1
|
Zhang C, Jian L, Li X, Guo W, Deng W, Hu X, Li T. Mendelian randomization analysis of the brain, cerebrospinal fluid, and plasma proteome identifies potential drug targets for attention deficit hyperactivity disorder. EBioMedicine 2024; 105:105197. [PMID: 38876042 PMCID: PMC11225168 DOI: 10.1016/j.ebiom.2024.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND The need for new therapeutics for attention deficit hyperactivity disorder (ADHD) is evident. Brain, cerebrospinal fluid (CSF), and plasma protein biomarkers with causal genetic evidence could represent potential drug targets. However, a comprehensive screen of the proteome has not yet been conducted. METHODS We employed a three-pronged approach using Mendelian Randomization (MR) and Bayesian colocalization analysis. Firstly, we studied 608 brains, 214 CSF, and 612 plasma proteins as potential causal mediators of ADHD using MR analysis. Secondly, we analysed the consistency of the discovered biomarkers across three distinct subtypes of ADHD: childhood, persistent, and late-diagnosed ADHD. Finally, we extended our analysis to examine the correlation between identified biomarkers and Tourette syndrome and pervasive autism spectrum disorder (ASD), conditions often linked with ADHD. To validate the MR findings, we conducted sensitivity analysis. Additionally, we performed cell type analysis on the human brain to identify risk genes that are notably enriched in various brain cell types. FINDINGS After applying Bonferroni correction, we found that the risk of ADHD was increased by brain proteins GMPPB, NAA80, HYI, CISD2, and HYI, TIE1 in CSF and plasma. Proteins GMPPB, NAA80, ICA1L, CISD2, TIE1, and RMDN1 showed overlapped loci with ADHD risk through Bayesian colocalization. Overexpression of GMPPB protein was linked to an increase in the risk for all three ADHD subtypes. While ICA1L provided protection against both ASD and ADHD, CISD2 increased the probability of both disorders. Cell-specific studies revealed that GMPPB, NAA80, ICA1L, and CISD2 were predominantly present on the surface of excitatory-inhibitory neurons. INTERPRETATION Our comprehensive MR investigation of the brain, CSF, and plasma proteomes revealed seven proteins with causal connections to ADHD. Particularly, GMPPB and TIE1 emerged as intriguing targets for potential ADHD therapy. FUNDING This work was partly funded by the Key R & D Program of Zhejiang (T.L. 2022C03096); the National Natural Science Foundation of China Project (C.Z. 82001413); Postdoctoral Foundation of West China Hospital (C.Z. 2020HXBH163).
Collapse
Affiliation(s)
- Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lingqi Jian
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wanjun Guo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xun Hu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Zagkos L, Dib MJ, Cronjé HT, Elliott P, Dehghan A, Tzoulaki I, Gill D, Daghlas I. Cerebrospinal Fluid C1-Esterase Inhibitor and Tie-1 Levels Affect Cognitive Performance: Evidence from Proteome-Wide Mendelian Randomization. Genes (Basel) 2024; 15:71. [PMID: 38254961 PMCID: PMC10815381 DOI: 10.3390/genes15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE The association of cerebrospinal fluid (CSF) protein levels with cognitive function in the general population remains largely unexplored. We performed Mendelian randomization (MR) analyses to query which CSF proteins may have potential causal effects on cognitive performance. METHODS AND ANALYSIS Genetic associations with CSF proteins were obtained from a genome-wide association study conducted in up to 835 European-ancestry individuals and for cognitive performance from a meta-analysis of GWAS including 257,841 European-ancestry individuals. We performed Mendelian randomization (MR) analyses to test the effect of randomly allocated variation in 154 genetically predicted CSF protein levels on cognitive performance. Findings were validated by performing colocalization analyses and considering cognition-related phenotypes. RESULTS Genetically predicted C1-esterase inhibitor levels in the CSF were associated with a better cognitive performance (SD units of cognitive performance per 1 log-relative fluorescence unit (RFU): 0.23, 95% confidence interval: 0.12 to 0.35, p = 7.91 × 10-5), while tyrosine-protein kinase receptor Tie-1 (sTie-1) levels were associated with a worse cognitive performance (-0.43, -0.62 to -0.23, p = 2.08 × 10-5). These findings were supported by colocalization analyses and by concordant effects on distinct cognition-related and brain-volume measures. CONCLUSIONS Human genetics supports a role for the C1-esterase inhibitor and sTie-1 in cognitive performance.
Collapse
Affiliation(s)
- Loukas Zagkos
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK; (P.E.); (A.D.); (I.T.); (D.G.)
| | - Marie-Joe Dib
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Héléne T. Cronjé
- Department of Public Health, Section of Epidemiology, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK; (P.E.); (A.D.); (I.T.); (D.G.)
- UK Dementia Research Institute at Imperial College London, Hammersmith Hospital, London W1T 7NF, UK
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK; (P.E.); (A.D.); (I.T.); (D.G.)
- UK Dementia Research Institute at Imperial College London, Hammersmith Hospital, London W1T 7NF, UK
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK; (P.E.); (A.D.); (I.T.); (D.G.)
