1
|
Tubío-Fungueiriño M, Cernadas E, Fernández-Delgado M, Arrojo M, Bertolin S, Real E, Menchon JM, Carracedo A, Alonso P, Fernández-Prieto M, Segalàs C. Prediction of pharmacological response in OCD using machine learning techniques and clinical and neuropsychological variables. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2025; 18:51-57. [PMID: 39551240 DOI: 10.1016/j.sjpmh.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION Obsessive compulsive disorder is associated with affected executive functioning, including memory, cognitive flexibility, and organizational strategies. As it was reported in previous studies, patients with preserved executive functions respond better to pharmacological treatment, while others need to keep trying different pharmacological strategies. MATERIAL AND METHODS In this work we used machine learning techniques to predict pharmacological response (OCD patients' symptomatology reduction) based on executive functioning and clinical variables. Among those variables we used anxiety, depression and obsessive-compulsive symptoms scores by applying State-Trait Anxiety Inventory, Hamilton Depression Rating Scale and Yale-Brown Obsessive Compulsive Scale respectively, while Rey-Osterrieth Complex Figure Test was used to assess organisation skills and non-verbal memory; Digits' subtests from Wechsler Adult Intelligence Scale-IV were used to assess short-term memory and working memory; and Raven's Progressive Matrices were applied to assess problem solving and abstract reasoning. RESULTS As a result of our analyses, we created a reliable algorithm that predicts Y-BOCS score after 12 weeks based on patients' clinical characteristics (sex at birth, age, pharmacological strategy, depressive and obsessive-compulsive symptoms, years passed since diagnostic and Raven's Progressive Matrices score) and Digits' scores. A high correlation (0.846) was achieved in predicted and true values. CONCLUSIONS The present study proves the viability to predict if a patient would respond or not to a certain pharmacological strategy with high reliability based on sociodemographics, clinical variables and cognitive functions as short-term memory and working memory. These results are promising to develop future prediction models to help clinical decision making.
Collapse
Affiliation(s)
- Maria Tubío-Fungueiriño
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Pública Galega Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Eva Cernadas
- Centro Singular de Investigación en Tecnoloxías Intelixentes da USC (CiTIUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Manuel Fernández-Delgado
- Centro Singular de Investigación en Tecnoloxías Intelixentes da USC (CiTIUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Manuel Arrojo
- Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sara Bertolin
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Real
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Menchon
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Angel Carracedo
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Montse Fernández-Prieto
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Pública Galega Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.
| | - Cinto Segalàs
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Segalàs C, Cernadas E, Puialto M, Fernández-Delgado M, Arrojo M, Bertolin S, Real E, Menchón JM, Carracedo A, Tubío-Fungueiriño M, Alonso P, Fernández-Prieto M. Cognitive and clinical predictors of a long-term course in obsessive compulsive disorder: A machine learning approach in a prospective cohort study. J Affect Disord 2024; 350:648-655. [PMID: 38246282 DOI: 10.1016/j.jad.2024.01.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/20/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Obsessive compulsive disorder (OCD) is a disabling illness with a chronic course, yet data on long-term outcomes are scarce. This study aimed to examine the long-term course of OCD in patients treated with different approaches (drugs, psychotherapy, and psychosurgery) and to identify predictors of clinical outcome by machine learning. METHOD We included outpatients with OCD treated at our referral unit. Demographic and neuropsychological data were collected at baseline using standardized instruments. Clinical data were collected at baseline, 12 weeks after starting pharmacological treatment prescribed at study inclusion, and after follow-up. RESULTS Of the 60 outpatients included, with follow-up data available for 5-17 years (mean = 10.6 years), 40 (67.7 %) were considered non-responders to adequate treatment at the end of the study. The best machine learning model achieved a correlation of 0.63 for predicting the long-term Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score by adding clinical response (to the first pharmacological treatment) to the baseline clinical and neuropsychological characteristics. LIMITATIONS Our main limitations were the sample size, modest in the context of traditional ML studies, and the sample composition, more representative of rather severe OCD cases than of patients from the general community. CONCLUSIONS Many patients with OCD showed persistent and disabling symptoms at the end of follow-up despite comprehensive treatment that could include medication, psychotherapy, and psychosurgery. Machine learning algorithms can predict the long-term course of OCD using clinical and cognitive information to optimize treatment options.
