1
|
Laroy M, Emsell L, Vandenbulcke M, Bouckaert F. Mapping electroconvulsive therapy induced neuroplasticity: Towards a multilevel understanding of the available clinical literature - A scoping review. Neurosci Biobehav Rev 2025; 173:106143. [PMID: 40222573 DOI: 10.1016/j.neubiorev.2025.106143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Since its introduction in 1938, the precise mechanism underlying the efficacy of electroconvulsive therapy (ECT) in treating severe psychiatric disorders remains elusive. This paper presents a comprehensive scoping review aimed to collate and summarize findings from clinical studies on neuroplastic changes induced by ECT. The review categorizes neuroplasticity into molecular, structural, and functional domains, offering a multilevel view of current research and its limitations. Molecular findings detail the varied responses of neurotrophic factors and neurotransmitters post-ECT, highlighting inconsistent evidence on their clinical relevance. Structural neuroplasticity is explored through changes in brain volume, cortical thickness, and white matter properties, presenting ECT as a potent stimulator of brain architecture alterations. Functional plasticity examines ECT's impact on brain function through diverse neuroimaging techniques, suggesting significant yet complex modifications in brain network connectivity and activity. The review emphasizes the multilevel nature of these neuroplasticity levels and their collective role in ECT's therapeutic outcomes. Methodological considerations-including sample size, patient heterogeneity, and variability in assessment timing-emerge as recurring themes in the literature, underscoring the need for more consistent and rigorous research designs. By outlining a cohesive framework of changes in neuroplasticity due to ECT, this review provides initial steps towards a deeper comprehension of ECT's mechanisms.
Collapse
Affiliation(s)
- Maarten Laroy
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium.
| | - Louise Emsell
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium; KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Translational MRI, Leuven B-3000, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium
| | - Filip Bouckaert
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium
| |
Collapse
|
2
|
Mao Y, Fan L, Feng C, Dai Z. Predicting responses of neuromodulation and psychotherapies for major depressive disorder: A coordinate-based meta-analysis of functional magnetic resonance imaging studies. Neurosci Biobehav Rev 2025; 172:106120. [PMID: 40122358 DOI: 10.1016/j.neubiorev.2025.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/29/2024] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
This meta-analysis synthesized resting-state functional connectivity (FC) patterns associated with treatment responses in Major Depressive Disorder (MDD). We evaluated studies from 2013 to 2023 that reported pre-treatment FC (i.e., 'biomarker' analysis) and/or treatment-induced FC alterations (i.e., 'longitudinal effects') in three treatments (i.e., transcranial magnetic stimulation, electroconvulsive therapy, psychotherapy), and further associated these patterns with gene expression, neurotransmitter distributions, and symptomatology. From 57 studies covering 1726 patients, the 'biomarker' results revealed significant rs-FC patterns in the Default Mode Network (DMN) and Frontoparietal Network (FPN). 'Longitudinal effects' were characterized by altered DMN connectivity. Psychotherapy primarily affected the visual network and DMN. Gene expression profiles explained 38.5 % and 56.0 % of the variance in 'biomarker' and 'longitudinal' results, respectively. The meta-analysis correlated with neurotransmitter distributions (e.g., serotonin, dopamine) and MDD-related terms ('interaction', 'emotional', 'negative'). These findings indicate that baseline FC within the DMN and FPN is crucial for predicting treatment responses, and the core mechanisms may involve restoring the DMN. This work may enhance our understanding of MDD pathophysiology and help guide personalized interventions.
Collapse
Affiliation(s)
- Yunlin Mao
- Department of Psychology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linlin Fan
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau SAR, China
| | - Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, China.
