1
|
Lu T, Luo L, Yang J, Li Y, Chen D, Sun H, Liao H, Zhao W, Ren Z, Xu Y, Yu S, Cheng X, Sun J. Major depressive disorder and the development of cerebral small vessel disease: A Mendelian randomization study. J Affect Disord 2025; 377:68-76. [PMID: 39983784 DOI: 10.1016/j.jad.2025.02.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Although observational studies indicate a complex, bidirectional association between major depressive disorder (MDD) and cerebral small vessel disease (CSVD), the results are frequently inconsistent. This study investigated the potential correlation of MDD with both CSVD clinical outcomes and radiological markers, utilizing a bidirectional Mendelian randomization (MR) study design. METHODS Instrumental variables for MDD were obtained from the latest and largest genome-wide association study (GWAS). For CSVD, we extracted genetic instruments from GWAS datasets corresponding to both clinical outcomes and radiological markers, including intracerebral hemorrhage, small vessel ischemic stroke, white matter hyperintensities volume, mean diffusivity (MD), fractional anisotropy, brain microbleeds, and enlarged perivascular space (PVS). We employed the inverse variance weighting method as the primary analysis, complemented by conducting extensive sensitivity and heterogeneity tests. RESULTS In the forward MR analyses, we discovered that the genetically predicted risk of MDD exhibits a potential causal relationship with two CSVD phenotypes demonstrating microscopic white matter (WM) damage: mean diffusivity (β = 0.784, 95 % CI 0.285-1.283, p = 0.002) and WM-PVS (OR = 1.053, 95%CI 1.010-1.097, p = 0.015). A single SNP (rs2232423) was identified as significantly influencing the causal relationship between MDD and WM. After excluding this SNP, our estimated association between MDD and increased MD (β = 0.516, 95%CI -0.001-1.033, p = 0.048) remained. The effects of MDD on WM-PVS passed all the tests for heterogeneity and pleiotropy. Reverse MR analyses showed no evidence of reverse causality between MDD and an altered CSVD risk. CONCLUSIONS This study supports a potential causal association between MDD and CSVD-related indicators of impaired WM microstructure. These insights hold promise for improving risk assessment methods in CSVD.
Collapse
Affiliation(s)
- Ting Lu
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lijun Luo
- Department of Neurology, Wuhan No.1 Hospital, Wuhan 430033, China
| | - Jie Yang
- Department of Neurology, Wuhan No.1 Hospital, Wuhan 430033, China
| | - Yueying Li
- The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Daiyi Chen
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haiyang Sun
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huijuan Liao
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wen Zhao
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhixuan Ren
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yan Xu
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shiyao Yu
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao Cheng
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China; Chinese Medicine Guangdong Laboratory, Hengqin, Zhuhai 519000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, China.
| | - Jingbo Sun
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, China.
| |
Collapse
|
2
|
Lei X, Qiu W, Xu Z, Yu J, Lan H. Increased extracellular free water is related to white matter hyperintensity burden. Acta Radiol 2024; 65:1265-1271. [PMID: 39308415 DOI: 10.1177/02841851241282085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
BACKGROUND Extracellular free water (FW) has important roles in the occurrence and development of white matter hyperintensity (WMH). PURPOSE To explore the correlations between FW and WMH burden. MATERIAL AND METHODS A prospective analysis was conducted using magnetic resonance imaging (MRI) data from 126 individuals. WMH burden was determined based on WMH volumes and Fazekas scores from deep and periventricular white matter hyperintensity (DWMH and PWMH, respectively) in fluid-attenuated inversion recovery (FLAIR) images. FW values were taken from diffusion tensor imaging (DTI). RESULTS Univariate analysis showed that FW values were correlated with WMH burden, including WMH volumes and DWMH and PWMH Fazekas scores (P < 0.05). After multivariate analysis, FW values were correlated with WMH volumes and DWMH and PWMH Fazekas scores when adjusted for age and hypertension (P < 0.05). CONCLUSION Using MRI, increasing extracellular FW was related to WMH burden.
