1
|
Chen L, Fukuda AM, Jiang S, Leuchter MK, van Rooij SJH, Widge AS, McDonald WM, Carpenter LL. Treating Depression With Repetitive Transcranial Magnetic Stimulation: A Clinician's Guide. Am J Psychiatry 2025; 182:525-541. [PMID: 40302403 DOI: 10.1176/appi.ajp.20240859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Transcranial magnetic stimulation (TMS) applies electromagnetic pulses to stimulate cortical neurons. The antidepressant effect of the repetitive application of TMS (rTMS) was first shown nearly three decades ago. The therapeutic potential of TMS has been extensively investigated, mostly in treatment-resistant depression (TRD). Studies have extensively evaluated stimulation parameters, treatment schedules, methods to localize the stimulation target, and different magnetic coil designs engineered for desired stimulation breadth and depth. Several of these stimulation protocols and coils/devices have received U.S. Food and Drug Administration (FDA) clearance for application in TRD and other neuropsychiatric disorders, such as obsessive-compulsive disorder. Some stimulation protocols, while not FDA-cleared, have substantial clinical trial-derived evidence to support their safety and antidepressant efficacy. The proliferation of rTMS translational and clinical research has resulted in the field's advancement. This clinician-oriented review contains an overview of fundamental TMS principles, physiological effects, and studies of rTMS in TRD. Also discussed are two innovations that are increasingly applied in the clinic: theta burst stimulation and accelerated scheduling. A synthesis of the key clinical considerations given to patient assessment and safety, treatment setup, and the minimization and management of adverse effects is provided.
Collapse
Affiliation(s)
- Leo Chen
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| | - Andrew M Fukuda
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| | - Shixie Jiang
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| | - Michael K Leuchter
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| | - Sanne J H van Rooij
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| | - Alik S Widge
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| | - William M McDonald
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| | - Linda L Carpenter
- Department of Psychiatry, School of Translational Medicine, Monash University and Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia (Chen); Psychiatric Neurotherapeutics Program, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA and Department of Psychiatry, Harvard Medical School, Boston (Fukuda); Department of Psychiatry, University of Florida, Gainesville (Jiang); TMS Clinical and Research Program, Neuromodulation Division, UCLA Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles (Leuchter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (van Rooij, McDonald); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Butler Hospital, Department of Psychiatry and Human Behavior, Alpert Medical School at Brown University, Providence, Rhode Island (Carpenter)
| |
Collapse
|
2
|
Ellappan S, Subba R, Mondal AC. Understanding borderline personality disorder: Clinical features, neurobiological insights, and therapeutic strategies. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111403. [PMID: 40404040 DOI: 10.1016/j.pnpbp.2025.111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 05/06/2025] [Accepted: 05/17/2025] [Indexed: 05/24/2025]
Abstract
Borderline personality disorder (BPD) is a complex personality disorder characterised by immense emotional dysregulation, impulsivity, aggression and substantial interpersonal difficulties. This review begins with examining DSM-5-TR diagnostic clusters for BPD, highlighting the importance of accurate classification. It provides an in-depth analysis of BPD, starting with its epidemiology, diagnostic subtypes, core symptoms, and the challenges these symptoms pose for patients and their support networks. The review explores common co-occurring conditions, such as mood disorders, anxiety disorders, and other personality disorders, which frequently compound the effects of BPD and complicate its management. A detailed examination of BPD's neurobiological underpinnings is presented, focusing on structural and functional alterations in brain, aberrant connectivity, and neurotransmitter dysregulation, particularly within serotonin, dopamine, and glutamate pathways, being vital to understanding the effects of this disorder on impulsivity and emotional instability. Therapeutic strategies for BPD are also reviewed, encompassing psychotherapeutic methods like Dialectical Behavior Therapy (DBT) and other validated therapies, alongside pharmacological treatments that target mood stabilisation, impulsivity, and affective control through antidepressants, antipsychotics, and mood stabilisers. Neuromodulation techniques, such as neurofeedback and transcranial magnetic stimulation (TMS), are discussed for their potential to enhance cognitive and emotional control in BPD. The review closes with future directions, emphasizing the value of integrated, personalised treatment approaches to optimise outcomes for individuals with BPD and reduce the broader social and emotional impact of the disorder.
