1
|
Kim S, Yang S, Jung J, Choi J, Kang M, Joo J. Psychedelic Drugs in Mental Disorders: Current Clinical Scope and Deep Learning-Based Advanced Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413786. [PMID: 40112231 PMCID: PMC12005819 DOI: 10.1002/advs.202413786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/13/2025] [Indexed: 03/22/2025]
Abstract
Mental disorders are a representative type of brain disorder, including anxiety, major depressive depression (MDD), and autism spectrum disorder (ASD), that are caused by multiple etiologies, including genetic heterogeneity, epigenetic dysregulation, and aberrant morphological and biochemical conditions. Psychedelic drugs such as psilocybin and lysergic acid diethylamide (LSD) have been renewed as fascinating treatment options and have gradually demonstrated potential therapeutic effects in mental disorders. However, the multifaceted conditions of psychiatric disorders resulting from individuality, complex genetic interplay, and intricate neural circuits impact the systemic pharmacology of psychedelics, which disturbs the integration of mechanisms that may result in dissimilar medicinal efficiency. The precise prescription of psychedelic drugs remains unclear, and advanced approaches are needed to optimize drug development. Here, recent studies demonstrating the diverse pharmacological effects of psychedelics in mental disorders are reviewed, and emerging perspectives on structural function, the microbiota-gut-brain axis, and the transcriptome are discussed. Moreover, the applicability of deep learning is highlighted for the development of drugs on the basis of big data. These approaches may provide insight into pharmacological mechanisms and interindividual factors to enhance drug discovery and development for advanced precision medicine.
Collapse
Affiliation(s)
- Sung‐Hyun Kim
- Department of PharmacyCollege of PharmacyHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
| | - Sumin Yang
- Department of PharmacyCollege of PharmacyHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
| | - Jeehye Jung
- Department of PharmacyCollege of PharmacyHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
| | - Jeonghyeon Choi
- Department of PharmacyCollege of PharmacyHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
| | - Mingon Kang
- Department of Computer ScienceUniversity of NevadaLas VegasNV89154USA
| | - Jae‐Yeol Joo
- Department of PharmacyCollege of PharmacyHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
| |
Collapse
|
2
|
Wellington NJ, Boųcas AP, Lagopoulos J, Quigley BL, Kuballa AV. Molecular pathways of ketamine: A systematic review of immediate and sustained effects on PTSD. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06756-4. [PMID: 40097854 DOI: 10.1007/s00213-025-06756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
RATIONALE Existing studies predominantly focus on the molecular and neurobiological mechanisms underlying Ketamine's acute treatment effects on post-traumatic stress disorder (PTSD). This emphasis has largely overlooked its sustained therapeutic effects, which hold significant potential for the development of targeted interventions. OBJECTIVES This systematic review examines the pharmacokinetic and pharmacodynamic effects of ketamine on PTSD, differentiating between immediate and sustained molecular effects. METHOD A comprehensive search across databases (Web of Science, Scopus, Global Health, PubMed) and grey literature yielded 317 articles, where 29 studies met the inclusion criteria. These studies included preclinical models and clinical trials, through neurotransmitter regulation, gene expression, synaptic plasticity, and neural pathways (PROSPERO ID: CRD42024582874). RESULTS We found accumulating evidence that the immediate effects of ketamine, which involve changes in GABA, glutamate, and glutamine levels, trigger the re-regulation of BDNF, enhancing synaptic plasticity via pathways such as TrkB and PSD-95. Other molecular influences also include c-Fos, GSK-3, HDAC, HCN1, and the modulation of hormones like CHR and ACTH, alongside immune responses (IL-6, IL-1β, TNF-α). Sustained effects arise from neurotransmitter remodulations and involve prolonged changes in gene expression. These include mTOR-mediated BDNF expression, alterations in GSK-3β, FkBP5, GFAP, ERK phosphorylation, and epigenetic modifications (DNMT3, MeCP2, H3K27me3, mir-132, mir-206, HDAC). CONCLUSION These molecular changes promote long-term synaptic stability and re-regulation in key brain regions, contributing to prolonged therapeutic benefits. Understanding the sustained molecular and epigenetic mechanisms behind ketamine's effects is critical for developing safe and effective personalised treatments, potentially leading to more effective recovery.