Collapse
Affiliation(s)
- Xinjun Lei
- Department of Radiology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, PR China
| | - Weiwen Qiu
- Department of Neurology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, PR China
| | - Zhihua Xu
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, PR China
| | - Jie Yu
- Department of Radiology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, PR China
| | - Haiyuan Lan
- Department of Radiology, Lishui Hospital of Traditional Chinese Medicine affiliated with Zhejiang Chinese Medical University, Lishui, PR China
| |
Collapse
|
3
|
Huang L, Liu X, Cheng Y, Qin R, Yang D, Mo Y, Ke Z, Hu Z, Mao C, Chen Y, Li J, Xu Y. Lower cerebrovascular reactivity in prefrontal cortex and weaker negative functional connectivity between prefrontal cortex and insula contribute to white matter hyperintensity-related anxiety or depression. J Affect Disord 2024; 354:526-535. [PMID: 38513774 DOI: 10.1016/j.jad.2024.03.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND White matter hyperintensities (WMHs) are associated with higher anxiety or depression (A/D) incidence. We investigated associations of WMHs with A/D, cerebrovascular reactivity (CVR), and functional connectivity (FC) to identify potential pathomechanisms. METHODS Participants with WMH (n = 239) and normal controls (NCs, n = 327) were assessed for A/D using the Hamilton Anxiety Rating Scale (HAMA) and Hamilton Depression Rating Scale (HAMD). The CVR and FC maps were constructed from resting-state functional MRI. Two-way analysis of covariance with fixed factors A/D and WMH was performed to identify regional CVR abnormalities. Seed-based FC analyses were then conducted on regions with WMH × A/D interaction effects on CVR. Logistic regression models were constructed to examine the utility of these measurements for identifying WMH-related A/D. RESULTS Participants with WMH related A/D exhibited significantly greater CVR in left insula and lower CVR in right superior frontal gyrus (SFG.R), and HAMA scores were negatively correlated with CVR in SFG.R (r = -0.156, P = 0.016). Insula-SFG.R negative FC was significantly weaker in WMH patients with suspected or definite A/D. A model including CVR plus FC changes identified WMH-associated A/D with highest sensitivity and specificity. In contrast, NCs with A/D exhibited greater CVR in prefrontal cortex and stronger FC within the default mode network (DMN) and between the DMN and executive control network. LIMITATIONS This cross-sectional study requires validation by longitudinal and laboratory studies. CONCLUSIONS Impaired CVR in SFG.R and weaker negative FC between prefrontal cortex and insula may contribute to WMH-related A/D, providing potential diagnostic imaging markers and therapeutic targets.
Collapse
Affiliation(s)
- Lili Huang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Xin Liu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Nanjing University of Science and Technology, 210094 Xuanwu District, Nanjing, China
| | - Yue Cheng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Dan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Yuting Mo
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Chenglu Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Ying Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Jingwei Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China.
| |
Collapse
|
4
|
da Silva PHR, de Leeuw FE, Zotin MCZ, Neto OMP, Leoni RF, Tuladhar AM. Neural Substrates of Psychomotor Speed Deficits in Cerebral Small Vessel Disease: A Brain Disconnectome Mapping Study. Brain Topogr 2023:10.1007/s10548-023-00961-0. [PMID: 37156893 DOI: 10.1007/s10548-023-00961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
It remains unknown which factors influence how brain disconnectivity derived from White Matter Hyperintensity (WMH) lesions leads to psychomotor speed dysfunction, one of the earliest and most common cognitive manifestations in the cerebral Small Vessel Disease (cSVD) population. While the burden of WMH has been strongly linked to psychomotor speed performance, the effect that different locations and volumes of WMH may have on cSVD-related cognitive impairment remains unclear. Therefore, we aimed to explore (1) whether global WMH, deep WMH (DWMH), and periventricular (PVWMH) volumes display different psychomotor speed associations; (2) whether tract-specific WMH volume shows stronger cognitive associations compared with global measures of WMH volume; (3) whether specific patterns of WMH location lead to different degrees of disconnectivity. Using the BCBToolkit, we investigated which pattern of distribution and which locations of WMH lesion result in impaired psychomotor speed in a well-characterized sample (n = 195) of cSVD patients without dementia. Two key findings emerge from our study. First, global (and not tract-specific) measures of WMH volume were associated with psychomotor speed performance. Second, disconnection maps revealed the involvement of callosal tracts, association and projection fibers, and frontal and parietal cortical brain areas related to psychomotor speed, while the lesion location influenced such associations. In conclusion, psychomotor deficits are affected differently by WMH burden and topographic distribution through brain disconnection in non-demented cSVD patients.