| | - Zhengjia Dai
- Department of Psychology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Liang N, Xue Z, Xu J, Sun Y, Li H, Lu J. Abnormal resting-state functional connectivity in adolescent depressive episodes. Psychiatry Res Neuroimaging 2025; 348:111961. [PMID: 39983531 DOI: 10.1016/j.pscychresns.2025.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Depression is linked to abnormalities in brain networks. Resting-state functional connectivity (FC), as measured using resting-state fMRI (rs-fMRI), is a crucial tool for exploring the brain network abnormalities associated with depressive symptoms, as it reveals how disruptions in brain region interactions occur. However, research focusing on adolescents with depression is limited and inconsistent, highlighting the need for further studies in this area. METHODS Fifty-five adolescents with Depressive episodes (DE) and 26 healthy controls (HCs) underwent resting-state fMRI. Depressive symptoms were assessed using the 17-item Hamilton Rating Scale for Depression (HAMD-17). Seed regions were defined based on Yeo's seven-network scheme, including the sensorimotor network (SMN), ventral attention network (VAN), dorsal attention network (DAN), visual network (VN), frontoparietal network (FPN), default mode network (DMN), and limbic network (LN). These seed regions were derived from analysis of large-scale FC in healthy individuals, and were selected for their relevance to cognition, emotion, and depression research. Network-based statistical analyses were used to compare the adolescents with DE to the HCs, and correlation analyses were employed to examine the relationships between FC changes and cognitive performance. RESULTS The results showed significant differences in FC between the DE and HCs groups, involving 17 nodes and 17 edges across seven networks. Decreased FC was observed within the FPN, as well as between the FPN and VAN, the FPN and DMN, and the SMN and both the DAN and VN. Increased FC was observed between the FPN and VN, between the DAN and other networks (i.e., the DMN and FPN), and between the SMN and multiple networks. Notably, FC between the right superior parietal (SMN) and right precuneus (DMN) showed a negative correlation with HAMD-17 scores. CONCLUSION These results suggest that adolescents with DE experience widespread brain network abnormalities characterized by hypoactivity in external networks such as the SMN and VN, as well as hyperactivity in associative regions, including the DMN, FPN, SMN, and LN. Although these changes in FC are evident, the specific mechanisms linking them to clinical symptoms remain unclear and warrant further investigation.
Collapse
Affiliation(s)
- Nana Liang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China; Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China
| | - Zhenpeng Xue
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China
| | - Jianchang Xu
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China
| | - Yumeng Sun
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China
| | - Huiyan Li
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China
| | - Jianping Lu
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China.
| |
Collapse
|
4
|
Hassan J, Péran P, Yrondi A. Neuroimaging correlates of cognitive disorders secondary to electroconvulsive therapy: A systematic review. L'ENCEPHALE 2024:S0013-7006(24)00201-X. [PMID: 39510874 DOI: 10.1016/j.encep.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVES Electroconvulsive therapy is known as an efficient therapy, which is sometimes recommended for the management of severe and resistant depression. However, ECT is associated with cognitive adverse effects. The study of the neurobiological correlates of the cognitive adverse effects of ECT has been covered in few published reviews. However, these mechanisms have been investigated in an increasing number of studies in recent years, particularly in neuroimaging. This systematic review of the literature focuses on correlates between changes in structural or functional neuroimaging and impairment of cognitive functions during the ECT treatment. METHODS We conducted a systematic review of the literature using PRISMA methodology. Searches were performed on the Medline and Web of Science databases using the following equation: "electroconvulsive therapy AND (MRI OR fMRI OR DTI OR neuroimaging) AND depression AND cogniti*". RESULTS This article highlights the significant heterogeneity of the results. In structural imaging, approximately 50% of the studies did not report any correlation between volumetric changes and neuropsychological changes. In studies that did highlight a correlation, the latter was mainly reported with changes in the hippocampus. From a functional perspective, we highlighted a correlation between changes in the connectivity of the hippocampal region and cognition. CONCLUSION These results demonstrate a growing interest in understanding the neurobiological mechanisms underlying cognitive disorders secondary to ECT treatment. The ultimate aim behind this understanding is to adopt a more effective prevention strategy vis-à-vis these adverse effects.
Collapse
Affiliation(s)
- Johann Hassan
- Service de Psychiatrie et de Psychologie Médicale (Department of Psychiatry and Medical Psychology), Centre Expert Dépression Résistante FondaMental, Hôpital Purpan, CHU de Toulouse, Toulouse, France; Inserm, UPS, Toulouse NeuroImaging Centre (ToNIC), Université de Toulouse, Toulouse, France
| | - Patrice Péran
- Inserm, UPS, Toulouse NeuroImaging Centre (ToNIC), Université de Toulouse, Toulouse, France
| | - Antoine Yrondi
- Service de Psychiatrie et de Psychologie Médicale (Department of Psychiatry and Medical Psychology), Centre Expert Dépression Résistante FondaMental, Hôpital Purpan, CHU de Toulouse, Toulouse, France; Inserm, UPS, Toulouse NeuroImaging Centre (ToNIC), Université de Toulouse, Toulouse, France.
