1
|
Zhao J, Jia H, Ma P, Zhu D, Fang Y. Multidimensional mechanisms of anxiety and depression in Parkinson's disease: Integrating neuroimaging, neurocircuits, and molecular pathways. Pharmacol Res 2025; 215:107717. [PMID: 40157405 DOI: 10.1016/j.phrs.2025.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Anxiety and depression are common non-motor symptoms of Parkinson's disease (PD) that significantly affect patients' quality of life. In recent years, our understanding of PD has advanced through multifaceted studies on the pathological mechanisms associated with anxiety and depression in PD. These classic psychiatric symptoms involve complex pathophysiology, with both distinct features and connections to the mechanisms underlying the aetiology of PD. Furthermore, the co-occurrence of anxiety and depression in PD blurs the boundaries between them. Therefore, a comprehensive summary of the pathogenic mechanisms associated with anxiety and depression will aid in better addressing the emergence of these classic psychiatric symptoms in PD. This article integrates neuroanatomical, neural projection, neurotransmitter, neuroinflammatory, brain-gut axis, neurotrophic, hypothalamic-pituitary-adrenal axis, and genetic perspectives to provide a comprehensive description of the core pathological alterations underlying anxiety and depression in PD, aiming to provide an up-to-date perspective and broader therapeutic prospects for PD patients suffering from anxiety or depression.
Collapse
Affiliation(s)
- Jihu Zhao
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Huafang Jia
- Qingdao Medical College of Qingdao University, Qingdao, Shandong, China.
| | - Pengju Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Deyuan Zhu
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yibin Fang
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Carey G, Kuijf ML, Michielse S, Wolters AF, Dujardin K, Leentjens AF. Reduced volume of the mediodorsal and anteroventral thalamus is associated with anxiety in Parkinson's disease: A cross-sectional 7-tesla MRI study. JOURNAL OF PARKINSON'S DISEASE 2025; 15:338-348. [PMID: 39973507 DOI: 10.1177/1877718x241308141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundParkinson's disease (PD)-related anxiety occurs frequently and may be associated with imbalance between anxiety-related circuits. While the thalamus is a shared region of these circuits, its role in PD-related anxiety has not been explored so far.ObjectiveTo identify changes in volume of the thalamus and its subnuclei in patients with PD-related anxiety.MethodsCognitively intact PD patients (n = 105) were divided into two groups based on their score on the Parkinson anxiety scale (PAS): 31 PD patients had anxiety (Anx-PD) and 74 did not have anxiety (non-Anx-PD). Forty-five healthy control subjects were included. Participants underwent 7-Tesla MRI scanning. Using automatic segmentation, the volumes of the thalamus and its subnuclei were measured, compared between the groups and regressed on the PAS.ResultsThe volumes of the thalamus and its subnuclei did not significantly differ between the groups. However, in anxious PD patients, more severe anxiety was strongly associated with a smaller volume of the right medial thalamic subregion, specifically the right mediodorsal magnocellular nucleus and the right mediodorsal parvocellular nucleus (R = 0.63, ßPAS = -0.546, p-valuemodel = 0.007 and R = 0.60, ßPAS = -0.547, p-valuemodel = 0.016, respectively), and of the left anteroventral thalamus (R = 0.73, FDR p-valuemodel = 0.002, ßPAS = -0.407, p-valuePAS = 0.01).ConclusionsA reduced volume of the mediodorsal and anteroventral thalamus, overlapping structures between the anxiety related circuits, are associated with more severe PD-related anxiety and may explain its high prevalence in the disease.
Collapse
Affiliation(s)
- Guillaume Carey
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, The Netherlands
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Department of Neurology and Movement Disorders, Lille University Medical Centre, Lille, France
| | - Mark L Kuijf
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stijn Michielse
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Amée F Wolters
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Neurology, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Kathy Dujardin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Department of Neurology and Movement Disorders, Lille University Medical Centre, Lille, France
| | - Albert Fg Leentjens
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
3
|
Jellinger KA. Behavioral disorders in Parkinson disease: current view. J Neural Transm (Vienna) 2025; 132:169-201. [PMID: 39453553 DOI: 10.1007/s00702-024-02846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Patients with Parkinson disease (PD) frequently experience several behavioral symptoms, such as anxiety, apathy, irritability, agitation, impulsive control and obsessive-compulsive or REM sleep behavior disorders, which can cause severe psychosocial problems and impair quality of life. Occurring in 30-70% of PD patients, these symptoms can manifest at early stages of the disease, sometimes even before the appearance of classic motor symptoms, while others can develop later. Behavioral changes in PD show distinct patterns of brain atrophy, dopaminergic and serotonergic deterioration, altered neuronal connectivity in frontostriatal, corticolimbic, default mode and other networks due to a cascade linking molecular pathologies and deficits in multiple behavior domains. The changes suggest a multi-system neurodegenerative process in the context of a specific α-synucleinopathy inducing a variety of biochemical and functional changes, the neurobiological basis and clinical relevance of which await further elucidation. This paper is intended to review the recent literature with focus on the main behavioral disturbances in PD patients, their epidemiology, clinical features, risk factors, animal models, neuroimaging findings, pathophysiological backgrounds, and treatment options of these deleterious lesions.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
4
|
Yan X, Ebitz RB, Grissom N, Darrow DP, Herman AB. Distinct Computational Mechanisms of Uncertainty Processing Explain Opposing Exploratory Behaviors in Anxiety and Apathy. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00027-8. [PMID: 39805553 DOI: 10.1016/j.bpsc.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/21/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Decision making in uncertain environments can lead to varied outcomes, and how we process those outcomes may depend on our emotional state. Understanding how individuals interpret the sources of uncertainty is crucial for understanding adaptive behavior and mental well-being. Uncertainty can be broadly categorized into 2 components: volatility and stochasticity. Volatility describes how quickly conditions change. Stochasticity, on the other hand, refers to outcome randomness. We investigated how anxiety and apathy influenced people's perceptions of uncertainty and how uncertainty perception shaped explore-exploit decisions. METHODS Participants (N = 1001, nonclinical sample) completed a restless 3-armed bandit task that was analyzed using both latent state and process models. RESULTS Individuals with anxiety perceived uncertainty as resulting more from volatility, leading to increased exploration and learning rates, especially after reward omission. Conversely, individuals with apathy viewed uncertainty as more stochastic, resulting in decreased exploration and learning rates. The perceived volatility to stochasticity ratio mediated the anxiety-exploration relationship post adverse outcomes. Dimensionality reduction showed exploration and uncertainty estimation to be distinct but related latent factors shaping a manifold of adaptive behavior that is modulated by anxiety and apathy. CONCLUSIONS These findings reveal distinct computational mechanisms for how anxiety and apathy influence decision making, providing a framework for understanding cognitive and affective processes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xinyuan Yan
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota
| | - R Becket Ebitz
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| | - Nicola Grissom
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - David P Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Alexander B Herman
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
5
|
Hu C, Zhang L, Luo G, Yao H, Song X, Liu Z. Clinical efficacy of low-intensity pulsed ultrasound in Parkinson's disease with cognitive impairment. J Neurophysiol 2024; 132:1633-1638. [PMID: 39356073 DOI: 10.1152/jn.00323.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024] Open
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a new technique for invasive brain stimulation and modulation that has emerged recently, but the effects in Parkinson's disease with cognitive impairment (PD-CI) have been less observed. In this study, we recruited 56 patients with PD-CI who were continuously treated with LIPUS for 8 wk, and observed the clinical efficacy of LIPUS on patients with PD-CI by comparing with the Sham stimulation continuous treatment. Fifty-six patients with PD-CI were divided into the Sham group (given Sham stimulation on top of conventional medication, n = 28) and the LIPUS group (given LIPUS stimulation on top of conventional medication, n = 28), and both groups continued treatment for 8 wk. Post-treatment efficacy and pre- and post-treatment cognitive function [Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA)], emotional state [Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI)], quality of life [Unified Parkinson's Disease Rating Scale (UPDRS), 39-item Parkinson's Disease Questionnaire (PDQ-39)], and serologic indices [5-hydroxytryptamine (5-HT), norepinephrine (NE), and dopamine (DA)] were compared. The total effective rate of the LIPUS group was higher versus that of the Sham group. In both groups, MMSE and MoCA scores increased; BDI and BAI scores decreased; UPDRS and PDQ-39 scores were reduced; the levels of 5-HT, NE, and DA were elevated. The aforementioned changes were more pronounced in the LIPUS group (all P < 0.05). The application of LIPUS on PD-CI could ameliorate patients' cognitive function, emotional state, and quality of life, and regulate and optimize neurotransmitter expression levels.NEW & NOTEWORTHY This paper provides some data to inform the potential of LIPUS in the treatment of PD-CI.