Collapse
Affiliation(s)
- C Segalàs
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, 32 Barcelona, Spain
| | - E Cernadas
- Centro Singular de Investigación en Tecnoloxías Intelixentes da USC (CiTIUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - M Puialto
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - M Fernández-Delgado
- Centro Singular de Investigación en Tecnoloxías Intelixentes da USC (CiTIUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - M Arrojo
- Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - S Bertolin
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - E Real
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - J M Menchón
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, 32 Barcelona, Spain
| | - A Carracedo
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - M Tubío-Fungueiriño
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.
| | - P Alonso
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, 32 Barcelona, Spain
| | - M Fernández-Prieto
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| |
Collapse
|
3
|
Conte G, Costanza C, Novelli M, Scarselli V, Arigliani E, Valente F, Baglioni V, Terrinoni A, Chiarotti F, Cardona F. Comorbidities and Disease Duration in Tourette Syndrome: Impact on Cognition and Quality of Life of Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:226. [PMID: 38397337 PMCID: PMC10887127 DOI: 10.3390/children11020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Cognitive functions represent foundational factors for mental health and quality of life (QoL). In Tourette syndrome (TS), psychiatric comorbidities are common and have been inconsistently reported to affect the cognition and QoL of patients, while the role of tic disorder duration has not been yet explored. METHODS To examine how comorbidities and TS duration may influence cognition and QoL, N = 80 children with TS (6-16 years) were evaluated using the Wechsler Intelligence Scale for Children (WISC-IV). Standardized questionnaires were used to assess the presence and severity of TS main comorbidities and QoL. Data were interpreted using linear correlations, regression, and mediation analysis. RESULTS Depression and attention-deficit/hyperactivity disorder (ADHD) symptoms accounted for poorer cognitive performance. Anxiety oppositely predicted better cognitive performance, while no significant role for obsessive compulsive disorder (OCD) was observed. Disease duration was associated with lower total IQ, verbal reasoning, and working memory abilities. Depression, anxiety, and TS duration also deeply influenced QoL measures. CONCLUSIONS TS common comorbidities have a differential impact on the cognitive abilities of children and adolescents, which translates into a complex influence on their perceived QoL. A longer clinical history of tics was related to worse cognitive outcomes, which prompts further consideration of disease duration in both clinical and research settings involving children and adolescents.
Collapse
Affiliation(s)
- Giulia Conte
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| | - Carola Costanza
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, 90128 Palermo, Italy;
| | - Maria Novelli
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| | - Veronica Scarselli
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| | - Elena Arigliani
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| | - Francesca Valente
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| | - Valentina Baglioni
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| | - Arianna Terrinoni
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| | - Flavia Chiarotti
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Francesco Cardona
- Child and Adolescent Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.C.); (M.N.); (V.S.); (E.A.); (F.V.); (V.B.); (A.T.)
| |
Collapse
|
4
|
Luo G, Wang S, Yao S, Quan D, Guo G, Gao J, Zheng H. Direct changes of neurometabolic concentrations in the pregenual anterior cingulate cortex among obsessive-compulsive patients after repetitive transcranial magnetic stimulation treatment. J Affect Disord 2023; 333:79-85. [PMID: 37080494 DOI: 10.1016/j.jad.2023.04.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND AIM Although Repetitive Transcranial Magnetic Stimulation (rTMS) is a promising new noninvasive brain stimulation therapy, its underlying mechanisms of action remain unknown. OCD patients exhibit impaired response control and attention shifting, which is linked to some brain areas such as anterior cingulate cortex and basal ganglia. OCD patients also display altered neurometabolic concentrations in cortical cortical-striatal-thalamic-cortical (CSTC). In this study, we aimed to elucidate efficacy of rTMS treatment in alleviating related symptoms and pregenual anterior cingulate cortex (pACC) neurometabolites. METHODS OCD patients were randomly divided into either drug (n = 23) or drug + rTMS (n = 29) groups, and those in the latter group subjected to 4-week rTMS treatment. All participants were visited twice, at baseline and follow-up after four weeks. During both visits, all patients were subjected to 1H-MRS, then Yale-Brown Obsessive Compulsive Scale (Y-BOCS) and the Global Assessment Function (GAF) used to assess severity of obsessive-compulsive symptoms. We also evaluated synchronous anxiety and depression by Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI), Hamilton Anxiety Scale (HAM-A) and Hamilton Depression Scale (HAM-D). RESULTS After 4 weeks of treatment, patients in the Drug + rTMS group displayed significantly lower Y-BOCS (p = 0.038), BDI (p = 0.009), HAM-D (p = 0.013), HAM-A (p = 0.012) scores than their counterparts in the Drug group. Conversely, patients in the Drug + rTMS group had significantly higher tNAA concentrations (p = 0.030) than those in the Drug group. Notably, the Drug + rTMS group exhibited higher, but insignificant Glu (p = 0.055) and Glx (p = 0.068) concentrations compared to the Drug group. Partial correlation analysis revealed a significant negative correlation between post HAM-A scores and 4-week change of pACC glutamate levels in the Drug + rTMS group (r = -0.434, p = 0.02). CONCLUSION rTMS treatment is an efficacious treatment therapy for OCD, mainly by inducing changes in neurometabolites.
Collapse
Affiliation(s)
- Guowei Luo
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Shantou University Medical College, Shantou, China
| | - Shibin Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Siyu Yao
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Dongming Quan
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guangquan Guo
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junling Gao
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Huirong Zheng
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; South China University of Technology School of Medicine, Guangzhou, China; Shantou University Medical College, Shantou, China.
| |
Collapse
|