Collapse
Affiliation(s)
- Nathan J Wellington
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia.
- School of Health, UniSC, Sippy Downs, QLD, Australia.
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia.
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia.
| | - Ana P Boųcas
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Maroochydore, QLD, Australia
| | - Bonnie L Quigley
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Anna V Kuballa
- School of Health, UniSC, Sippy Downs, QLD, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia
| |
Collapse
|
3
|
Wang H, He Y, Tang J, Liu Y, Wu C, Li C, Sun H, Sun L. (2R, 6R)-hydroxynorketamine ameliorates PTSD-like behaviors during the reconsolidation phase of fear memory in rats by modulating the VGF/BDNF/GluA1 signaling pathway in the hippocampus. Behav Brain Res 2025; 476:115273. [PMID: 39326635 DOI: 10.1016/j.bbr.2024.115273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
RATIONALE Fear memory, a fundamental symptom of post-traumatic stress disorder (PTSD), is improved by (2R, 6R)-hydroxynorketamine ((2R, 6R)-HNK) administration. However, the phase of fear memory in which the injected drug is the most effective at mitigating PTSD-like effects remains unknown. OBJECTIVE This study aimed to explore the effects of (2 R, 6 R)-HNK administration during three phases [acquisition (AP), reconsolidation (RP), and extinction (EP)] on PTSD-like behaviors in single prolonged stress (SPS) and contextual fear conditioning (CFC) rat models. The effects of VGF-inducible type of nerve growth factor (VGF), brain-derived neurotrophic factor (BDNF), and GluA1 on hippocampus (HIP) expression were also explored. METHODS SPS and CFC (SPSC) were used to establish a PTSD rat model. After lateral ventricle injection of 5 μL (2 R, 6 R)-HNK (0.5 nmol). Anxiety-depression-like behaviors were assessed in rats by the open field test (OFT) and elevated plus maze test (EPMT). Situational fear responses were evaluated in rodents by freezing behavior test (FBT) test. In addition, GluA1, VGF, and BDNF were assessed in the hippocampus by Western blot assay (WB) and Immunohistochemistry assay (IF). RESULTS SPSC procedure induced PTSD-like behaviors. The SPSC group had decreased spontaneous exploratory behavior and increased fear response. The (2R, 6R)-HNK group showed improved SPSC-induced reduction in GluA1, VGF, and BDNF levels in the HIP. During RP, anxiety and fear avoidance behaviors were alleviated, and the protein levels of GluA1, VGF, and BDNF in the HIP were restored. In contrast, no significant improvement was noted during AP and EP. CONCLUSIONS (2R,6R)-HNK modulates the VGF/BDNF/GluA1 signaling pathway in the hippocampus and improves PTSD-like behaviors during the reconsolidation phase of fear memory in rats, which may provide a new target for the clinical treatment and prevention of fear-related disorders such as PTSD.
Collapse
Affiliation(s)
- Han Wang
- School of Mental Health, Jining Medical University, Jining, Shandong 272067, China; School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yuxuan He
- Department of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Jiahao Tang
- Department of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yang Liu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Chunyan Wu
- Department of Neurology, Affiliated Hospital of Shandong Second Medical University, Weifang 261031, China
| | - Changjiang Li
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Hongwei Sun
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Lin Sun
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China.