Collapse
Affiliation(s)
- Canfang Hu
- Department of Neurology Medical, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Lei Zhang
- Department of Neurology Medical, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Guojun Luo
- Department of Neurology Medical, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Hong Yao
- Department of Ultrasound in Medicine, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Xiayan Song
- Department of Neurology Medical, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| | - Zhen Liu
- Department of Neurology Medical, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Lu Q, Zhu Z, Zhang H, Gan C, Shan A, Gao M, Sun H, Cao X, Yuan Y, Tracy JI, Zhang Q, Zhang K. Shared and distinct cortical morphometric alterations in five neuropsychiatric symptoms of Parkinson's disease. Transl Psychiatry 2024; 14:347. [PMID: 39214962 PMCID: PMC11364691 DOI: 10.1038/s41398-024-03070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropsychiatric symptoms (including anxiety, depression, apathy, impulse-compulsive behaviors and hallucinations) are among the most common non-motor features of Parkinson's disease. Whether these symptoms should be considered as a direct consequence of the pathophysiologic mechanisms of Parkinson's disease is controversial. Morphometric similarity network analysis and epicenter mapping approach were performed on T1-weighted images of 505 patients with Parkinson's disease and 167 age- and sex-matched healthy participants from Parkinson's Progression Markers Initiative database to reveal the commonalities and specificities of distinct neuropsychiatric symptoms. Abnormal cortical co-alteration pattern in patients with neuropsychiatric symptoms was in somatomotor, vision and frontoparietal regions, with epicenters in somatomotor regions. Apathy, impulse-compulsive behaviors and hallucinations shares structural abnormalities in somatomotor and vision regions, with epicenters in somatomotor regions. In contrast, the cortical abnormalities and epicenters of anxiety and depression were prominent in the default mode network regions. By embedding each symptom within their co-alteration space, we observed a cluster composed of apathy, impulse-compulsive behaviors and hallucinations, while anxiety and depression remained separate. Our findings indicate different structural mechanisms underlie the occurrence and progression of different neuropsychiatric symptoms. Based upon these results, we propose that apathy, impulse-compulsive behaviors and hallucinations are directly related to damage of motor circuit, while anxiety and depression may be the combination effects of primary pathophysiology of Parkinson's disease and psychosocial causes.
Collapse
Affiliation(s)
- Qianling Lu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhuang Zhu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caiting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aidi Shan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengxi Gao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huimin Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingyue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Joseph I Tracy
- Farber Institute for Neuroscience, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qirui Zhang
- Farber Institute for Neuroscience, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Yan X, Ebitz RB, Grissom N, Darrow DP, Herman AB. Distinct computational mechanisms of uncertainty processing explain opposing exploratory behaviors in anxiety and apathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597412. [PMID: 38895240 PMCID: PMC11185698 DOI: 10.1101/2024.06.04.597412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Decision-making in uncertain environments often leads to varied outcomes. Understanding how individuals interpret the causes of unexpected feedback is crucial for adaptive behavior and mental well-being. Uncertainty can be broadly categorized into two components: volatility and stochasticity. Volatility is about how quickly conditions change, impacting results. Stochasticity, on the other hand, refers to outcomes affected by random chance or "luck". Understanding these factors enables individuals to have more effective environmental analysis and strategy implementation (explore or exploit) for future decisions. This study investigates how anxiety and apathy, two prevalent affective states, influence the perceptions of uncertainty and exploratory behavior. Participants (N = 1001) completed a restless three-armed bandit task that was analyzed using latent state models. Anxious individuals perceived uncertainty as more volatile, leading to increased exploration and learning rates, especially after reward omission. Conversely, apathetic individuals viewed uncertainty as more stochastic, resulting in decreased exploration and learning rates. The perceived volatility-to-stochasticity ratio mediated the anxiety-exploration relationship post-adverse outcomes. Dimensionality reduction showed exploration and uncertainty estimation to be distinct but related latent factors shaping a manifold of adaptive behavior that is modulated by anxiety and apathy. These findings reveal distinct computational mechanisms for how anxiety and apathy influence decision-making, providing a framework for understanding cognitive and affective processes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xinyuan Yan
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - R. Becket Ebitz
- Department of Neuroscience, Universite de Montreal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| | - Nicola Grissom
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN 55455, USA
| | - David P. Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexander B. Herman
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Jia M, Yang S, Li S, Chen S, Wu L, Li J, Wang H, Wang C, Liu Q, Wu K. Early identification of Parkinson's disease with anxiety based on combined clinical and MRI features. Front Aging Neurosci 2024; 16:1414855. [PMID: 38903898 PMCID: PMC11188332 DOI: 10.3389/fnagi.2024.1414855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Objective To identify cortical and subcortical volume, thickness and cortical area features and the networks they constituted related to anxiety in Parkinson's disease (PD) using structural magnetic resonance imaging (sMRI), and to integrate multimodal features based on machine learning to identify PD-related anxiety. Methods A total of 219 patients with PD were retrospectively enrolled in the study. 291 sMRI features including cortical volume, subcortical volume, cortical thickness, and cortical area, as well as 17 clinical features, were extracted. Graph theory analysis was used to explore structural networks. A support vector machine (SVM) combination model, which used both sMRI and clinical features to identify participants with PD-related anxiety, was developed and evaluated. The performance of SVM models were evaluated. The mean impact value (MIV) of the feature importance evaluation algorithm was used to rank the relative importance of sMRI features and clinical features within the model. Results 17 significant sMRI variables associated with PD-related anxiety was used to build a brain structural network. And seven sMRI and 5 clinical features with statistically significant differences were incorporated into the SVM model. The comprehensive model achieved higher performance than clinical features or sMRI features did alone, with an accuracy of 0.88, a precision of 0.86, a sensitivity of 0.81, an F1-Score of 0.83, a macro-average of 0.85, a weighted-average of 0.92, an AUC of 0.88, and a result of 10-fold cross-validation of 0.91 in test set. The sMRI feature right medialorbitofrontal thickness had the highest impact on the prediction model. Conclusion We identified the brain structural features and networks related to anxiety in PD, and developed and internally validated a comprehensive model with multimodal features in identifying.
Collapse
Affiliation(s)
- Min Jia
- Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Shijun Yang
- Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Shanshan Li
- Department of Medical Ultrasound, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Siying Chen
- Hubei Minzu University, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Lishuang Wu
- Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Jinlan Li
- Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Hanlin Wang
- Department of Medicine, The Xi’an Jiaotong University, Xi’an, Shanxi, China
| | - Congping Wang
- Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Qunhui Liu
- Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Kemei Wu
- Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| |
Collapse
|
9
|
Lee S, Song Y, Hong H, Joo Y, Ha E, Shim Y, Hong SN, Kim J, Lyoo IK, Yoon S, Kim DW. Changes in Structural Covariance among Olfactory-related Brain Regions in Anosmia Patients. Exp Neurobiol 2024; 33:99-106. [PMID: 38724479 PMCID: PMC11089402 DOI: 10.5607/en24007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/15/2024] Open
Abstract
Anosmia, characterized by the loss of smell, is associated not only with dysfunction in the peripheral olfactory system but also with changes in several brain regions involved in olfactory processing. Specifically, the orbitofrontal cortex is recognized for its pivotal role in integrating olfactory information, engaging in bidirectional communication with the primary olfactory regions, including the olfactory cortex, amygdala, and entorhinal cortex. However, little is known about alterations in structural connections among these brain regions in patients with anosmia. In this study, high-resolution T1-weighted images were obtained from participants. Utilizing the volumes of key brain regions implicated in olfactory function, we employed a structural covariance approach to investigate brain reorganization patterns in patients with anosmia (n=22) compared to healthy individuals (n=30). Our structural covariance analysis demonstrated diminished connectivity between the amygdala and entorhinal cortex, components of the primary olfactory network, in patients with anosmia compared to healthy individuals (z=-2.22, FDR-corrected p=0.039). Conversely, connectivity between the orbitofrontal cortex-a major region in the extended olfactory network-and amygdala was found to be enhanced in the anosmia group compared to healthy individuals (z=2.32, FDR-corrected p=0.039). However, the structural connections between the orbitofrontal cortex and entorhinal cortex did not differ significantly between the groups (z=0.04, FDR-corrected p=0.968). These findings suggest a potential structural reorganization, particularly of higher-order cortical regions, possibly as a compensatory effort to interpret the limited olfactory information available in individuals with olfactory loss.
Collapse
Affiliation(s)
- Suji Lee
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| | - Yumi Song
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Haejin Hong
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Eunji Ha
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Youngeun Shim
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Seung-No Hong
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Korea
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Korea
| |
Collapse
|
10
|
Rashidi-Ranjbar N, Churchill NW, Black SE, Kumar S, Tartaglia MC, Freedman M, Lang A, Steeves TDL, Swartz RH, Saposnik G, Sahlas D, McLaughlin P, Symons S, Strother S, Pollock BG, Rajji TK, Ozzoude M, Tan B, Arnott SR, Bartha R, Borrie M, Masellis M, Pasternak SH, Frank A, Seitz D, Ismail Z, Tang-Wai DF, Casaubon LK, Mandzia J, Jog M, Scott CJM, Dowlatshahi D, Hassan A, Grimes D, Marras C, Zamyadi M, Munoz DG, Ramirez J, Berezuk C, Holmes M, Fischer CE, Schweizer TA. Neuropsychiatric symptoms and brain morphology in patients with mild cognitive impairment, cerebrovascular disease and Parkinson disease: A cross sectional and longitudinal study. Int J Geriatr Psychiatry 2024; 39:e6074. [PMID: 38491809 DOI: 10.1002/gps.6074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES Neuropsychiatric symptoms (NPS) increase risk of developing dementia and are linked to various neurodegenerative conditions, including mild cognitive impairment (MCI due to Alzheimer's disease [AD]), cerebrovascular disease (CVD), and Parkinson's disease (PD). We explored the structural neural correlates of NPS cross-sectionally and longitudinally across various neurodegenerative diagnoses. METHODS The study included individuals with MCI due to AD, (n = 74), CVD (n = 143), and PD (n = 137) at baseline, and at 2-years follow-up (MCI due to AD, n = 37, CVD n = 103, and PD n = 84). We assessed the severity of NPS using the Neuropsychiatric Inventory Questionnaire. For brain structure we included cortical thickness and subcortical volume of predefined regions of interest associated with corticolimbic and frontal-executive circuits. RESULTS Cross-sectional analysis revealed significant negative correlations between appetite with both circuits in the MCI and CVD groups, while apathy was associated with these circuits in both the MCI and PD groups. Longitudinally, changes in apathy scores in the MCI group were negatively linked to the changes of the frontal-executive circuit. In the CVD group, changes in agitation and nighttime behavior were negatively associated with the corticolimbic and frontal-executive circuits, respectively. In the PD group, changes in disinhibition and apathy were positively associated with the corticolimbic and frontal-executive circuits, respectively. CONCLUSIONS The observed correlations suggest that underlying pathological changes in the brain may contribute to alterations in neural activity associated with MBI. Notably, the difference between cross-sectional and longitudinal results indicates the necessity of conducting longitudinal studies for reproducible findings and drawing robust inferences.