| |
Collapse
|
5
|
Wei Q, Lin S, Xu S, Zou J, Chen J, Kang M, Hu J, Liao X, Wei H, Ling Q, Shao Y, Yu Y. Graph theoretical analysis and independent component analysis of diabetic optic neuropathy: A resting-state functional magnetic resonance imaging study. CNS Neurosci Ther 2024; 30:e14579. [PMID: 38497532 PMCID: PMC10945884 DOI: 10.1111/cns.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/06/2023] [Accepted: 12/14/2023] [Indexed: 03/19/2024] Open
Abstract
AIMS This study aimed to investigate the resting-state functional connectivity and topologic characteristics of brain networks in patients with diabetic optic neuropathy (DON). METHODS Resting-state functional magnetic resonance imaging scans were performed on 23 patients and 41 healthy control (HC) subjects. We used independent component analysis and graph theoretical analysis to determine the topologic characteristics of the brain and as well as functional network connectivity (FNC) and topologic properties of brain networks. RESULTS Compared with HCs, patients with DON showed altered global characteristics. At the nodal level, the DON group had fewer nodal degrees in the thalamus and insula, and a greater number in the right rolandic operculum, right postcentral gyrus, and right superior temporal gyrus. In the internetwork comparison, DON patients showed significantly increased FNC between the left frontoparietal network (FPN-L) and ventral attention network (VAN). Additionally, in the intranetwork comparison, connectivity between the left medial superior frontal gyrus (MSFG) of the default network (DMN) and left putamen of auditory network was decreased in the DON group. CONCLUSION DON patients altered node properties and connectivity in the DMN, auditory network, FPN-L, and VAN. These results provide evidence of the involvement of specific brain networks in the pathophysiology of DON.
Collapse
Affiliation(s)
- Qian Wei
- Department of Endocrine and MetabolicThe First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for Metabolic DiseaseNanchangJiangxiChina
- Queen Mary SchoolThe Nanchang UniversityNanchangJiangxiChina
| | - Si‐Min Lin
- Department of RadiologyXiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenFujianChina
| | - San‐Hua Xu
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jie Zou
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jun Chen
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Min Kang
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jin‐Yu Hu
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Xu‐Lin Liao
- Department of Ophthalmology and Visual SciencesThe Chinese University of Hong KongHong KongChina
| | - Hong Wei
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Qian Ling
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Yi Shao
- Department of OphthalmologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
- Department of OphthalmologyEye & ENT Hospital of Fudan UniversityShanghaiChina
| | - Yao Yu
- Department of Endocrine and MetabolicThe First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Jiangxi Branch of National Clinical Research Center for Metabolic DiseaseNanchangJiangxiChina
| |
Collapse
|
6
|
Belge JB, van Eijndhoven P, Mulders PCR. Mechanism of Action of ECT in Depression. Curr Top Behav Neurosci 2024; 66:279-295. [PMID: 37962811 DOI: 10.1007/7854_2023_450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Electroconvulsive therapy (ECT) remains the most potent antidepressant treatment available for patients with major depressive disorder (MDD). ECT is highly effective, achieving a response rate of 70-80% and a remission rate of 50-60% even in treatment-resistant patients. The underlying mechanisms of ECT are not fully understood, although several hypotheses have been proposed, including the monoamine hypothesis, anticonvulsive hypothesis, neuroplastic effects, and immunomodulatory properties. In this paper, we provide an overview of magnetic resonance imaging evidence that addresses the neuroplastic changes that occur after ECT at the human systems level and elaborate further on ECTs potent immunomodulatory properties. Despite a growing body of evidence that suggests ECT may normalize many of the structural and functional changes in the brain associated with severe depression, there is a lack of convergence between neurobiological changes and the robust clinical effects observed in depression. This may be due to sample sizes used in ECT studies being generally small and differences in data processing and analysis pipelines. Collaborations that acquire large datasets, such as the GEMRIC consortium, can help translate ECT's clinical efficacy into a better understanding of its mechanisms of action.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Medical Neuroscience, Nijmegen, The Netherlands
| | - Peter C R Mulders
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Medical Neuroscience, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Verdijk JPAJ, van de Mortel LA, Ten Doesschate F, Pottkämper JCM, Stuiver S, Bruin WB, Abbott CC, Argyelan M, Ousdal OT, Bartsch H, Narr K, Tendolkar I, Calhoun V, Lukemire J, Guo Y, Oltedal L, van Wingen G, van Waarde JA. Longitudinal resting-state network connectivity changes in electroconvulsive therapy patients compared to healthy controls. Brain Stimul 2024; 17:140-147. [PMID: 38101469 PMCID: PMC11145948 DOI: 10.1016/j.brs.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is effective for major depressive episodes. Understanding of underlying mechanisms has been increased by examining changes of brain connectivity but studies often do not correct for test-retest variability in healthy controls (HC). In this study, we investigated changes in resting-state networks after ECT in a multicenter study. METHODS Functional resting-state magnetic resonance imaging data, acquired before start and within one week after ECT, from 90 depressed patients were analyzed, as well as longitudinal data of 24 HC. Group-information guided independent component analysis (GIG-ICA) was used to spatially restrict decomposition to twelve canonical resting-state networks. Selected networks of interest were the default mode network (DMN), salience network (SN), and left and right frontoparietal network (LFPN, and RFPN). Whole-brain voxel-wise analyses were used to assess group differences at baseline, group by time interactions, and correlations with treatment effectiveness. In addition, between-network connectivity and within-network strengths were computed. RESULTS Within-network strength of the DMN was lower at baseline in ECT patients which increased after ECT compared to HC, after which no differences were detected. At baseline, ECT patients showed lower whole-brain voxel-wise DMN connectivity in the precuneus. Increase of within-network strength of the LFPN was correlated with treatment effectiveness. We did not find whole-brain voxel-wise or between-network changes. CONCLUSION DMN within-network connectivity normalized after ECT. Within-network increase of the LFPN in ECT patients was correlated with higher treatment effectiveness. In contrast to earlier studies, we found no whole-brain voxel-wise changes, which highlights the necessity to account for test-retest effects.