Collapse
Affiliation(s)
- Surendar Ellappan
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, 110067 New Delhi, India
| | - Rhea Subba
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, 110067 New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, 110067 New Delhi, India.
| |
Collapse
|
3
|
Mansour MEM, Alsaadany KR, Ahmed MAE, Elmetwalli AE, Serag I. Non-invasive brain stimulation for borderline personality disorder: a systematic review and network meta-analysis. Ann Gen Psychiatry 2025; 24:24. [PMID: 40241170 PMCID: PMC12004652 DOI: 10.1186/s12991-025-00561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
INTRODUCTION Borderline Personality Disorder (BPD) is a complex neuropsychiatric condition characterized by four main symptom domains: emotion dysregulation, behavioral dysregulation, self-image disturbances, and interpersonal instability. While psychotherapy remains the primary treatment, there is a need for additional effective interventions. Given the neuromodulatory effects of non-invasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), these methods may hold potential for addressing BPD symptoms. METHODS A systematic review and network meta-analysis were conducted following PRISMA guidelines. A literature search (PubMed, Scopus, Web of Science, Cochrane CENTRAL) identified comparative studies assessing the effects of NIBS in BPD. The primary outcome was impulsivity, measured by the Barratt Impulsivity Scale (BIS-11). Secondary outcomes included Depressive symptoms, which were evaluated using different scales such as the Hamilton Depression Rating Scale (HAMD) and the Beck depression Inventory (BDI) scale, and anxiety symptoms were evaluated using the Hamilton Anxiety Rating Scale (HAMA). RESULTS Five studies with a total of 103 patients were included. Regarding impulsivity, tDCS 2 mA showed a significant reduction compared to the control group (MD = -11.67, 95% CI [-21.44, -1.90]). For depressive symptoms, TMS 20 Hz ranked highest (SMD = -1.97, 95% CI [-3.51, -0.43]), followed by tDCS 2 mA (SMD = -1.65, 95% CI [-2.97, -0.34]). In terms of anxiety, both TMS 5 Hz (MD = -12.29, 95% CI [-24.57, -0.01]) and tDCS 2 mA (MD = -11.81, 95% CI [-17.39, -6.23]) showed significant differences. CONCLUSION Preliminary evidence suggests potential efficacy of non-invasive brain stimulation for BPD, with well-tolerated side effects with well-tolerated side effects. Although there are noticeable statistically significant differences between the interventions and control groups, the results are inconclusive due to the small sample.
Collapse
Affiliation(s)
| | | | | | | | - Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
4
|
Machado YDC, Oliveira M, Mundoca MP, Viana B, Marques de Miranda D, Romano-Silva MA. Effects of non-invasive brain stimulation on impulsivity in patients with mental disorders: a systematic review and meta-analysis of randomised clinical trials. Gen Psychiatr 2024; 37:e101220. [PMID: 39737338 PMCID: PMC11683908 DOI: 10.1136/gpsych-2023-101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Background Non-invasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), may offer an alternative treatment strategy for impulsive behaviour. By modulating brain activity, these techniques could potentially enhance impulse control and mitigate impulsivity. Aims To provide a comprehensive analysis of the correlation between NIBS parameters, targeted brain regions and impulsivity. Methods We systematically searched PubMed, Scopus and Embase on 5 April 2023 for randomised controlled trials (RCTs) of NIBS on impulsivity. Unbiased Hedges' g with 95% CIs was used to define the effect size. Cochran Q test and I² statistics were used to assess for heterogeneity; p values inferior to 0.10 and I²>25% were considered significant for heterogeneity. Publication bias was investigated by funnel plot analysis of point estimates according to study weights, by Egger's regression test and by non-parametric rank correlation (Begg) test. Results A total of 18 studies were included, comprising 655 patients from 14 RCTs and four randomised crossover studies. The meta-analysis of effect sizes from 9 tDCS studies on impulsivity did not show a significant effect (g=-0.18; 95% CI -0.46 to 0.10; p=0.210) and from 9 repetitive TMS (rTMS) studies also did not yield a statistically significant effect (g=0.21; 95% CI -0.38 to 0.80; p=0.490). When analysing active tDCS using Barratt Impulsiveness Scale version 11, the scores showed a trend towards improvement with active tDCS over placebo (g=-0.54; 95% CI -0.97 to -0.12; p<0.05; I²=0%). Conclusions There is currently insufficient evidence to support the clinical use of rTMS or tDCS as a means of reducing impulsivity in individuals with mental disorders. The main limitations of this study are the lack of available patient-level data, a limited number of studies, the lack of consensus on the structure of impulsivity and variability in how impulsivity is measured and conceptualised. PROSPERO registration number CRD42023413684.