Collapse
Affiliation(s)
- Neda Rashidi-Ranjbar
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Nathan W Churchill
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sandra E Black
- Division of Neurology, Department of Medicine, Sunnybrook HSC, University of Toronto, Toronto, Ontario, Canada
- L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Research Program Sunnybrook Health Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Sanjeev Kumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Morris Freedman
- Division of Neurology, Department of Medicine, Sunnybrook HSC, University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Anthony Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- The Edmond J. Safra Program in Parkinson's Disease, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Thomas D L Steeves
- Division of Neurology, Department of Medicine, Sunnybrook HSC, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Richard H Swartz
- Division of Neurology, Department of Medicine, Sunnybrook HSC, University of Toronto, Toronto, Ontario, Canada
- L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Research Program Sunnybrook Health Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Gustavo Saposnik
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Clinical Outcomes and Decision Neuroscience Unit, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Dametrios Sahlas
- McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| | - Paula McLaughlin
- Nova Scotia Health, Halifax, Nova Scotia, Canada
- Departments of Medicine (Geriatrics) and Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sean Symons
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Stephen Strother
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Miracle Ozzoude
- L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Research Program Sunnybrook Health Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Brian Tan
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Stephen R Arnott
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Robert Bartha
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Michael Borrie
- Nova Scotia Health, Halifax, Nova Scotia, Canada
- Departments of Medicine (Geriatrics) and Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Mario Masellis
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- St. Joseph's Healthcare Centre, London, Ontario, Canada
| | - Stephen H Pasternak
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- St. Joseph's Healthcare Centre, London, Ontario, Canada
| | - Andrew Frank
- Bruyère Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dallas Seitz
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zahinoor Ismail
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David F Tang-Wai
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, Ontario, Canada
| | - Leanne K Casaubon
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, Ontario, Canada
| | - Jennifer Mandzia
- St. Joseph's Healthcare Centre, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
| | - Mandar Jog
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher J M Scott
- L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Research Program Sunnybrook Health Sciences Research Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Dar Dowlatshahi
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ayman Hassan
- Thunder Bay Regional Health Research Institute (TBRHRI), Northern Ontario School of Medicine University (NOSMU), Thunder Bay, Ontario, Canada
| | - David Grimes
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mojdeh Zamyadi
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - David G Munoz
- Division of Neurosurgery, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Joel Ramirez
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Courtney Berezuk
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Melissa Holmes
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tom A Schweizer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Yassine S, Almarouk S, Gschwandtner U, Auffret M, Fuhr P, Verin M, Hassan M. Electrophysiological signatures of anxiety in Parkinson's disease. Transl Psychiatry 2024; 14:66. [PMID: 38280864 PMCID: PMC10821912 DOI: 10.1038/s41398-024-02745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/29/2024] Open
Abstract
Anxiety is a common non-motor symptom in Parkinson's disease (PD) occurring in up to 31% of the patients and affecting their quality of life. Despite the high prevalence, anxiety symptoms in PD are often underdiagnosed and, therefore, undertreated. To date, functional and structural neuroimaging studies have contributed to our understanding of the motor and cognitive symptomatology of PD. Yet, the underlying pathophysiology of anxiety symptoms in PD remains largely unknown and studies on their neural correlates are missing. Here, we used resting-state electroencephalography (RS-EEG) of 68 non-demented PD patients with or without clinically-defined anxiety and 25 healthy controls (HC) to assess spectral and functional connectivity fingerprints characterizing the PD-related anxiety. When comparing the brain activity of the PD anxious group (PD-A, N = 18) to both PD non-anxious (PD-NA, N = 50) and HC groups (N = 25) at baseline, our results showed increased fronto-parietal delta power and decreased frontal beta power depicting the PD-A group. Results also revealed hyper-connectivity networks predominating in delta, theta and gamma bands against prominent hypo-connectivity networks in alpha and beta bands as network signatures of anxiety in PD where the frontal, temporal, limbic and insular lobes exhibited the majority of significant connections. Moreover, the revealed EEG-based electrophysiological signatures were strongly associated with the clinical scores of anxiety and followed their progression trend over the course of the disease. We believe that the identification of the electrophysiological correlates of anxiety in PD using EEG is conducive toward more accurate prognosis and can ultimately support personalized psychiatric follow-up and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Sahar Yassine
- MRC Brain Dynamic Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
- University of Rennes, LTSI - U1099, F-35000, Rennes, France.
- Behavior & Basal Ganglia, CIC1414, CIC-IT, CHU Rennes, Rennes, France.
| | - Sourour Almarouk
- University of Rennes, LTSI - U1099, F-35000, Rennes, France
- Behavior & Basal Ganglia, CIC1414, CIC-IT, CHU Rennes, Rennes, France
- Neuroscience Research Centre, Lebanese University, Faculty of Medicine, Beirut, Lebanon
| | - Ute Gschwandtner
- Dept. of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Manon Auffret
- University of Rennes, LTSI - U1099, F-35000, Rennes, France
- Behavior & Basal Ganglia, CIC1414, CIC-IT, CHU Rennes, Rennes, France
- Institut des Neurosciences Cliniques de Rennes (INCR), Rennes, France
- France Développement Electronique, Monswiller, France
| | - Peter Fuhr
- Dept. of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Marc Verin
- University of Rennes, LTSI - U1099, F-35000, Rennes, France
- Behavior & Basal Ganglia, CIC1414, CIC-IT, CHU Rennes, Rennes, France
- Institut des Neurosciences Cliniques de Rennes (INCR), Rennes, France
- Movement Disorders Unit, Neurology Department, Pontchaillou University Hospital, Rennes, France
| | - Mahmoud Hassan
- Behavior & Basal Ganglia, CIC1414, CIC-IT, CHU Rennes, Rennes, France
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
- MINDIG, F-35000, Rennes, France
| |
Collapse
|
12
|
Lai TT, Gericke B, Feja M, Conoscenti M, Zelikowsky M, Richter F. Anxiety in synucleinopathies: neuronal circuitry, underlying pathomechanisms and current therapeutic strategies. NPJ Parkinsons Dis 2023; 9:97. [PMID: 37349373 DOI: 10.1038/s41531-023-00547-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Synucleinopathies are neurodegenerative disorders characterized by alpha-synuclein (αSyn) accumulation in neurons or glial cells, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). αSyn-related pathology plays a critical role in the pathogenesis of synucleinopathies leading to the progressive loss of neuronal populations in specific brain regions and the development of motor and non-motor symptoms. Anxiety is among the most frequent non-motor symptoms in patients with PD, but it remains underrecognized and undertreated, which significantly reduces the quality of life for patients. Anxiety is defined as a neuropsychiatric complication with characteristics such as nervousness, loss of concentration, and sweating due to the anticipation of impending danger. In patients with PD, neuropathology in the amygdala, a central region in the anxiety and fear circuitry, may contribute to the high prevalence of anxiety. Studies in animal models reported αSyn pathology in the amygdala together with alteration of anxiety or fear learning response. Therefore, understanding the progression, extent, and specifics of pathology in the anxiety and fear circuitry in synucleinopathies will suggest novel approaches to the diagnosis and treatment of neuropsychiatric symptoms. Here, we provide an overview of studies that address neuropsychiatric symptoms in synucleinopathies. We offer insights into anxiety and fear circuitry in animal models and the current implications for therapeutic intervention. In summary, it is apparent that anxiety is not a bystander symptom in these disorders but reflects early pathogenic mechanisms in the cortico-limbic system which may even contribute as a driver to disease progression.