Collapse
Affiliation(s)
| | - Frank-Erik de Leeuw
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Clara Zanon Zotin
- Department of Neurology, J. Philip Kistler Stroke Research Center, MGH, Boston, MA, USA
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, Ribeirão Preto, Brazil
| | - Octavio Marques Pontes Neto
- Department of Neurosciences and Behavioural Sciences, Hospital das Clínicas - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Anil M Tuladhar
- Department of Neurology (A.M.T, Donders Center for Medical Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
5
|
da Silva PHR, Paschoal AM, Secchinatto KF, Zotin MCZ, Dos Santos AC, Viswanathan A, Pontes-Neto OM, Leoni RF. Contrast agent-free state-of-the-art magnetic resonance imaging on cerebral small vessel disease - Part 2: Diffusion tensor imaging and functional magnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4743. [PMID: 35429070 DOI: 10.1002/nbm.4743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Cerebral small vessel disease (cSVD) has been widely studied using conventional magnetic resonance imaging (MRI) methods, although the association between MRI findings and clinical features of cSVD is not always concordant. We assessed the additional contribution of contrast agent-free, state-of-the-art MRI techniques, particularly diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI), to understand brain damage and structural and functional connectivity impairment related to cSVD. We performed a review following the PICOS worksheet and Search Strategy, including 152 original papers in English, published from 2000 to 2022. For each MRI method, we extracted information about their contributions regarding the origins, pathology, markers, and clinical outcomes in cSVD. In general, DTI studies have shown that changes in mean, radial, and axial diffusivity measures are related to the presence of cSVD. In addition to the classical deficit in executive functions and processing speed, fMRI studies indicate connectivity dysfunctions in other domains, such as sensorimotor, memory, and attention. Neuroimaging metrics have been correlated with the diagnosis, prognosis, and rehabilitation of patients with cSVD. In short, the application of contrast agent-free, state-of-the-art MRI techniques has provided a complete picture of cSVD markers and tools to explore questions that have not yet been clarified about this clinical condition. Longitudinal studies are desirable to look for causal relationships between image biomarkers and clinical outcomes.
Collapse
Affiliation(s)
| | - André Monteiro Paschoal
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Maria Clara Zanon Zotin
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antônio Carlos Dos Santos
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Anand Viswanathan
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Octavio M Pontes-Neto
- Department of Neurosciences and Behavioral Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Ferranti Leoni
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Shan LL, Wang YL, Qiao TC, Bian YF, Huo YJ, Guo C, Liu QY, Yang ZD, Li ZZ, Liu MY, Han Y. Association of Serum Interleukin-8 and Serum Amyloid A With Anxiety Symptoms in Patients With Cerebral Small Vessel Disease. Front Neurol 2022; 13:938655. [PMID: 35923828 PMCID: PMC9341200 DOI: 10.3389/fneur.2022.938655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Cerebral small vessel disease (CSVD) is a clinical syndrome caused by pathological changes in small vessels. Anxiety is a common symptom of CSVD. Previous studies have reported the association between inflammatory factors and anxiety in other diseases, but this association in patients with CSVD remains uncovered. Our study aimed to investigate whether serum inflammatory factors correlated with anxiety in patients with CSVD. METHODS A total of 245 CSVD patients confirmed using brain magnetic resonance imaging (MRI) were recruited from December 2019 to December 2021. Hamilton Anxiety Rating Scale (HAMA) was used to assess the anxiety symptoms of CSVD patients. Patients with HAMA scores ≥7 were considered to have anxiety symptoms. The serum levels of interleukin-1β (IL-1β), IL-2R, IL-6, IL-8, IL-10, tumor necrosis factor-α (TNF-α), serum amyloid A (SAA), C-reactive protein (CRP), high-sensitivity C-reactive protein (hs-CRP) and erythrocyte sedimentation rate (ESR) were detected. We compared levels of inflammatory factors between the anxiety and non-anxiety groups. Logistic regression analyses examined the correlation between inflammatory factors and anxiety symptoms. We further performed a gender subgroup analysis to investigate whether this association differed by gender. RESULTS In the fully adjusted multivariate logistic regression analysis model, we found that lower levels of IL-8 were linked to a higher risk of anxiety symptoms. Moreover, higher levels of SAA were linked to a lower risk of anxiety symptoms. Our study identified sex-specific effects, and the correlation between IL-8 and anxiety symptoms remained significant among males, while the correlation between SAA and anxiety symptoms remained significant among females. CONCLUSIONS In this study, we found a suggestive association between IL-8, SAA, and anxiety symptoms in CSVD participants. Furthermore, IL-8 and SAA may have a sex-specific relationship with anxiety symptoms.