Collapse
Affiliation(s)
- Yuri de Castro Machado
- Molecular Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Oliveira
- Medicine, Faculdade de Ensino Superior da Amazonia Reunida, Redencao, Brazil
| | | | - Bernardo Viana
- Molecular Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Debora Marques de Miranda
- Molecular Medicine, Universidade Federal de Minas Gerais Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
| | - Marco Aurélio Romano-Silva
- Psychiatry Department, Universidade Federal de Minas Gerais Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Maciaszek J, Rymaszewska J, Wieczorek T, Piotrowski P, Szcześniak D, Beszłej JA, Małecka M, Bogudzińska B, Senczyszyn A, Siwicki D, Biercewicz M, Kowalski K, Zimny A, Podgórski P, Fila-Pawłowska K. Preliminary findings of a randomized controlled trial investigating the efficacy of transcranial magnetic stimulation in treatment-resistant depression: a post-hoc analysis on the role of co-occurring personality disorders. Front Psychiatry 2024; 15:1363984. [PMID: 39588550 PMCID: PMC11586332 DOI: 10.3389/fpsyt.2024.1363984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Despite the high hopes for the use of transcranial magnetic stimulation (TMS) in the treatment of depression, between 30% and 60.5% of patients do not respond to stimulation. The factors contributing to non-response, especially those related to personality, remain insufficiently investigated. The main aim of our study was to compare the efficacy of active TMS and sham-placebo protocols in combined therapy of treatment-resistant depression with evaluation of possible personality disorders comorbidity. Methods The study was conducted between December 2019 and December 2022, as a randomized, double-blind, active comparator-controlled and sham-controlled parallel trial. Patients (n = 41) were randomized into one of two experimental conditions (active TMS vs. placebo) and screened before and after stimulation as well as at a 3-month follow-up. Personality disorders were assessed with The Structured Clinical Interview for DSM-5 Personality Disorders. Results There were no significant differences between the TMS active and sham groups in terms of general characteristics, coexisting personality disorders, and Montgomery-Åsberg Depression Rating Scale scores before stimulation, at the end of stimulation, and after 3 months of stimulation. However, linear regression analysis revealed significant negative associations between the coexistence of personality disorders and the reduction of depressive symptoms from baseline to the end of stimulation. The post-hoc exploratory analysis on the first phase of the RCT confirmed the presence of personality disorders to be a consistent negative influence on the reduction of depressive symptoms post-stimulation, regardless of protocol and experimental condition and demonstrated a smaller percentage reduction in depressive symptoms after stimulation in patients with personality disorders. Discussion A central conclusion, based on our study, is that transcranial magnetic stimulation for treatment-resistant depression cannot be considered as a method independent of co-occurring personality disorders.