Collapse
Affiliation(s)
- Thuy Thi Lai
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | | | | | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
13
|
Chen Z, Wu B, Li G, Zhou L, Zhang L, Liu J. MAPT rs17649553 T allele is associated with better verbal memory and higher small-world properties in Parkinson's disease. Neurobiol Aging 2023; 129:219-231. [PMID: 37413784 DOI: 10.1016/j.neurobiolaging.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Currently, over 90 genetic loci have been found to be associated with Parkinson's disease (PD) in genome-wide association studies, nevertheless, the effects of these genetic variants on the clinical features and brain structure of PD patients are largely unknown. This study investigated the effects of microtubule-associated protein tau (MAPT) rs17649553 (C>T), a genetic variant associated with reduced PD risk, on the clinical manifestations and brain networks of PD patients. We found MAPT rs17649553 T allele was associated with better verbal memory in PD patients. In addition, MAPT rs17649553 significantly shaped the topology of gray matter covariance network and white matter network. Both the network metrics in gray matter covariance network and white matter network were correlated with verbal memory, however, the mediation analysis showed that it was the small-world properties in white matter network that mediated the effects of MAPT rs17649553 on verbal memory. These results suggest that MAPT rs17649553 T allele is associated with higher small-world properties in structural network and better verbal memory in PD.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bin Wu
- Department of Neurology, Xuchang Central Hospital Affiliated with Henan University of Science and Technology, Henan, China
| | - Guanglu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lina Zhang
- Department of Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
14
|
Chen K, Zhang L, Mao H, Chen K, Shi Y, Meng X, Wang F, Hu X, Fang X. The impact of iron deposition on the fear circuit of the brain in patients with Parkinson's disease and anxiety. Front Aging Neurosci 2023; 15:1116516. [PMID: 36845658 PMCID: PMC9951615 DOI: 10.3389/fnagi.2023.1116516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Objective Anxiety is one of the most common psychiatric symptoms of Parkinson's disease (PD), and brain iron deposition is considered to be one of the pathological mechanisms of PD. The objective of this study was to explore alterations in brain iron deposition in PD patients with anxiety compared to PD patients without anxiety, especially in the fear circuit. Methods Sixteen PD patients with anxiety, 23 PD patients without anxiety, and 26 healthy elderly controls were enrolled prospectively. All subjects underwent neuropsychological assessments and brain magnetic resonance imaging (MRI) examinations. Voxel-based morphometry (VBM) was used to study morphological brain differences between the groups. Quantitative susceptibility mapping (QSM), an MRI technique capable of quantifying susceptibility changes in brain tissue, was used to compare susceptibility changes in the whole brain among the three groups. The correlations between brain susceptibility changes and anxiety scores quantified using the Hamilton Anxiety Rating Scale (HAMA) were compared and analyzed. Results PD patients with anxiety had a longer duration of PD and higher HAMA scores than PD patients without anxiety. No morphological brain differences were observed between the groups. In contrast, voxel-based and ROI-based QSM analyses showed that PD patients with anxiety had significantly increased QSM values in the medial prefrontal cortex, anterior cingulate cortex, hippocampus, precuneus, and angular cortex. Furthermore, the QSM values of some of these brain regions were positively correlated with the HAMA scores (medial prefrontal cortex: r = 0.255, p = 0.04; anterior cingulate cortex: r = 0.381, p < 0.01; hippocampus: r = 0.496, p < 0.01). Conclusion Our findings support the idea that anxiety in PD is associated with iron burden in the brain fear circuit, providing a possible new approach to explaining the potential neural mechanism of anxiety in PD.
Collapse
Affiliation(s)
- Kaidong Chen
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Li Zhang
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Haixia Mao
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Kefei Chen
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yachen Shi
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xiangpan Meng
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Feng Wang
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China,*Correspondence: Xiangming Fang, ✉
| | - Xiaoyun Hu
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China,Feng Wang, ✉
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China,Xiaoyun Hu, ✉
| |
Collapse
|
15
|
Altered Fractional Amplitude of Low-Frequency Fluctuation in Anxious Parkinson's Disease. Brain Sci 2023; 13:brainsci13010087. [PMID: 36672068 PMCID: PMC9857220 DOI: 10.3390/brainsci13010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Anxiety symptoms are persistent in Parkinson's disease (PD), but the underlying neural substrates are still unclear. In the current study, we aimed to explore the underlying neural mechanisms in PD patients with anxiety symptoms. METHODS 42 PD-A patients, 41 PD patients without anxiety symptoms (PD-NA), and 40 healthy controls (HCs) were recruited in the present study. All the subjects performed 3.0T fMRI scans. The fractional amplitude of low-frequency fluctuation (fALFF) analysis was used to investigate the alterations in neural activity among the three groups. A Pearson correlation analysis was performed between the altered fALFF value of the PD-A group and anxiety scores. RESULTS Compared with HCs, PD-A patients had higher fALFF values in the left cerebellum, cerebellum posterior lobe, bilateral temporal cortex, and brainstem and lower fALFF values in the bilateral inferior gyrus, bilateral basal ganglia areas, and left inferior parietal lobule. Moreover, between the two PD groups, PD-A patients showed higher fALFF values in the right precuneus and lower fALFF values in the bilateral inferior gyrus, bilateral basal ganglia areas, left inferior parietal lobule, and left occipital lobe. Furthermore, Pearson's correlation analysis demonstrated that the right precuneus and left caudate were correlated with the Hamilton Anxiety Rating Scale scores. CONCLUSION Our study found that anxiety symptoms in PD patients may be related to alterations of neurological activities in multiple brain regions. Furthermore, these may be critical radiological biomarkers for PD-A patients. Therefore, these findings can improve our understanding of the pathophysiological mechanisms underlying PD-A.
Collapse
|
16
|
Zhang P, Zhang Y, Luo Y, Wang L, Wang K. Regional activity alterations in Parkinson's disease patients with anxiety disorders: A resting-state functional magnetic resonance imaging study. Front Aging Neurosci 2022; 14:1055160. [PMID: 36589538 PMCID: PMC9800784 DOI: 10.3389/fnagi.2022.1055160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Previous studies have revealed alteration of functional connectivity (FC) in Parkinson's disease patients with anxiety (PD-A), but local brain activities associated with anxiety in Parkinson's disease (PD) patients remain to be elucidated. Regional homogeneity (ReHo) analysis was employed to investigate alterations of regional brain activities in PD-A patients. Methods Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 42 PD-A patients, 41 PD patients without anxiety (PD-NA), and 40 age-and gender-matched healthy control (HC) subjects. ReHo analysis was used to investigate the synchronization of neuronal activities in brain regions in the three groups. The relationship between ReHo value and anxiety score in the PD-A group was also investigated. Results Parkinson's disease patients with anxiety showed increased ReHo values in the bilateral frontal lobes, caudate nucleus, and anterior cingulate gyrus [Gaussian random field (GRF) correction, voxel size p < 0.01, cluster size p < 0.05], compared with PD-NA patients and HC subjects, but the ReHo values of the right cerebellar hemisphere and posterior cerebellar lobe decreased (GRF correction, voxel size p < 0.01, cluster size p < 0.05). The increased ReHo values of the right superior frontal gyrus (r = 0.633, p = 0.001) and anterior cingulate gyrus (r = 0.45, p = 0.01) were positively correlated with anxiety scores in PD-A patients. Conclusion The development of PD-A may be associated with dysfunctional local activities in multiple brain regions, including the frontal cortex, cerebella, basal ganglia, and limbic system. Abnormal ReHo values in these brain regions may serve as neuroimaging markers for the early diagnosis of PD-A. The results suggest that using ReHo analysis to identify functional changes in core regions may advance our understanding of the pathophysiological mechanisms underlying PD-A.
Collapse
Affiliation(s)
- Peiyao Zhang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yanling Zhang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Luo
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Lu Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Kang Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Kang Wang,
| |
Collapse
|
17
|
Sampedro F, Puig-Davi A, Martinez-Horta S, Pagonabarraga J, Horta-Barba A, Aracil-Bolaños I, Kulisevsky J. Cortical macro and microstructural correlates of cognitive and neuropsychiatric symptoms in Parkinson's disease. Clin Neurol Neurosurg 2022; 224:107531. [PMID: 36455303 DOI: 10.1016/j.clineuro.2022.107531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cognitive and neuropsychiatric disturbances in Parkinson's disease are as common and as disabling as its well-known motor symptoms. Even though several neural substrates for these symptoms have been suggested, to which extent these symptoms reflect cortical neurodegeneration in Parkinson's disease remains to be fully elucidated. METHODS In a representative sample of 44 Parkinson's disease patients, the data about the following symptoms was recorded: cognitive performance, apathy, depression and anxiety. Surface-based vertexwise multiple regression analyses were performed to investigate the cortical macro (cortical thinning) and microstructural (increased intracortical diffusivity) correlates of each symptom. A group of 18 healthy controls with similar sociodemographics was also included to assess the disease specificity of the neuroimaging results. RESULTS Compared to healthy controls, Parkinson's disease patients showed significantly increased scores in all the considered non-motor scales (p < 0.01). Within the Parkinson's disease group, increased scores in these scales were associated with cortical macro- and microstructural neurodegeneration (p < 0.05 corrected). Each of the considered non-motor scales was associated with a specific pattern of cortical degeneration. When observing both neuroimaging techniques, intracortical diffusivity revealed similar but extensive patterns of cortical compromise than cortical thickness for each symptom, with the exception of anxiety. CONCLUSIONS Cognitive and neuropsychiatric symptoms in Parkinson's disease reflect cortical degeneration. Increases in intracortical diffusivity were able to detect symptom-specific cortical microstructural damage in the absence of cortical thinning. A better understanding of this association may contribute to characterize the brain circuitry and the neurotransmitter pathways underlying these highly prevalent and debilitating symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Radiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Ignacio Aracil-Bolaños
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
18
|
Chen L, Wang J, Xia M, Sun L, Sun J, Gao L, Zhang D, Wu T. Altered functional connectivity of nucleus accumbens subregions associates with non-motor symptoms in Parkinson's disease. CNS Neurosci Ther 2022; 28:2308-2318. [PMID: 36184786 PMCID: PMC9627369 DOI: 10.1111/cns.13979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS This study aimed to identify the functional connectivity (FC) changes of nucleus accumbens (NAc) subregions and characterize the association of network changes and non-motor symptoms (NMS) in Parkinson's disease (PD). METHODS We enrolled 129 PD patients and 106 healthy controls from our center and the PPMI (Parkinson's Progression Markers Initiative) database. The FC of the bilateral core and shell of the NAc were measured and compared between the two groups. We further used partial least squares correlation to reveal the relationships between altered FC of NAc subregions and manifestations of NMS of PD. RESULTS The subregions of left core, left shell, and right core had reduced FC with extensive brain regions in PD patients compared with healthy controls. These three subregions were commonly associated with depression, anxiety, apathy, and cognitive impairment. Moreover, the left core and left shell were associated with excessive daytime sleepiness, whereas the right core was associated with olfactory impairment and rapid eye movement sleep behavior disorder. CONCLUSION This study for the first time identified the neural network changes of NAc subregions in PD and the associations between network changes and phenotypes of NMS. Our findings provide new insights into the pathogenesis of NMS in PD.