Collapse
Affiliation(s)
- Li-Li Shan
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Lin Wang
- Georgetown Preparatory School, North Bethesda, MD, United States
| | - Tian-Ci Qiao
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Feng Bian
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Jing Huo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian-Yun Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Dong Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Ze-Zhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming-Yuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Huang P, Zhang R, Jiaerken Y, Wang S, Hong H, Yu W, Lian C, Li K, Zeng Q, Luo X, Yu X, Wu X, Xu X, Zhang M. White Matter Free Water is a Composite Marker of Cerebral Small Vessel Degeneration. Transl Stroke Res 2022; 13:56-64. [PMID: 33634379 DOI: 10.1007/s12975-021-00899-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 11/28/2022]
Abstract
To investigate the association between white matter free water (FW) and common imaging markers of cerebral small vessel diseases (CSVD) in two groups of subjects with different clinical status. One hundred and forty-four community subjects (mean age 60.5) and 84 CSVD subjects (mean age 61.2) were retrospectively included in the present study. All subjects received multi-modal magnetic resonance imaging and clinical assessments. The association between white matter FW and common CSVD imaging markers, including white matter hyperintensities (WMH), dilated perivascular space (PVS), lacunes, and microbleeds, were assessed using simple and multiple regression analysis. The association between FW and cognitive scores were also investigated. White matter FW was positively associated with WMH volume (β = 0.270, p = 0.001), PVS volume (β = 0.290, p < 0.001), number of microbleeds (β = 0.148, p = 0.043), and age (β = 0.170, p = 0.036) in the community cohort. In the CSVD cohort, FW was positively associated with WMH volume (β = 0.648, p < 0.001), PVS score (β = 0.224, p < 0.001), number of lacunes (β = 0.140, p = 0.046), and sex (β = 0.125, p = 0.036). The associations between FW and cognitive scores were stronger than conventional CSVD markers in both datasets. White matter FW is a potential composite marker that can sensitively detect cerebral small vessel degeneration and also reflect cognitive impairments.
Collapse
Affiliation(s)
- Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wenke Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Chunfeng Lian
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
8
|
Jellinger KA. Pathomechanisms of Vascular Depression in Older Adults. Int J Mol Sci 2021; 23:ijms23010308. [PMID: 35008732 PMCID: PMC8745290 DOI: 10.3390/ijms23010308] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Depression in older individuals is a common complex mood disorder with high comorbidity of both psychiatric and physical diseases, associated with high disability, cognitive decline, and increased mortality The factors predicting the risk of late-life depression (LLD) are incompletely understood. The reciprocal relationship of depressive disorder and age- and disease-related processes has generated pathogenic hypotheses and provided various treatment options. The heterogeneity of depression complicates research into the underlying pathogenic cascade, and factors involved in LLD considerably differ from those involved in early life depression. Evidence suggests that a variety of vascular mechanisms, in particular cerebral small vessel disease, generalized microvascular, and endothelial dysfunction, as well as metabolic risk factors, including diabetes, and inflammation that may induce subcortical white and gray matter lesions by compromising fronto-limbic and other important neuronal networks, may contribute to the development of LLD. The "vascular depression" hypothesis postulates that cerebrovascular disease or vascular risk factors can predispose, precipitate, and perpetuate geriatric depression syndromes, based on their comorbidity with cerebrovascular lesions and the frequent development of depression after stroke. Vascular burden is associated with cognitive deficits and a specific form of LLD, vascular depression, which is marked by decreased white matter integrity, executive dysfunction, functional disability, and poorer response to antidepressive therapy than major depressive disorder without vascular risk factors. Other pathogenic factors of LLD, such as neurodegeneration or neuroimmune regulatory dysmechanisms, are briefly discussed. Treatment planning should consider a modest response of LLD to antidepressants, while vascular and metabolic factors may provide promising targets for its successful prevention and treatment. However, their effectiveness needs further investigation, and intervention studies are needed to assess which interventions are appropriate and effective in clinical practice.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150 Vienna, Austria
| |
Collapse
|