Collapse
Affiliation(s)
- Julian Maciaszek
- Department of Psychiatry, Wroclaw Medical University, Wrocław, Poland
| | - Joanna Rymaszewska
- Department of Clinical Neuroscience, Faculty of Medicine, Wroclaw University of Science and Technology (WUST), Wrocław, Poland
| | - Tomasz Wieczorek
- Department of Psychiatry, Wroclaw Medical University, Wrocław, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Wrocław, Poland
| | - Dorota Szcześniak
- Department of Psychiatry, Wroclaw Medical University, Wrocław, Poland
| | - Jan A. Beszłej
- Department of Psychiatry, Wroclaw Medical University, Wrocław, Poland
| | - Monika Małecka
- Department of Psychiatry, Wroclaw Medical University, Wrocław, Poland
| | - Bogna Bogudzińska
- Department of Psychiatry, Wroclaw Medical University, Wrocław, Poland
| | | | - Damian Siwicki
- Department of Psychiatry, Wroclaw Medical University, Wrocław, Poland
| | - Marta Biercewicz
- Department of Psychiatry, Wroclaw Medical University, Wrocław, Poland
| | | | - Anna Zimny
- Department of Radiology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Karolina Fila-Pawłowska
- Department of Clinical Neuroscience, Faculty of Medicine, Wroclaw University of Science and Technology (WUST), Wrocław, Poland
| |
Collapse
|
6
|
Hassanzadeh E, Moradi G, Arasteh M, Moradi Y. The effect of repetitive transcranial magnetic stimulation on the Hamilton Depression Rating Scale-17 criterion in patients with major depressive disorder without psychotic features: a systematic review and meta-analysis of intervention studies. BMC Psychol 2024; 12:480. [PMID: 39256851 PMCID: PMC11389065 DOI: 10.1186/s40359-024-01981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
AIM In line with the publication of clinical information related to the therapeutic process of repetitive transcranial magnetic stimulation (rTMS) and the updating of relevant treatment guidelines, the present meta-analysis study was designed and conducted to determine the effect of repetitive transcranial magnetic stimulation (rTMS) on the Hamilton Depression Rating Scale-17 (HDRS-17) criterion in patients with major depressive disorder (MDD) without psychotic features. METHODS In this study, a systematic search was conducted in electronic databases such as PubMed [Medline], Scopus, Web of Science, Embase, Ovid, Cochrane Library, and ClinicalTrials. gov using relevant keywords. The search period in this study was from January 2000 to January 2022, which was updated until May 2023. Randomized controlled trials (RCTs) that determined the effect of repetitive transcranial magnetic stimulation (rTMS) on the Hamilton Depression Rating Scale-17 (HDRS-17) criterion in patients with major depressive disorder (MDD) without psychotic features were included in the analysis. The quality of the included RCTs was assessed using the Cochrane Risk of Bias checklist. Statistical analyses were performed using STATA (Version 16) and RevMan (Version 5). RESULTS Following the combination of results from 16 clinical trial studies in the present meta-analysis, it was found that the mean Hamilton Depression Rating Scale-17 (HDRS-17) in patients with major depressive disorder (MDD) decreases by an average of 1.46 units (SMD: -1.46; % 95 CI: -1.65, -1.27, I square: 45.74%; P heterogeneity: 0.56). Subgroup analysis results indicated that the standardized mean difference of Hamilton Depression Rating Scale-17 (HDRS-17) varied based on the number of treatment sessions: patients receiving 10 or fewer repetitive transcranial magnetic stimulation (rTMS) sessions showed a mean Hamilton Depression Rating Scale-17 (HDRS-17) reduction of 2.60 units (SMD: -2.60; % 95 CI: -2.86, -2.33, I square: 55.12%; P heterogeneity: 0.55), while those receiving 11 to 20 sessions showed a mean Hamilton Depression Rating Scale-17 (HDRS-17) reduction of 0.28 units (SMD: -0.28; % 95 CI: -0.65, -0.09, I square: 39.91%; P heterogeneity: 0.89). CONCLUSION In conclusion, our meta-analysis demonstrates the efficacy of repetitive transcranial magnetic stimulation (rTMS) in reducing depressive symptoms in major depressive disorder (MDD) patients. The complex results of subgroup analysis revealed insight on the possible benefits of a more focused strategy with fewer sessions, as well as the impact of treatment session frequency. These findings add to our understanding of repetitive transcranial magnetic stimulation (rTMS) as a therapeutic intervention for the treatment of major depressive illnesses.