Collapse
Affiliation(s)
- Lili Chen
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Junling Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina,Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina,IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Lianglong Sun
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina,Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina,IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Junyan Sun
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Linlin Gao
- Department of General MedicineTianjin Union Medical CenterTianjinChina
| | - Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
19
|
Imaging the Limbic System in Parkinson's Disease-A Review of Limbic Pathology and Clinical Symptoms. Brain Sci 2022; 12:brainsci12091248. [PMID: 36138984 PMCID: PMC9496800 DOI: 10.3390/brainsci12091248] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023] Open
Abstract
The limbic system describes a complex of brain structures central for memory, learning, as well as goal directed and emotional behavior. In addition to pathological studies, recent findings using in vivo structural and functional imaging of the brain pinpoint the vulnerability of limbic structures to neurodegeneration in Parkinson's disease (PD) throughout the disease course. Accordingly, dysfunction of the limbic system is critically related to the symptom complex which characterizes PD, including neuropsychiatric, vegetative, and motor symptoms, and their heterogeneity in patients with PD. The aim of this systematic review was to put the spotlight on neuroimaging of the limbic system in PD and to give an overview of the most important structures affected by the disease, their function, disease related alterations, and corresponding clinical manifestations. PubMed was searched in order to identify the most recent studies that investigate the limbic system in PD with the help of neuroimaging methods. First, PD related neuropathological changes and corresponding clinical symptoms of each limbic system region are reviewed, and, finally, a network integration of the limbic system within the complex of PD pathology is discussed.
Collapse
|
20
|
Dissanayaka NN, Forbes EJ, Perepezko K, Leentjens AFG, Dobkin RD, Dujardin K, Pontone GM. Phenomenology of Atypical Anxiety Disorders in Parkinson's Disease: A Systematic Review. Am J Geriatr Psychiatry 2022; 30:1026-1050. [PMID: 35305884 DOI: 10.1016/j.jagp.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Anxiety is a prominent concern in Parkinson's disease (PD) that negatively impacts quality of life, increases functional disability, and complicates clinical management. Atypical presentations of anxiety are under-recognized and inadequately treated in patients with PD, compromising global PD care. METHODS This systematic review focuses on the prevalence, symptomology and clinical correlates of atypical presentations of PD-related anxiety following PRISMA guidelines. RESULTS Of the 60 studies meeting inclusion criteria, 14 focused on 'Anxiety Not Otherwise Specified (NOS)' or equivalent, 31 reported on fluctuating anxiety symptoms, and 22 reported on 'Fear of Falling (FOF)'. Anxiety NOS accounted for a weighted mean prevalence of 14.9%, fluctuating anxiety for 34.19%, and FOF for 51.5%. These latter two exceeded the average reported overall prevalence rate of 31% for anxiety disorders in PD. We identified a diverse array of anxiety symptoms related to motor and non-motor symptoms of PD, to complications of PD medication (such as "on" and "off" fluctuations, or both), and, to a lesser extent, to cognitive symptoms. CONCLUSION Atypical anxiety is common, clinically relevant, and heterogeneous in nature. A better understanding of the phenomenology, clinical course, and pathophysiology of varied forms of atypical anxiety in PD is needed to improve recognition, advance therapeutic development and ultimately optimize quality of life in PD.
Collapse
Affiliation(s)
- Nadeeka N Dissanayaka
- UQ Centre for Clinical Research, Faculty of Medicine (NND, EJF), The University of Queensland, Brisbane, Australia; School of Psychology (NND, EJF), University of Queensland, Brisbane, Australia; Department of Neurology (NND), Royal Brisbane & Women's Hospital, Brisbane, Australia.
| | - Elana J Forbes
- UQ Centre for Clinical Research, Faculty of Medicine (NND, EJF), The University of Queensland, Brisbane, Australia; School of Psychology (NND, EJF), University of Queensland, Brisbane, Australia
| | - Kate Perepezko
- Department of Mental Health (KP), Johns Hopkins University Blomberg School of Public Health, Baltimore, USA
| | - Albert F G Leentjens
- Department of Psychiatry (AFGL), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Roseanne D Dobkin
- Department of Psychiatry (RDD), Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Kathy Dujardin
- Department of Neurology and Movement Disorders (KD), University Lille, Lille, France
| | - Gregory M Pontone
- Department of Psychiatry and Behavioral Sciences (GMP), Johns Hopkins University School of Medicine, Baltimore, USA; Department of Neurology (GMP), Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
21
|
Wang H, Xu J, Yu M, Ma X, Li Y, Pan C, Ren J, Liu W. Altered functional connectivity of ventral striatum subregions in de-novo parkinson’s disease with depression. Neuroscience 2022; 491:13-22. [DOI: 10.1016/j.neuroscience.2022.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
22
|
Perepezko K, Naaz F, Wagandt C, Dissanayaka NN, Mari Z, Nanavati J, Bakker A, Pontone GM. Anxiety in Parkinson's Disease: A Systematic Review of Neuroimaging Studies. J Neuropsychiatry Clin Neurosci 2021; 33:280-294. [PMID: 34280319 DOI: 10.1176/appi.neuropsych.20110272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The mechanisms and neuronal networks associated with anxiety in Parkinson's disease (PD) are incompletely understood. One of the best tools for investigating both component function and neuronal networks associated with psychiatric symptoms is functional MRI (fMRI). Unlike structural scans, functional scans, whether task-based or resting-state, are more likely to be clinically relevant and sensitive to changes related to treatment. The investigators provide a comprehensive review of and present results for imaging studies of anxiety in PD. METHODS A systematic review of the literature on fMRI and anxiety in PD was conducted, and the quality of all included studies was simultaneously assessed. Eighteen studies were included: 15 studies assessed anxiety directly, and three evaluated emotional processing. Imaging methodology and behavioral assessments varied across studies, preventing direct comparison of results in most cases. RESULTS There was a convergence in findings across methods, implicating involvement of the amygdala, caudate, and putamen in association with anxiety in PD. For both task-based activation and resting-state connectivity, dopamine medication status was associated with differences in activation and behavioral function. CONCLUSIONS Although there is little consensus in the current fMRI literature studying anxiety in PD, these results suggest an overlap between structures classically involved in the brain's fear circuit (particularly the amygdala) and the alterations in the nigro-striatal system (e.g., the caudate and putamen and on-off dopamine findings) related to PD and its dopaminergic treatments.