Collapse
Affiliation(s)
- Joey P A J Verdijk
- Rijnstate Hospital, Department of Psychiatry, P.O. Box 9555, 6800 TA Arnhem, the Netherlands; University of Twente, Department of Clinical Neurophysiology, Enschede, the Netherlands.
| | - Laurens A van de Mortel
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Freek Ten Doesschate
- Rijnstate Hospital, Department of Psychiatry, P.O. Box 9555, 6800 TA Arnhem, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Julia C M Pottkämper
- Rijnstate Hospital, Department of Psychiatry, P.O. Box 9555, 6800 TA Arnhem, the Netherlands; University of Twente, Department of Clinical Neurophysiology, Enschede, the Netherlands
| | - Sven Stuiver
- Rijnstate Hospital, Department of Psychiatry, P.O. Box 9555, 6800 TA Arnhem, the Netherlands; University of Twente, Department of Clinical Neurophysiology, Enschede, the Netherlands
| | - Willem B Bruin
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Christopher C Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Miklos Argyelan
- Center for Psychiatric Neuroscience at the Feinstein Institute for Medical Research, New York, NY, USA
| | - Olga T Ousdal
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Hauke Bartsch
- Department of Computer Science, University of Bergen, Bergen, Norway; Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Katherine Narr
- Departments of Neurology, Psychiatry, and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Indira Tendolkar
- Donders Institute for Brain, Cognition and Behavior, Department of Psychiatry, Nijmegen, the Netherlands
| | - Vince Calhoun
- Tri-institutional center for Translational Research in Neuroimaging and Data Science (TReNDS) Center, Emory University, USA
| | - Joshua Lukemire
- Emory Center for Biomedical Imaging Statistics, Emory University, USA
| | - Ying Guo
- Emory Center for Biomedical Imaging Statistics, Emory University, USA
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Guido van Wingen
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jeroen A van Waarde
- Rijnstate Hospital, Department of Psychiatry, P.O. Box 9555, 6800 TA Arnhem, the Netherlands
| |
Collapse
|
8
|
Le Droguene E, Bulteau S, Deschamps T, Thomas-Ollivier V, Brichant-Petitjean C, Guitteny M, Laurin A, Sauvaget A. Dynamics of Depressive and Psychomotor Symptoms During Electroconvulsive Therapy in Older Depressive Patients: A Case Series. J ECT 2023; 39:255-262. [PMID: 37310091 DOI: 10.1097/yct.0000000000000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is an effective treatment for patients experiencing a major depressive episode, especially older ones. Identification of specific responses within early ECT sessions remains an issue of debate, however. Hence, this pilot study prospectively examined the outcome in terms of depressive signs, symptom by symptom, throughout a course of ECT, concentrating particularly on psychomotor retardation symptoms. METHODS Nine patients were clinically evaluated several times during the ECT course, before the first session and then weekly (over 3-6 weeks, according to their evolution), by completing the Montgomery-Åsberg Depression Rating Scale (MADRS), the Mini-Mental State Examination test, and the French Retardation Rating Scale for Depression for assessing the severity of psychomotor retardation. RESULTS Nonparametric Friedman tests showed significant positive changes in mood disorders during ECT in older depressive patients (mean, -27.3% of initial MADRS total score). Fast improvement in French Retardation Rating Scale for Depression score was observed at t1 (ie, after 3-4 ECT sessions), whereas a slightly delayed improvement in the MADRS scores was found at t2 (ie, after 5-6 ECT sessions). Moreover, the scores for items linked to the motor component of psychomotor retardation (eg, gait, postural control, fatigability) were the first to significantly decrease during the first 2 weeks of the ECT course compared with the cognitive component. CONCLUSIONS Interestingly, participants' concentration on daily functional activities, their interest and fatigability, and their reported state of sadness were the first to progress, representing possible precursor signs of positive patient outcomes after ECT.