Collapse
Affiliation(s)
- Elham Hassanzadeh
- Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ghobad Moradi
- Social Determinants of the Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Modabber Arasteh
- Department of Psychiatry, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yousef Moradi
- Social Determinants of the Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
7
|
Xie XM, Sha S, Cai H, Liu X, Jiang I, Zhang L, Wang G. Resting-State Alpha Activity in the Frontal and Occipital Lobes and Assessment of Cognitive Impairment in Depression Patients. Psychol Res Behav Manag 2024; 17:2995-3003. [PMID: 39176258 PMCID: PMC11339342 DOI: 10.2147/prbm.s459954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Background Major depressive disorder (MDD) becomes one of the psychiatric disorders characteristic of a combination of cognitive, emotional, and somatic symptoms. Additionally, cognitive impairment has the most significant impact on functional results. However, the evaluation of cognitive level is still based on various subjective questionnaires as there is no objective standard assessment yet. This research focuses on resting-state alpha activity to identify cognition in MDD patients using electroencephalography (EEG) signals. Methods Ninety-two subjects were recruited: 44 patients with MDD and 48 healthy individuals as controls. Functional outcome and cognition were assessed using standardized instruments, and the EEG resting state signal of open and closed eyes was recorded. The comparison and correlation of cognitive levels with alpha power in the bilateral frontal region, bilateral central region, bilateral occipital region, and middle line was evaluated. Results The relative alpha power in MDD group was significantly lower than that in the control group (P < 0.05). Through correlation analysis, it was shown that the bilateral frontal and occipital alpha power of MDD patients in the closed-eyes state was positively correlated with information processing rate, verbal learning, working memory, and attention retention. The alpha power of the bilateral frontal region in the open-eyes state was positively correlated with information processing rate, working memory, and attention retention (P < 0.05). Conclusion The research indicates that the changes in frontal and occipital alpha activities may be a promising neurophysiological indicator of cognitive level to diagnose and treat response prediction.
Collapse
Affiliation(s)
- Xiao-Meng Xie
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, School of Mental Health, Beijing, People’s Republic of China
| | - Sha Sha
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, School of Mental Health, Beijing, People’s Republic of China
| | - Hong Cai
- Unit of Medical Psychology and Behavior Medicine, School of Public Health, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xinyu Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, School of Mental Health, Beijing, People’s Republic of China
| | - Isadora Jiang
- Bellarmine College of Liberal Arts, Loyola Marymount University, Los Angeles, CA, USA
| | - Ling Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, School of Mental Health, Beijing, People’s Republic of China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, School of Mental Health, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Lisoni J, Nibbio G, Baldacci G, Cicale A, Zucchetti A, Bertoni L, Calzavara Pinton I, Necchini N, Deste G, Barlati S, Vita A. What impact can brain stimulation interventions have on borderline personality disorder? Expert Rev Neurother 2024; 24:343-360. [PMID: 38349069 DOI: 10.1080/14737175.2024.2316133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Borderline personality disorder (BPD) is a severe mental disorder characterized by emotion dysregulation, impulsivity, neuropsychological impairment, and interpersonal instability, presenting with multiple psychiatric comorbidities, functional disability and reduced life expectancy due suicidal behaviors. AREAS COVERED In this perspective, the authors explore the application of noninvasive brain stimulation (NIBS) (rTMS, tDCS, and MST) in BPD individuals by considering a symptom-based approach, focusing on general BPD psychopathology, impulsivity and neuropsychological impairments, suicidality and depressive/anxious symptoms, and emotion dysregulation. EXPERT OPINION According to a symptoms-based approach, NIBS interventions (particularly rTMS and tDCS) are promising treatment options for BPD individuals improving core symptoms such as emotional and behavioral dysregulation, neuropsychological impairments and depressive symptoms. However, the heterogeneity of stimulation protocols and of assessment tools used to detect these changes limits the possibility to provide definitive recommendations according to a symptom-based approach. To implement such armamentarium in clinical practice, future NIIBS studies should further consider a lifespan perspective due to clinical variability over time, the role of psychiatric comorbidities affecting BPD individuals and the need to combine NIBS with specialized psychotherapeutic approaches for BPD patients and with functional neuroimaging studies.