Collapse
Affiliation(s)
- Kate Perepezko
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Perepezko, Bakker); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine (Naaz, Wagandt, Nanavati, Bakker, Pontone); University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Australia (Dissanayaka); School of Psychology, University of Queensland (Dissanayaka); Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia (Dissanayaka); Department of Neurology, Johns Hopkins University School of Medicine (Mari, Bakker, Pontone); and Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (Mari)
| | - Farah Naaz
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Perepezko, Bakker); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine (Naaz, Wagandt, Nanavati, Bakker, Pontone); University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Australia (Dissanayaka); School of Psychology, University of Queensland (Dissanayaka); Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia (Dissanayaka); Department of Neurology, Johns Hopkins University School of Medicine (Mari, Bakker, Pontone); and Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (Mari)
| | - Carrie Wagandt
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Perepezko, Bakker); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine (Naaz, Wagandt, Nanavati, Bakker, Pontone); University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Australia (Dissanayaka); School of Psychology, University of Queensland (Dissanayaka); Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia (Dissanayaka); Department of Neurology, Johns Hopkins University School of Medicine (Mari, Bakker, Pontone); and Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (Mari)
| | - Nadeeka N Dissanayaka
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Perepezko, Bakker); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine (Naaz, Wagandt, Nanavati, Bakker, Pontone); University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Australia (Dissanayaka); School of Psychology, University of Queensland (Dissanayaka); Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia (Dissanayaka); Department of Neurology, Johns Hopkins University School of Medicine (Mari, Bakker, Pontone); and Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (Mari)
| | - Zoltan Mari
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Perepezko, Bakker); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine (Naaz, Wagandt, Nanavati, Bakker, Pontone); University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Australia (Dissanayaka); School of Psychology, University of Queensland (Dissanayaka); Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia (Dissanayaka); Department of Neurology, Johns Hopkins University School of Medicine (Mari, Bakker, Pontone); and Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (Mari)
| | - Julie Nanavati
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Perepezko, Bakker); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine (Naaz, Wagandt, Nanavati, Bakker, Pontone); University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Australia (Dissanayaka); School of Psychology, University of Queensland (Dissanayaka); Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia (Dissanayaka); Department of Neurology, Johns Hopkins University School of Medicine (Mari, Bakker, Pontone); and Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (Mari)
| | - Arnold Bakker
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Perepezko, Bakker); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine (Naaz, Wagandt, Nanavati, Bakker, Pontone); University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Australia (Dissanayaka); School of Psychology, University of Queensland (Dissanayaka); Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia (Dissanayaka); Department of Neurology, Johns Hopkins University School of Medicine (Mari, Bakker, Pontone); and Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (Mari)
| | - Gregory M Pontone
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Perepezko, Bakker); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine (Naaz, Wagandt, Nanavati, Bakker, Pontone); University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Australia (Dissanayaka); School of Psychology, University of Queensland (Dissanayaka); Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia (Dissanayaka); Department of Neurology, Johns Hopkins University School of Medicine (Mari, Bakker, Pontone); and Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas (Mari)
| |
Collapse
|
23
|
A Role of BDNF in the Depression Pathogenesis and a Potential Target as Antidepressant: The Modulator of Stress Sensitivity "Shati/Nat8l-BDNF System" in the Dorsal Striatum. Pharmaceuticals (Basel) 2021; 14:ph14090889. [PMID: 34577589 PMCID: PMC8469819 DOI: 10.3390/ph14090889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Depression is one of the most common mental diseases, with increasing numbers of patients globally each year. In addition, approximately 30% of patients with depression are resistant to any treatment and do not show an expected response to first-line antidepressant drugs. Therefore, novel antidepressant agents and strategies are required. Although depression is triggered by post-birth stress, while some individuals show the pathology of depression, others remain resilient. The molecular mechanisms underlying stress sensitivity remain unknown. Brain-derived neurotrophic factor (BDNF) has both pro- and anti-depressant effects, dependent on brain region. Considering the strong region-specific contribution of BDNF to depression pathogenesis, the regulation of BDNF in the whole brain is not a beneficial strategy for the treatment of depression. We reviewed a novel finding of BDNF function in the dorsal striatum, which induces vulnerability to social stress, in addition to recent research progress regarding the brain regional functions of BDNF, including the prefrontal cortex, hippocampus, and nucleus accumbens. Striatal BDNF is regulated by Shati/Nat8l, an N-acetyltransferase through epigenetic regulation. Targeting of Shati/Nat8l would allow BDNF to be striatum-specifically regulated, and the striatal Shati/Nat8l-BDNF pathway could be a promising novel therapeutic agent for the treatment of depression by modulating sensitivity to stress.
Collapse
|
24
|
Suo X, Lei D, Li N, Li W, Kemp GJ, Sweeney JA, Peng R, Gong Q. Disrupted morphological grey matter networks in early-stage Parkinson's disease. Brain Struct Funct 2021; 226:1389-1403. [PMID: 33825053 PMCID: PMC8096749 DOI: 10.1007/s00429-020-02200-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023]
Abstract
While previous structural-covariance studies have an advanced understanding of brain alterations in Parkinson's disease (PD), brain–behavior relationships have not been examined at the individual level. This study investigated the topological organization of grey matter (GM) networks, their relation to disease severity, and their potential imaging diagnostic value in PD. Fifty-four early-stage PD patients and 54 healthy controls (HC) underwent structural T1-weighted magnetic resonance imaging. GM networks were constructed by estimating interregional similarity in the distributions of regional GM volume using the Kullback–Leibler divergence measure. Results were analyzed using graph theory and network-based statistics (NBS), and the relationship to disease severity was assessed. Exploratory support vector machine analyses were conducted to discriminate PD patients from HC and different motor subtypes. Compared with HC, GM networks in PD showed a higher clustering coefficient (P = 0.014) and local efficiency (P = 0.014). Locally, nodal centralities in PD were lower in postcentral gyrus and temporal-occipital regions, and higher in right superior frontal gyrus and left putamen. NBS analysis revealed decreased morphological connections in the sensorimotor and default mode networks and increased connections in the salience and frontoparietal networks in PD. Connection matrices and graph-based metrics allowed single-subject classification of PD and HC with significant accuracy of 73.1 and 72.7%, respectively, while graph-based metrics allowed single-subject classification of tremor-dominant and akinetic–rigid motor subtypes with significant accuracy of 67.0%. The topological organization of GM networks was disrupted in early-stage PD in a way that suggests greater segregation of information processing. There is potential for application to early imaging diagnosis.
Collapse
Affiliation(s)
- Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Nannan Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Rong Peng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, PR China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Carey G, Görmezoğlu M, de Jong JJ, Hofman PA, Backes WH, Dujardin K, Leentjens AF. Neuroimaging of Anxiety in Parkinson's Disease: A Systematic Review. Mov Disord 2021; 36:327-339. [PMID: 33289195 PMCID: PMC7984351 DOI: 10.1002/mds.28404] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The aim of this systematic review was (1) to identify the brain regions involved in anxiety in Parkinson's disease (PD) based on neuroimaging studies and (2) to interpret the findings against the background of dysfunction of the fear circuit and limbic cortico-striato-thalamocortical circuit. METHODS Studies assessing anxiety symptoms in PD patients and studies using magnetic resonance imaging, positron emission tomography, or single-photon emission computed tomography were included. RESULTS The severity of anxiety was associated with changes in the fear circuit and the cortico-striato-thalamocortical limbic circuit. In the fear circuit, a reduced gray-matter volume of the amygdala and the anterior cingulate cortex (ACC); an increased functional connectivity (FC) between the amygdala and orbitofrontal cortex (OFC) and hippocampus and between the striatum and the medial prefrontal cortex (PFC), temporal cortex, and insula; and a reduced FC between the lateral PFC and the OFC, hippocampus, and amygdala were reported. In the cortico-striato-thalamocortical limbic circuit, a reduced FC between the striatum and ACC; a reduced dopaminergic and noradrenergic activity in striatum, thalamus, and locus coeruleus; and a reduced serotoninergic activity in the thalamus were reported. CONCLUSION To conclude, anxiety is associated with structural and functional changes in both the hypothesized fear and the limbic cortico-striato-thalamocortical circuits. These circuits overlap and may well constitute parts of a more extensive pathway, of which different parts play different roles in anxiety. The neuropathology of PD may affect these circuits in different ways, explaining the high prevalence of anxiety in PD and also the associated cognitive, motor, and psychiatric symptoms. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Guillaume Carey
- School for Mental Health and Neurosciences (MHeNS)Maastricht UniversityMaastrichtthe Netherlands
- Université de Lille, Inserm, CHU Lille, Lille Neurosciences and CognitionLilleFrance
| | - Meltem Görmezoğlu
- Department of PsychiatryMaastricht University Medical CenterMaastrichtthe Netherlands
- Department of Psychiatry, Ondokuz Mayis University HospitalOndokuz Mayıs UniversitySamsunTurkey
| | - Joost J.A. de Jong
- School for Mental Health and Neurosciences (MHeNS)Maastricht UniversityMaastrichtthe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Paul A.M. Hofman
- School for Mental Health and Neurosciences (MHeNS)Maastricht UniversityMaastrichtthe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Walter H. Backes
- School for Mental Health and Neurosciences (MHeNS)Maastricht UniversityMaastrichtthe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Kathy Dujardin
- Université de Lille, Inserm, CHU Lille, Lille Neurosciences and CognitionLilleFrance
| | - Albert F.G. Leentjens
- School for Mental Health and Neurosciences (MHeNS)Maastricht UniversityMaastrichtthe Netherlands
- Department of PsychiatryMaastricht University Medical CenterMaastrichtthe Netherlands
| |
Collapse
|
26
|
Iyer KK, Au TR, Angwin AJ, Copland DA, Dissanayaka NN. Theta and gamma connectivity is linked with affective and cognitive symptoms in Parkinson's disease. J Affect Disord 2020; 277:875-884. [PMID: 33065829 DOI: 10.1016/j.jad.2020.08.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The progression of Parkinson's disease (PD) can often exacerbate symptoms of depression, anxiety, and/or cognitive impairment. In this study, we explore the possibility that multiple brain network responses are associated with symptoms of depression, anxiety and cognitive impairment in PD. This association is likely to provide insights into a single multivariate relationship, where common affective symptoms occurring in PD cohorts are related with alterations to electrophysiological response. METHODS 70 PD patients and 21 healthy age-matched controls (HC) participated in a high-density electroencephalography (EEG) study. Functional connectivity differences between PD and HC groups of oscillatory activity at rest and during completion of an emotion-cognition task were examined to identify key brain oscillatory activities. A canonical correlation analysis (CCA) was applied to identify a putative multivariate relationship between connectivity patterns and affective symptoms in PD groups. RESULTS A CCA analysis identified a single mode of co-variation linking theta and gamma connectivity with affective symptoms in PD groups. Increases in frontotemporal gamma, frontal and parietal theta connectivity were related with increased anxiety and cognitive impairment. Decreases in temporal region theta and frontoparietal gamma connectivity were associated with higher depression ratings and PD patient age. LIMITATIONS This study only reports on optimal dosage of dopaminergic treatment ('on' state) in PD and did not investigate at "off" medication". CONCLUSIONS Theta and gamma connectivity during rest and task-states are linked to affective and cognitive symptoms within fronto-temporo-parietal networks, suggesting a potential assessment avenue for understanding brain-behaviour associations in PD with electrophysiological task paradigms.
