, Kuan II, Chern Y. The TRAX, DISC1, and GSK3 complex in mental disorders and therapeutic interventions. J Biomed Sci 2018; 25:71. [PMID: 30285728 PMCID: PMC6171312 DOI: 10.1186/s12929-018-0473-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Psychiatric disorders (such as bipolar disorder, depression, and schizophrenia) affect the lives of millions of individuals worldwide. Despite the tremendous efforts devoted to various types of psychiatric studies and rapidly accumulating genetic information, the molecular mechanisms underlying psychiatric disorder development remain elusive. Among the genes that have been implicated in schizophrenia and other mental disorders, disrupted in schizophrenia 1 (DISC1) and glycogen synthase kinase 3 (GSK3) have been intensively investigated. DISC1 binds directly to GSK3 and modulates many cellular functions by negatively inhibiting GSK3 activity. The human DISC1 gene is located on chromosome 1 and is highly associated with schizophrenia and other mental disorders. A recent study demonstrated that a neighboring gene of DISC1, translin-associated factor X (TRAX), binds to the DISC1/GSK3β complex and at least partly mediates the actions of the DISC1/GSK3β complex. Previous studies also demonstrate that TRAX and most of its interacting proteins that have been identified so far are risk genes and/or markers of mental disorders. In the present review, we will focus on the emerging roles of TRAX and its interacting proteins (including DISC1 and GSK3β) in psychiatric disorders and the potential implications for developing therapeutic interventions.
Collapse
Affiliation(s)
- Yu-Ting Weng
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China
| | - Ting Chien
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - I-I Kuan
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China.
| |
Collapse
|
10
|
Fabbri C, Tansey KE, Perlis RH, Hauser J, Henigsberg N, Maier W, Mors O, Placentino A, Rietschel M, Souery D, Breen G, Curtis C, Sang-Hyuk L, Newhouse S, Patel H, Guipponi M, Perroud N, Bondolfi G, O'Donovan M, Lewis G, Biernacka JM, Weinshilboum RM, Farmer A, Aitchison KJ, Craig I, McGuffin P, Uher R, Lewis CM. New insights into the pharmacogenomics of antidepressant response from the GENDEP and STAR*D studies: rare variant analysis and high-density imputation. THE PHARMACOGENOMICS JOURNAL 2018; 18:413-421. [PMID: 29160301 PMCID: PMC10204124 DOI: 10.1038/tpj.2017.44] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022]
Abstract
Genome-wide association studies have generally failed to identify polymorphisms associated with antidepressant response. Possible reasons include limited coverage of genetic variants that this study tried to address by exome genotyping and dense imputation. A meta-analysis of Genome-Based Therapeutic Drugs for Depression (GENDEP) and Sequenced Treatment Alternatives to Relieve Depression (STAR*D) studies was performed at the single-nucleotide polymorphism (SNP), gene and pathway levels. Coverage of genetic variants was increased compared with previous studies by adding exome genotypes to previously available genome-wide data and using the Haplotype Reference Consortium panel for imputation. Standard quality control was applied. Phenotypes were symptom improvement and remission after 12 weeks of antidepressant treatment. Significant findings were investigated in NEWMEDS consortium samples and Pharmacogenomic Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) for replication. A total of 7062 950 SNPs were analyzed in GENDEP (n=738) and STAR*D (n=1409). rs116692768 (P=1.80e-08, ITGA9 (integrin α9)) and rs76191705 (P=2.59e-08, NRXN3 (neurexin 3)) were significantly associated with symptom improvement during citalopram/escitalopram treatment. At the gene level, no consistent effect was found. At the pathway level, the Gene Ontology (GO) terms GO: 0005694 (chromosome) and GO: 0044427 (chromosomal part) were associated with improvement (corrected P=0.007 and 0.045, respectively). The association between rs116692768 and symptom improvement was replicated in PGRN-AMPS (P=0.047), whereas rs76191705 was not. The two SNPs did not replicate in NEWMEDS. ITGA9 codes for a membrane receptor for neurotrophins and NRXN3 is a transmembrane neuronal adhesion receptor involved in synaptic differentiation. Despite their meaningful biological rationale for being involved in antidepressant effect, replication was partial. Further studies may help in clarifying their role.