- UK Dementia Research Institute at Imperial College London, Hammersmith Hospital, London W1T 7NF, UK
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London SW7 2AZ, UK
- Centre for Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2BX, UK; (P.E.); (A.D.); (I.T.); (D.G.)
| | - Iyas Daghlas
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA;
| |
Collapse
|
3
|
Gedik H, Nguyen TH, Peterson RE, Chatzinakos C, Vladimirov VI, Riley BP, Bacanu SA. Identifying potential risk genes and pathways for neuropsychiatric and substance use disorders using intermediate molecular mediator information. Front Genet 2023; 14:1191264. [PMID: 37415601 PMCID: PMC10320396 DOI: 10.3389/fgene.2023.1191264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
Neuropsychiatric and substance use disorders (NPSUDs) have a complex etiology that includes environmental and polygenic risk factors with significant cross-trait genetic correlations. Genome-wide association studies (GWAS) of NPSUDs yield numerous association signals. However, for most of these regions, we do not yet have a firm understanding of either the specific risk variants or the effects of these variants. Post-GWAS methods allow researchers to use GWAS summary statistics and molecular mediators (transcript, protein, and methylation abundances) infer the effect of these mediators on risk for disorders. One group of post-GWAS approaches is commonly referred to as transcriptome/proteome/methylome-wide association studies, which are abbreviated as T/P/MWAS (or collectively as XWAS). Since these approaches use biological mediators, the multiple testing burden is reduced to the number of genes (∼20,000) instead of millions of GWAS SNPs, which leads to increased signal detection. In this work, our aim is to uncover likely risk genes for NPSUDs by performing XWAS analyses in two tissues-blood and brain. First, to identify putative causal risk genes, we performed an XWAS using the Summary-data-based Mendelian randomization, which uses GWAS summary statistics, reference xQTL data, and a reference LD panel. Second, given the large comorbidities among NPSUDs and the shared cis-xQTLs between blood and the brain, we improved XWAS signal detection for underpowered analyses by performing joint concordance analyses between XWAS results i) across the two tissues and ii) across NPSUDs. All XWAS signals i) were adjusted for heterogeneity in dependent instruments (HEIDI) (non-causality) p-values and ii) used to test for pathway enrichment. The results suggest that there were widely shared gene/protein signals within the major histocompatibility complex region on chromosome 6 (BTN3A2 and C4A) and elsewhere in the genome (FURIN, NEK4, RERE, and ZDHHC5). The identification of putative molecular genes and pathways underlying risk may offer new targets for therapeutic development. Our study revealed an enrichment of XWAS signals in vitamin D and omega-3 gene sets. So, including vitamin D and omega-3 in treatment plans may have a modest but beneficial effect on patients with bipolar disorder.
Collapse
Affiliation(s)
- Huseyin Gedik
- Integrative Life Sciences, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Tan Hoang Nguyen
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Roseann E. Peterson
- Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Christos Chatzinakos
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, United States
| | - Vladimir I. Vladimirov
- Department of Psychiatry, College of Medicine, University of Arizona Phoenix, Phoenix, AZ, United States
| | - Brien P. Riley
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
4
|
Xu Y, Lin S, Tao J, Liu X, Zhou R, Chen S, Vyas P, Yang C, Chen B, Qian A, Wang M. Correlation research of susceptibility single nucleotide polymorphisms and the severity of clinical symptoms in attention deficit hyperactivity disorder. Front Psychiatry 2022; 13:1003542. [PMID: 36213906 PMCID: PMC9538111 DOI: 10.3389/fpsyt.2022.1003542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To analyze the correlation between susceptibility single nucleotide polymorphisms (SNPs) and the severity of clinical symptoms in children with attention deficit hyperactivity disorder (ADHD), so as to supplement the clinical significance of gene polymorphism and increase our understanding of the association between genetic mutations and ADHD phenotypes. METHODS 193 children with ADHD were included in our study from February 2017 to February 2020 in the Children's ADHD Clinic of the author's medical institution. 23 ADHD susceptibility SNPs were selected based on the literature, and multiple polymerase chain reaction (PCR) targeted capture sequencing technology was used for gene analysis. A series of ADHD-related questionnaires were used to reflect the severity of the disease, and the correlation between the SNPs of specific sites and the severity of clinical symptoms was evaluated. R software was used to search for independent risk factors by multivariate logistic regression and the "corplot" package was used for correlation analysis. RESULTS Among the 23 SNP loci of ADHD children, no mutation was detected in 6 loci, and 2 loci did not conform to Hardy-Weinberg equilibrium. Of the remaining 15 loci, there were 9 SNPs, rs2652511 (SLC6A3 locus), rs1410739 (OBI1-AS1 locus), rs3768046 (TIE1 locus), rs223508 (MANBA locus), rs2906457 (ST3GAL3 locus), rs4916723 (LINC00461 locus), rs9677504 (SPAG16 locus), rs1427829 (intron) and rs11210892 (intron), correlated with the severity of clinical symptoms of ADHD. Specifically, rs1410739 (OBI1-AS1 locus) was found to simultaneously affect conduct problems, control ability and abstract thinking ability of children with ADHD. CONCLUSION There were 9 SNPs significantly correlated with the severity of clinical symptoms in children with ADHD, and the rs1410739 (OBI1-AS1 locus) may provide a new direction for ADHD research. Our study builds on previous susceptibility research and further investigates the impact of a single SNP on the severity of clinical symptoms of ADHD. This can help improve the diagnosis, prognosis and treatment of ADHD.
Collapse
Affiliation(s)
- Yunyu Xu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangxiang Lin
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jiejie Tao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ronghui Zhou
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangli Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Punit Vyas
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Chuang Yang
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andan Qian
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|