Collapse
Affiliation(s)
- Kartik K Iyer
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Brisbane, Australia; Clinical Brain Networks group, QIMR Berghofer Medical Research Institute, Australia; School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, QLD 4067, Brisbane, Australia
| | - Tiffany R Au
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Brisbane, Australia
| | - Anthony J Angwin
- School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, QLD 4067, Brisbane, Australia
| | - David A Copland
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Brisbane, Australia; School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, QLD 4067, Brisbane, Australia
| | - Nadeeka N Dissanayaka
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Brisbane, Australia; Department of Neurology, Royal Brisbane & Women's Hospital, Herston, QLD 4029, Brisbane, Australia; School of Psychology, The University of Queensland, St Lucia, QLD 4067, Brisbane, Australia.
| |
Collapse
|
27
|
De Micco R, Satolli S, Siciliano M, Di Nardo F, Caiazzo G, Russo A, Giordano A, Esposito F, Tedeschi G, Tessitore A. Connectivity Correlates of Anxiety Symptoms in Drug-Naive Parkinson's Disease Patients. Mov Disord 2020; 36:96-105. [PMID: 33169858 DOI: 10.1002/mds.28372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Anxiety symptoms are common in Parkinson's disease (PD). A link between anxiety and cognitive impairment in PD has been demonstrated. OBJECTIVES Using resting-state functional magnetic resonance imaging, we investigated intrinsic brain network connectivity correlates of anxiety symptoms in a cohort of drug-naive, cognitively unimpaired patients with PD. METHODS The intrinsic functional brain connectivity of 25 drug-naive, cognitively unimpaired PD patients with anxiety, 25 without anxiety, and 20 matched healthy controls was compared. All patients underwent a detailed behavioral and neuropsychological evaluation. Anxiety presence and severity were assessed using the Parkinson's Disease Anxiety Scale. Single-subject and group-level independent component analyses were used to investigate functional connectivity differences within and between the major resting-state networks. RESULTS Decreased connectivity within the default-mode and sensorimotor networks (SMN), increased connectivity within the executive-control network (ECN), and divergent connectivity measures within salience and frontoparietal networks (SN and FPN) were detected in PD patients with anxiety compared with those without anxiety. Moreover, patients with anxiety showed a disrupted inter-network connectivity between SN and SMN, ECN, and FPN. Anxiety severity was correlated with functional abnormalities within these networks. CONCLUSIONS Our findings demonstrated that an abnormal intrinsic connectivity within and between the most reported large-scale networks may represent a potential neural correlate of anxiety symptoms in drug-naive PD patients even in the absence of clinically relevant cognitive impairment. We hypothesize that these specific cognitive and limbic network architecture changes may represent a potential biomarker of treatment response in clinical trials. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rosa De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sara Satolli
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Neuropsychology Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alfonso Giordano
- First Division of Neurology and Neurophysiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
28
|
Han YY, Jin K, Pan QS, Li B, Wu ZQ, Gan L, Yang L, Long C. Microglial activation in the dorsal striatum participates in anxiety-like behavior in Cyld knockout mice. Brain Behav Immun 2020; 89:326-338. [PMID: 32688031 DOI: 10.1016/j.bbi.2020.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
CYLD lysine 63 deubiquitinase (CYLD), that is mainly involved in immune responses and inflammation, is expressed at high levels in the brain, especially in the dorsal striatum, but its physiological function of CYLD in the brain remains unexplored. The present study investigated the effect of Cyld gene knockout on behavior relevant to the dorsal striatum, such as motor activity and depression-like and anxiety-like behavior. Microglia and the pro-inflammatory cytokines including interleukin (IL)-1 β and tumor necrosis factor (TNF)- α were evaluated in the dorsal striatum to elucidate the underlying mechanism. Cyld knockout (Cyld-/-) mice exhibited anxiety-like behavior, but not motor deficits or depression-like behavior. Microglia were activated and the mRNA levels of IL-1 β and TNF- α were increased in the dorsal striatum of Cyld-/- mice compared to Cyld+/+ mice. The microglial modulator minocycline partially reversed the anxiety-like behavior, microglial activation and increase in IL-1 β and TNF- α mRNA and protein levels in the dorsal striatum of Cyld-/- mice. Collectively, these results suggest that Cyld knockout leading to microglial activation promotes IL-1 β and TNF- α expression and acts as a critical pathway in the pathophysiology of anxiety.
Collapse
Affiliation(s)
- Yuan-Yuan Han
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Kai Jin
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Qi-Sheng Pan
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Bo Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Zhuo-Qing Wu
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Lin Gan
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China.
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, PR China.
| |
Collapse
|
29
|
Carey G, Lopes R, Viard R, Betrouni N, Kuchcinski G, Devignes Q, Defebvre L, Leentjens AFG, Dujardin K. Anxiety in Parkinson's disease is associated with changes in the brain fear circuit. Parkinsonism Relat Disord 2020; 80:89-97. [PMID: 32979785 DOI: 10.1016/j.parkreldis.2020.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/23/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Anxiety is frequent in Parkinson's disease (PD) and has a negative impact on disease symptoms and quality of life. The underlying mechanisms remain largely unknown. The aim of this study was to identify anatomical and functional changes associated to PD-related anxiety by comparing the volume, shape and texture of the amygdala, the cortical thickness as well as the functional connectivity (FC) of the fear circuit in patients with and without clinically relevant anxiety. METHODS Non-demented PD patients were recruited, and anxiety was quantified using the Parkinson Anxiety Scale. Structural MRI was used to compare cortical thickness and amygdala structure and resting-state functional MRI to compare FC patterns of the amygdala and resting-state functional networks in both groups. RESULTS We included 118 patients: 34 with (A+) and 84 without (A-) clinically relevant anxiety. Clusters of cortical thinning were identified in the bilateral fronto-cingulate and left parietal cortices of the A+ group. The texture and the shape of the left amygdala was different in the A+ group but the overall volume did not differ between groups. FC between the amygdala and the whole brain regions did not differ between groups. The internetwork resting-state FC was higher between the "fear circuit" and salience network in the A+ group. CONCLUSION Anxiety in PD induces structural modifications of the left amygdala, atrophy of the bilateral fronto-cingulate and the left parietal cortices, and a higher internetwork resting-state FC between the fear circuit and the salience network.
Collapse
Affiliation(s)
- Guillaume Carey
- Univ. Lille, Inserm, CHU Lille, Lille Neurosciences and Cognition, Lille, France.
| | - Renaud Lopes
- Univ. Lille, Inserm, CHU Lille, Lille Neurosciences and Cognition, Lille, France; Department of Neuroradiology, Lille University Medical Centre, Lille, France
| | - Romain Viard
- Univ. Lille, Inserm, CHU Lille, Lille Neurosciences and Cognition, Lille, France; Department of Neuroradiology, Lille University Medical Centre, Lille, France
| | - Nacim Betrouni
- Univ. Lille, Inserm, CHU Lille, Lille Neurosciences and Cognition, Lille, France
| | - Gregory Kuchcinski
- Univ. Lille, Inserm, CHU Lille, Lille Neurosciences and Cognition, Lille, France; Department of Neuroradiology, Lille University Medical Centre, Lille, France
| | - Quentin Devignes
- Univ. Lille, Inserm, CHU Lille, Lille Neurosciences and Cognition, Lille, France
| | - Luc Defebvre
- Univ. Lille, Inserm, CHU Lille, Lille Neurosciences and Cognition, Lille, France; Neurology and Movement Disorders Department, Lille University Medical Centre, Lille, France
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Kathy Dujardin
- Univ. Lille, Inserm, CHU Lille, Lille Neurosciences and Cognition, Lille, France; Neurology and Movement Disorders Department, Lille University Medical Centre, Lille, France
| |
Collapse
|
30
|
Lang S, Yoon EJ, Kibreab M, Kathol I, Cheetham J, Hammer T, Sarna J, Ismail Z, Monchi O. Mild behavioral impairment in Parkinson's disease is associated with altered corticostriatal connectivity. NEUROIMAGE-CLINICAL 2020; 26:102252. [PMID: 32279019 PMCID: PMC7152681 DOI: 10.1016/j.nicl.2020.102252] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022]
Abstract
Mild behavioral impairment in PD is linked to altered corticostriatal connectivity. PD-MBI have less connectivity between the striatum and the DMN. PD-MBI have increased atrophy of the SAN. Caudate head and dorsal putamen connectivity is related to MBI-C scores in PD. Caudate head-precuneus connectivity is linked to both MBI and MoCA scores.
Background Mild behavioral impairment (MBI) is a syndrome characterized by later life onset, sustained neuropsychiatric symptoms as a marker of dementia risk. In Parkinson's disease (PD), MBI has been associated with worse cognitive abilities and increased cortical atrophy. However, the circuit level correlates of MBI have not been investigated in this population. Our objective was to investigate the relationship between MBI and corticostriatal connectivity in PD patients. This emphasis on corticostriatal connectivity was due to the significant role of these circuits in neuropsychiatric and cognitive symptoms across disease conditions. Methods Seventy-four non-demented patients with PD were administered the MBI-checklist, and classified as having high MBI (PD-MBI; n = 21) or low MBI scores (PD-noMBI; n = 53). Corticostriatal connectivity was assessed with both an atlas and seed-based analysis. The atlas analysis consisted of calculating the average connectivity between the striatal network and the default mode (DMN), central executive (CEN), and saliency networks (SAN). Structural measurements of cortical thickness and volume were also assessed. PD-MBI and PD-noMBI patients were compared, along with a group of age matched healthy control subjects (HC; n = 28). Subsequently, a seed analysis assessed the relationship of MBI scores with the connectivity of twelve seeds within the striatum while controlling for cognitive ability. A complementary analysis assessed the relationship between striatal connectivity and cognition, while controlling for MBI-C. Results PD-MBI demonstrated decreased connectivity between the striatum and both the DMN and SAN compared to PD-noMBI and HC. The decreased connectivity between the striatum and the SAN was explained partly by increased atrophy within the SAN in PD-MBI. The seed analysis revealed a relationship between higher MBI scores and lower connectivity of the left caudate head to the dorsal anterior cingulate cortex and left middle frontal gyrus. Higher MBI-C scores were also related to decreased connectivity of the right caudate head with the anterior cingulate cortex, precuneus, and left supramarginal gyrus, as well as increased connectivity to the left hippocampus and right cerebellar hemisphere. Caudate-precuneus connectivity was independently associated with both global behavioural and cognitive scores. Conclusion These results suggest PD-MBI is associated with altered corticostriatal connectivity, particularly between the head of the caudate and cortical regions associated with the DMN and SAN. In particular, caudate-precuneus connectivity is associated with both global behavioral and cognitive symptoms in PD.