Collapse
Affiliation(s)
| | - Samuel Bulteau
- Nantes Université, CHU Nantes, INSERM, Methods in Patients-Centered Outcomes and Health Research
| | - Thibault Deschamps
- Nantes Université, CHU Nantes, Movement-Interactions-Performance, Nantes
| | | | | | - Marie Guitteny
- CHU de Nantes, Service d'Addictologie et Psychiatrie de Liaison, Nantes, France
| | - Andrew Laurin
- Nantes Université, CHU Nantes, Movement-Interactions-Performance, Nantes
| | - Anne Sauvaget
- Nantes Université, CHU Nantes, Movement-Interactions-Performance, Nantes
| |
Collapse
|
9
|
Transcutaneous Electrical Cranial-Auricular Acupoint Stimulation Modulating the Brain Functional Connectivity of Mild-to-Moderate Major Depressive Disorder: An fMRI Study Based on Independent Component Analysis. Brain Sci 2023; 13:brainsci13020274. [PMID: 36831816 PMCID: PMC9953795 DOI: 10.3390/brainsci13020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Evidence has shown the roles of taVNS and TECS in improving depression but few studies have explored their synergistic effects on MDD. Therefore, the treatment responsivity and neurological effects of TECAS were investigated and compared to escitalopram, a commonly used medication for depression. Fifty patients with mild-to-moderate MDD (29 in the TECAS group and 21 in another) and 49 demographically matched healthy controls were recruited. After an eight-week treatment, the outcomes of TECAS and escitalopram were evaluated by the effective rate and reduction rate based on the Montgomery-Asberg Depression Rating Scale, Hamilton Depression Rating Scale, and Hamilton Anxiety Rating Scale. Altered brain networks were analyzed between pre- and post-treatment using independent component analysis. There was no significant difference in clinical scales between TECAS and escitalopram but these were significantly decreased after each treatment. Both treatments modulated connectivity of the default mode network (DMN), dorsal attention network (DAN), right frontoparietal network (RFPN), and primary visual network (PVN), and the decreased PVN-RFPN connectivity might be the common brain mechanism. However, there was increased DMN-RFPN and DMN-DAN connectivity after TECAS, while it decreased in escitalopram. In conclusion, TECAS could relieve symptoms of depression similarly to escitalopram but induces different changes in brain networks.
Collapse
|
10
|
White matter changes following electroconvulsive therapy for depression: a multicenter ComBat harmonization approach. Transl Psychiatry 2022; 12:517. [PMID: 36526624 PMCID: PMC9758171 DOI: 10.1038/s41398-022-02284-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
ECT is proposed to exert a therapeutic effect on WM microstructure, but the limited power of previous studies made it difficult to highlight consistent patterns of change in diffusion metrics. We initiated a multicenter analysis and sought to address whether changes in WM microstructure occur following ECT. Diffusion tensor imaging (DTI) data (n = 58) from 4 different sites were harmonized before pooling them by using ComBat, a batch-effect correction tool that removes inter-site technical variability, preserves inter-site biological variability, and maximizes statistical power. Downstream statistical analyses aimed to quantify changes in Fractional Anisotropy (FA), Mean Diffusivity (MD), Radial Diffusivity (RD) and Axial Diffusivity (AD), by employing whole-brain, tract-based spatial statistics (TBSS). ECT increased FA in the right splenium of the corpus callosum and the left cortico-spinal tract. AD in the left superior longitudinal fasciculus and the right inferior fronto-occipital fasciculus was raised. Increases in MD and RD could be observed in overlapping white matter structures of both hemispheres. At baseline, responders showed significantly smaller FA values in the left forceps major and smaller AD values in the right uncinate fasciculus compared with non-responders. By harmonizing multicenter data, we demonstrate that ECT modulates altered WM microstructure in important brain circuits that are implicated in the pathophysiology of depression. Furthermore, responders appear to present a more decreased WM integrity at baseline which could point toward a specific subtype of patients, characterized by a more altered neuroplasticity, who are especially sensitive to the potent neuroplastic effects of ECT.
Collapse
|