Collapse
Affiliation(s)
- Jacopo Lisoni
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Giulia Baldacci
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea Cicale
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea Zucchetti
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Lorenzo Bertoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Nicola Necchini
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Giacomo Deste
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonio Vita
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
9
|
Benster LL, Weissman CR, Stolz LA, Daskalakis ZJ, Appelbaum LG. Pre-clinical indications of brain stimulation treatments for non-affective psychiatric disorders, a status update. Transl Psychiatry 2023; 13:390. [PMID: 38097566 PMCID: PMC10721798 DOI: 10.1038/s41398-023-02673-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Over the past two decades noninvasive brain stimulation (NIBS) techniques have emerged as powerful therapeutic options for a range of psychiatric and neurological disorders. NIBS are hypothesized to rebalance pathological brain networks thus reducing symptoms and improving functioning. This development has been fueled by controlled studies with increasing size and rigor aiming to characterize how treatments induce clinically effective change. Clinical trials of NIBS for specific indications have resulted in federal approval for unipolar depression, bipolar depression, smoking cessation, and obsessive-compulsive disorder in the United States, and several other indications worldwide. As a rapidly emerging field, there are numerous pre-clinical indications currently in development using a variety of electrical and magnetic, non-convulsive, and convulsive approaches. This review discusses the state-of-the-science surrounding promising avenues of NIBS currently in pre-approval stages for non-affective psychiatric disorders. We consider emerging therapies for psychosis, anxiety disorders, obsessive-compulsive disorder, and borderline personality disorder, utilizing transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and magnetic seizure therapy (MST), with an additional brief section for early-stage techniques including transcranial focused ultrasound stimulation (tFUS) and transcranial alternating current stimulation (tACS). As revealed in this review, there is considerable promise across all four psychiatric indications with different NIBS approaches. Positive findings are notable for the treatment of psychosis using tDCS, MST, and rTMS. While rTMS is already FDA approved for the treatment of obsessive-compulsive disorder, methodologies such as tDCS also demonstrate potential in this condition. Emerging techniques show promise for treating non-affective disorders likely leading to future regulatory approvals.
Collapse
Affiliation(s)
- Lindsay L Benster
- Joint Doctoral Program in Clinical Psychology, SDSU/UC San Diego, San Diego, CA, USA.
| | - Cory R Weissman
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| | - Louise A Stolz
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| | - Zafiris J Daskalakis
- Joint Doctoral Program in Clinical Psychology, SDSU/UC San Diego, San Diego, CA, USA
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| | - Lawrence G Appelbaum
- Joint Doctoral Program in Clinical Psychology, SDSU/UC San Diego, San Diego, CA, USA
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| |
Collapse
|
10
|
Wade B, Barbour T, Ellard K, Camprodon J. Predicting Dimensional Antidepressant Response to Repetitive Transcranial Magnetic Stimulation using Pretreatment Resting-state Functional Connectivity. RESEARCH SQUARE 2023:rs.3.rs-3204245. [PMID: 37609235 PMCID: PMC10441516 DOI: 10.21203/rs.3.rs-3204245/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for depression and has been shown to modulate resting-state functional connectivity (RSFC) of depression-relevant neural circuits. To date, however, few studies have investigated whether individual treatment-related symptom changes are predictable from pretreatment RSFC. We use machine learning to predict dimensional changes in depressive symptoms using pretreatment patterns of RSFC. We hypothesized that changes in dimensional depressive symptoms would be predicted more accurately than scale total scores. Patients with depression (n=26) underwent pretreatment RSFC MRI. Depressive symptoms were assessed with the 17-item Hamilton Depression Rating Scale (HDRS-17). Random forest regression (RFR) models were trained and tested to predict treatment-related symptom changes captured by the HDRS-17, HDRS-6 and three previously identified HDRS subscales: core mood/anhedonia (CMA), somatic disturbances, and insomnia. Changes along the CMA, HDRS-17, and HDRS-6 were predicted significantly above chance, with 9%, 2%, and 2% of out-of-sample outcome variance explained, respectively (all p<0.01). CMA changes were predicted more accurately than the HDRS-17 (p<0.05). Higher baseline global connectivity (GC) of default mode network (DMN) subregions and the somatomotor network (SMN) predicted poorer symptom reduction, while higher GC of the right dorsal attention (DAN) frontoparietal control (FPCN), and visual networks (VN) predicted reduced CMA symptoms. HDRS-17 and HDRS-6 changes were predicted with similar GC patterns. These results suggest that RSFC spanning the DMN, SMN, DAN, FPCN, and VN subregions predict dimensional changes with greater accuracy than syndromal changes following rTMS. These findings highlight the need to assess more granular clinical dimensions in therapeutic studies, particularly device neuromodulation studies, and echo earlier studies supporting that dimensional outcomes improve model accuracy.