Collapse
Affiliation(s)
- Stefan Lang
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Eun Jin Yoon
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mekale Kibreab
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Iris Kathol
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jenelle Cheetham
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tracy Hammer
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Justyna Sarna
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zahinoor Ismail
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Mathison Center for Brain and Mental Health Research, University of Calgary, Calgary, Canada
| | - Oury Monchi
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
31
|
Yun JY, Kim YK. Phenotype Network and Brain Structural Covariance Network of Anxiety. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:21-34. [PMID: 32002920 DOI: 10.1007/978-981-32-9705-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Network-based approach for psychological phenotypes assumes the dynamical interactions among the psychiatric symptoms, psychological characteristics, and neurocognitive performances arise, as they coexist, propagate, and inhibit other components within the network of mental phenomena. For differential types of dataset from which the phenotype network is to be estimated, a Gaussian graphical model, an Ising model, a directed acyclic graph, or an intraindividual covariance network could be used. Accordingly, these network-based approaches for anxiety-related psychological phenomena have been helpful in quantitative and pictorial understanding of qualitative dynamics among the diverse psychological phenomena as well as mind-environment interactions. Brain structural covariance refers to the correlative patterns of diverse brain morphological features among differential brain regions comprising the brain, as calculated per participant or across the participants. These covarying patterns of brain morphology partly overlap with longitudinal patterns of brain cortical maturation and also with propagating pattern of brain morphological changes such as cortical thinning and brain volume reduction in patients diagnosed with neurologic or psychiatric disorders along the trajectory of disease progression. Previous studies that used the brain structural covariance network could show neural correlates of specific anxiety disorder such as panic disorder and also elucidate the neural underpinning of anxiety symptom severity in diverse psychiatric and neurologic disorder patients.
Collapse
Affiliation(s)
- Je-Yeon Yun
- Seoul National University Hospital, Seoul, South Korea. .,Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, South Korea.
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
32
|
Pontone GM, Dissanayaka N, Apostolova L, Brown RG, Dobkin R, Dujardin K, Friedman JH, Leentjens AFG, Lenze EJ, Marsh L, Mari L, Monchi O, Richard IH, Schrag A, Strafella AP, Vernaleo B, Weintraub D, Mari Z. Report from a multidisciplinary meeting on anxiety as a non-motor manifestation of Parkinson's disease. NPJ Parkinsons Dis 2019; 5:30. [PMID: 31840044 PMCID: PMC6906437 DOI: 10.1038/s41531-019-0102-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Anxiety is a severe problem for at least one-third of people living with Parkinson's disease (PD). Anxiety appears to have a greater adverse impact on quality of life than motor impairment. Despite its high prevalence and impact on daily life, anxiety is often undiagnosed and untreated. To better address anxiety in PD, future research must improve knowledge about the mechanism of anxiety in PD and address the lack of empirical evidence from clinical trials. In response to these challenges, the Parkinson's Foundation sponsored an expert meeting on anxiety on June 13th and 14th 2018. This paper summarizes the findings from that meeting informed by a review of the existing literature and discussions among patients, caregivers, and an international, clinician-scientist, expert panel working group. The goal is to provide recommendations to improve our understanding and treatment of anxiety in PD.
Collapse
Affiliation(s)
- Gregory M. Pontone
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Nadeeka Dissanayaka
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, Brisbane, Australia
- School of Psychology, The University of Queensland, Brisbane, Australia
- Department of Neurology, Royal Brisbane & Woman’s Hospital, Brisbane, Australia
| | - Liana Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Richard G. Brown
- Department of Psychology, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Roseanne Dobkin
- Department of Psychiatry, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ USA
| | - Kathy Dujardin
- Department of Neurology and Movement Disorders, Lille University Medical Center, Lille, France
| | - Joseph H. Friedman
- Movement Disorders Program, Butler Hospital; Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI USA
| | - Albert F. G. Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Eric J. Lenze
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Laura Marsh
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX USA
- Department of Psychiatry, Baylor College of Medicine, Houston, TX USA
| | - Lynda Mari
- Person Holistic Innovation, Las Vegas, NV USA
| | - Oury Monchi
- Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Irene H. Richard
- Department of Neurology, University of Rochester Medical Center, Rochester, NY USA
| | - Anette Schrag
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Antonio P. Strafella
- E.J. Safra Parkinson Disease Program, Toronto Western Hospital & Krembil Research Institute, UHN; Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH; University of Toronto, Ontario, Canada
| | | | - Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
- Parkinson’s Disease Research, Education and Clinical Center, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, Movement Disorders Program, Las Vegas, NV USA
| |
Collapse
|
33
|
Lorio S, Sambataro F, Bertolino A, Draganski B, Dukart J. The Combination of DAT-SPECT, Structural and Diffusion MRI Predicts Clinical Progression in Parkinson's Disease. Front Aging Neurosci 2019; 11:57. [PMID: 30930768 PMCID: PMC6428714 DOI: 10.3389/fnagi.2019.00057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
There is an increasing interest in identifying non-invasive biomarkers of disease severity and prognosis in idiopathic Parkinson’s disease (PD). Dopamine-transporter SPECT (DAT-SPECT), diffusion tensor imaging (DTI), and structural magnetic resonance imaging (sMRI) provide unique information about the brain’s neurotransmitter and microstructural properties. In this study, we evaluate the relative and combined capability of these imaging modalities to predict symptom severity and clinical progression in de novo PD patients. To this end, we used MRI, SPECT, and clinical data of de novo drug-naïve PD patients (n = 205, mean age 61 ± 10) and age-, sex-matched healthy controls (n = 105, mean age 58 ± 12) acquired at baseline. Moreover, we employed clinical data acquired at 1 year follow-up for PD patients with or without L-Dopa treatment in order to predict the progression symptoms severity. Voxel-based group comparisons and covariance analyses were applied to characterize baseline disease-related alterations for DAT-SPECT, DTI, and sMRI. Cortical and subcortical alterations in de novo PD patients were found in all evaluated imaging modalities, in line with previously reported midbrain-striato-cortical network alterations. The combination of these imaging alterations was reliably linked to clinical severity and disease progression at 1 year follow-up in this patient population, providing evidence for the potential use of these modalities as imaging biomarkers for disease severity and prognosis that can be integrated into clinical trials.
Collapse
Affiliation(s)
- Sara Lorio
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Roche Pharma and Early Development, Neuroscience, Ophthalmology and Rare Diseases, F. Hoffmann-La Roche Ltd., Basel, Switzerland.,Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Fabio Sambataro
- Roche Pharma and Early Development, Neuroscience, Ophthalmology and Rare Diseases, F. Hoffmann-La Roche Ltd., Basel, Switzerland.,Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Alessandro Bertolino
- Roche Pharma and Early Development, Neuroscience, Ophthalmology and Rare Diseases, F. Hoffmann-La Roche Ltd., Basel, Switzerland.,Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Juergen Dukart
- Roche Pharma and Early Development, Neuroscience, Ophthalmology and Rare Diseases, F. Hoffmann-La Roche Ltd., Basel, Switzerland.,Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
34
|
Interaction Between Neuropsychiatric Symptoms and Cognitive Performance in Parkinson's Disease: What Do Clinical and Neuroimaging Studies Tell Us? Curr Neurol Neurosci Rep 2018; 18:91. [PMID: 30324260 DOI: 10.1007/s11910-018-0907-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW Parkinson's disease was studied for a long time from the prism of a motor impairment. Recent advances have outlined the importance of cognitive and neuropsychiatric symptoms (NPS) in the PD equation. This review concentrates on the present possibilities of using neuroimaging techniques in order to quantify the cognitive performance and NPS in PD patients. RECENT FINDINGS Mild cognitive impairment as well as many NPS have been acknowledged as important criteria for assessing the quality of life in patients with Parkinson's disease and have been shown as potential factors in predicting further evolution of PD from a clinical perspective. Some NPS strongly influence cognition (depression, REM sleep behavior disorder), while others are less specifically associated with it (impulse control disorders). Neuroimaging techniques reported specific structural, functional, and metabolic brain changes that might be specific for each NPS type. Recent neuroimaging advances report a strong interrelation between NPS and cognitive performance in PD. A special place for consideration is given to REM sleep behavior disorder, depression, and hallucinations. Nevertheless, some studies report distinct results, outlining that the neuroimaging acquisition and analysis techniques still have limitations and also likely represent the complexity of the manifestation of NPS in PD.
Collapse
|