Collapse
Affiliation(s)
- C Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - K E Tansey
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - R H Perlis
- Department of Psychiatry, Center for Experimental Drugs and Diagnostics, Massachusetts General Hospital, Boston, MA, USA
| | - J Hauser
- Laboratory of Psychiatric Genetics, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - N Henigsberg
- Croatian Institute for Brain Research, Medical School, University of Zagreb, Zagreb, Croatia
| | - W Maier
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - O Mors
- Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - A Placentino
- Biological Psychiatry Unit and Dual Diagnosis Ward, Istituto Di Ricovero e Cura a Carattere Scientifico, Centro San Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - M Rietschel
- Division of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - D Souery
- Laboratoire de Psychologie Médicale, Université Libre de Bruxelles and Psy Pluriel-Centre Européen de Psychologie Médicale, Brussels, Belgium
| | - G Breen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - C Curtis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - L Sang-Hyuk
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - S Newhouse
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - H Patel
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M Guipponi
- Department of Genetic Medicine and Development, University of Geneva Medical School and University Hospitals of Geneva, Geneva, Switzerland
| | - N Perroud
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - G Bondolfi
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - M O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - G Lewis
- Division of Psychiatry, University College London (UCL), London, UK
| | - J M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - R M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - A Farmer
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - K J Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - I Craig
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - P McGuffin
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - R Uher
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - C M Lewis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
11
|
Huang X, Luo YL, Mao YS, Ji JL. The link between long noncoding RNAs and depression. Prog Neuropsychopharmacol Biol Psychiatry 2017; 73:73-78. [PMID: 27318257 DOI: 10.1016/j.pnpbp.2016.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022]
Abstract
The major depressive disorder (MDD) is a relatively common mental disorder from which that hundreds of million people have suffered, leading to displeasing life quality, which is characterized by health damage and even suicidal thoughts. The complicated development and functioning of MDD is still under exploration. Long noncoding RNA (lncRNAs) are highly expressed in the brain, could affect neural stem cell maintenance, neurogenesis and gliogenesis, brain patterning, synaptic and stress responses, and neural plasticity. The dysregulation of certain lncRNAs induces in neurodevelopmental, neurodegenerative and neuroimmunological disorders, primary brain tumors, and psychiatric diseases. Although advances have been made, no fully satisfactory treatments for major depression are available, further investigation is requested. And recently data showed that the expression level of the majority of lncRNAs demonstrated a clear tendency of upregulation, and the certain dysregulated miRNAs and lncRNAs in the MDD have been proved to have a co-synergism mechanism, that is why we speculate lncRNA might get the capability to regulate MDD. Few identified lncRNAs have been deeply studied in detailed experiments up until now, little predictions of their function have been raised, and further researches is calling for discover their signal pathway and related regulatory networks.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan-Li Luo
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai 200065, China
| | - Yue-Shi Mao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Lin Ji
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
12
|
Zanella R, Morés N, Morés MAZ, Peixoto JO, Zanella EL, Ciacci-Zanella JR, Ibelli AMG, Gava D, Cantão ME, Ledur MC. Genome-wide association study of periweaning failure-to-thrive syndrome (PFTS) in pigs. Vet Rec 2016; 178:653. [PMID: 27162284 DOI: 10.1136/vr.103546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 01/01/2023]
Abstract
Porcine periweaning-failure-to-thrive syndrome (PFTS) is a condition that affects newly weaned piglets. It is characterised by a progressive debilitation leading to death, in the absence of infectious, nutritional, management or environmental factors. In this study, we present the first report of PFTS in South America and the results of a genome-wide association study to identify the genetic markers associated with the appearance of this condition in a crossbred swine population. Four chromosomal regions were associated with PFTS predisposition, one located on SSCX, one on SSC8, and the two other regions on SSC14. Regions on SSC8 and SSC14 harbour important functional candidate genes involved in human depression and might have an important role in PFTS. Our findings contribute to the increasing knowledge about this syndrome, which has been investigated since 2007, and to the identification of the aetiology of this disease.
Collapse
Affiliation(s)
- R Zanella
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - N Morés
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M A Z Morés
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - J O Peixoto
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - E L Zanella
- R. Zanella's present address is College of Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - J R Ciacci-Zanella
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - A M G Ibelli
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - D Gava
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M E Cantão
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M C Ledur
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| |
Collapse
|
13
|
Kalueff AV, Stewart AM, Nguyen M, Song C, Gottesman II. Targeting drug sensitivity predictors: New potential strategies to improve pharmacotherapy of human brain disorders. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:76-82. [PMID: 25976211 DOI: 10.1016/j.pnpbp.2015.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
Abstract
One of the main challenges in medicine is the lack of efficient drug therapies for common human disorders. For example, although depressed patients receive powerful antidepressants, many often remain resistant to psychopharmacotherapy. The growing recognition of complex interplay between the drug targets and the predictors of drug sensitivity requires an improved understanding of these two key aspects of drug action and their potentially shared molecular networks. Here, we apply the concept of endophenotypes and their interplay to drug action and sensitivity. Based on these analyses, we postulate that novel drugs may be developed by targeting specific molecular pathways that integrate drug targets with drug sensitivity predictors.
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | | | - Michael Nguyen
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Irving I Gottesman
- Department of Psychology, University of Minnesota, Elliot Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Pasquini M, Berardelli I, Biondi M. Ethiopathogenesis of depressive disorders. Clin Pract Epidemiol Ment Health 2014; 10:166-171. [PMID: 25614753 PMCID: PMC4296471 DOI: 10.2174/1745017901410010166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/09/2014] [Accepted: 08/19/2014] [Indexed: 11/22/2022]
Abstract
Etiology of depressive disorders is still unknown. Several factors are involved in its pathophysiology such as neurotransmitters and neuroendocrine alterations, genetics, life events and their appraisal. Some of these components are strictly linked. Subjects with a family member affected by mood disorders are more prone to suffer from depressive disorders. It is also true that receiving feedbacks of indifference or neglect during childhood from one parent who suffer from depression may represent a factor of vulnerability. Indeed, reaction to a specific negative event may determine an increased allostasis which lead to a depressive episode. Thus, a psychological cause does not exclude a neurobiological cascade. Whereas in other cases recurrent depressive episodes appear in absence of any negative life event. This review provides a set of data regarding the current etiopathogenesis models of depression, with a particular attention to the neurobiological correlates and vulnerability factors.
Collapse
Affiliation(s)
- M Pasquini
- Department of Neurology and Psychiatry, SAPIENZA, University of Rome, Italy
| | | | | |
Collapse
|