Collapse
|
11
|
Improving treatment outcomes for borderline personality disorder: what can we learn from biomarker studies of psychotherapy? Curr Opin Psychiatry 2023; 36:67-74. [PMID: 36017562 DOI: 10.1097/yco.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Borderline personality disorder (BPD) is a severe and common psychiatric disorder and though evidence-based psychotherapies are effective, rates of treatment nonresponse are as high as 50%. Treatment studies may benefit from interdisciplinary approaches from neuroscience and genetics research that could generate novel insights into treatment mechanisms and tailoring interventions to the individual. RECENT FINDINGS We provide a timely update to the small but growing body of literature investigating neurobiological and epigenetic changes and using biomarkers to predict outcomes from evidence-based psychotherapies for BPD. Using a rapid review methodology, we identified eight new studies, updating our earlier 2018 systematic review. Across all studies, neuroimaging ( n = 18) and genetics studies ( n = 4) provide data from 735 participants diagnosed with BPD (mean sample size across studies = 33.4, range 2-115). SUMMARY We report further evidence for psychotherapy-related alterations of neural activation and connectivity in regions and networks relating to executive control, emotion regulation, and self/interpersonal functioning in BPD. Emerging evidence also shows epigenetic changes following treatment. Future large-scale multisite studies may help to delineate multilevel treatment targets to inform intervention design, selection, and monitoring for the individual patient via integration of knowledge generated through clinical, neuroscience, and genetics research.
Collapse
|
12
|
Choi-Kain LW, Sahin Z, Traynor J. Borderline Personality Disorder: Updates in a Postpandemic World. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:337-352. [PMID: 37200886 PMCID: PMC10187392 DOI: 10.1176/appi.focus.20220057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Progress in understanding borderline personality disorder has unfolded in the last decade, landing in a new COVID-19-influenced world. Borderline personality disorder is now firmly established as a valid diagnosis, distinct from its co-occurring mood, anxiety, trauma-related, and behavioral disorders. Further, it is also understood as a reflection of general personality dysfunction, capturing essential features shared among all personality disorders. Neuroimaging research, representing the vast neurobiological advances made in the last decade, illustrates that the disorder shares frontolimbic dysfunction with many psychiatric diagnoses but has a distinct signature of interpersonal and emotional hypersensitivity. This signature is the conceptual basis of the psychotherapies and clinical management approaches proven effective for the disorder. Medications remain adjunctive and are contraindicated by some guidelines internationally. Less invasive brain-based therapeutics show promise. The most significant change in the treatment landscape is a focus on briefer, less intensive formats of generalist management. Shorter variants of therapies, such as dialectical behavior therapy and mentalization-based treatment, are in the process of being shown to be adequately effective. Earlier intervention and greater emphasis on functional improvement are needed to more effectively curb the disabilities and risks of borderline personality disorder for patients and their families. Remote interventions show promise in broadening access to care.
Collapse
Affiliation(s)
- Lois W Choi-Kain
- Gunderson Personality Research Institute, McLean Hospital, Belmont, Massachusetts, and Faculty of Medicine, Harvard Medical School, Boston
| | - Zeynep Sahin
- Gunderson Personality Research Institute, McLean Hospital, Belmont, Massachusetts, and Faculty of Medicine, Harvard Medical School, Boston
| | - Jenna Traynor
- Gunderson Personality Research Institute, McLean Hospital, Belmont, Massachusetts, and Faculty of Medicine, Harvard Medical School, Boston
| |
Collapse
|