| |
Collapse
|
4
|
Xie H, Jiang Y, Zhang X, Min X, Zeng J, Chen L, Zeng N, Liu R. Corticosterone-induced postpartum depression induces depression-like behavior and impairs hippocampal neurogenesis in adolescent offspring via HPA axis and BDNF-mTOR pathway. Neurobiol Stress 2025; 34:100708. [PMID: 39877695 PMCID: PMC11772995 DOI: 10.1016/j.ynstr.2025.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Postpartum depression (PPD) adversely affects the growth and development of the offspring, increasing the risk of various internalizing behaviorsduring adolescence. Studies have shown that corticosterone (CORT)-induced PPD affects neurogenesis in the offspring, which is closely related to the onset of depression. However, the underlying mechanisms of these changes in the offspring of PPD mothers remain unexplored. In this study, we demonstrated postpartum mice treated with high CORT experienced activation of the hypothalamic-pituitary-adrenal (HPA) axis, which induced depressive-like behavior and impaired maternal caring behavior. Furthermore, adolescent offspring of PPD mice exhibited depression-like behavior, and learning and memory deficits. These offspring also showed diminished levels of DCX+, decreased levels of synaptic proteins, and reduced dendritic spine density and length in hippocampus. Additionally, we detected increased serum stressed hormones and decreased hippocampal glucocorticoid receptor (GR) protein level in the offspring. We also found the offspring exhibited reduced expression of brain-derived neurotrophic factor (BDNF) and the phosphorylation tyrosine kinase receptor B (TrkB), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) proteins in hippocampus. These results indicated that the behavioral deficits and neuronal damage observed in the offspring of PPD mice may be related to HPA axis dysfunction and inhibition of the BDNF-mTOR pathway. In conclusion, our findings confirm that CORT induces depression-like behavior and impairs maternal caring behavior in maternal mice, which in turn affects their offspring's emotion and cognitive behavior. This impact is characterized by the activation of the HPA axis and inhibition of the BDNF-mTOR pathway.
Collapse
Affiliation(s)
- Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yanning Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xiumeng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xinran Min
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
5
|
Liu L, Li R, Wu L, Guan Y, Miao M, Wang Y, Li C, Wu C, Lu G, Hu X, Sun L. (2R,6R)-hydroxynorketamine alleviates PTSD-like endophenotypes by regulating the PI3K/AKT signaling pathway in rats. Pharmacol Biochem Behav 2024; 245:173891. [PMID: 39369910 DOI: 10.1016/j.pbb.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Patients diagnosed with post-traumatic stress disorder (PTSD) mainly exhibit enduring adverse emotions, heightening susceptibility to suicidal thoughts and behaviors. Notably, metabolites of ketamine, particularly (2R,6R)-hydroxyketamine (HNK), have demonstrated favorable antidepressant properties. However, the precise mechanism through which HNK exerts its therapeutic effects on negative emotional symptoms in PTSD patients should be fully elucidated. METHODS In this investigation, a model involving a single prolonged stress and plantar shock (SPS&S) was utilized, followed by the administration of (2R, 6R)-HNK into the lateral ventricle subsequent to the recovery phase. The evaluation of PTSD-related behaviors was conducted through the open field test (OFT), elevated plus maze test (EMPT), and forced swim test (FST). The expression of phosphatidylinositol 3-kinase (PI3K)/phosphokinase B (AKT) signaling pathway in rat brain regions was analyzed using molecular biology experiments. RESULTS SPS&S rats displayed adverse emotional behaviors characterized by depression and anxiety. Treatment with (2R, 6R)-HNK enhanced exploratory behavior and reversed negative emotional behaviors. This intervention mitigated disruptions in the expression levels of PI3K/AKT signaling pathway-associated proteins in the HIP and PFC, without influencing PI3K/AKT signaling in the AMY of SPS&S rats. CONCLUSION Traumatic stress can trigger negative emotional reactions in rats, potentially involving the PI3K/AKT signaling pathway in the HIP, PFC, and AMY. The (2R, 6R)-HNK compounds have demonstrated the potential to mitigate adverse emotions in rats subjected to the SPS&S paradigm. This effect may be attributed to the modulation of the PI3K/AKT signaling pathway in the HIP, and PFC, with a particularly notable impact observed in the HIP region.
Collapse
Affiliation(s)
- Lifen Liu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Rui Li
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Lanxia Wu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yubo Guan
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Miao Miao
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yuxuan Wang
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Changjiang Li
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Chunyan Wu
- Department of Neurology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Guohua Lu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Xinyu Hu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Lin Sun
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China; Department of Neurosurgery, Shanting District People's Hospital, Beijing Road, New Town, Zaozhuang, Shandong 277200, PR China; Management Committee of Shanting Economic Development Zone, No.37, Fuqian Road, Zaozhuang, Shandong 277200, PR China.
| |
Collapse
|
6
|
Bommaraju S, Dhokne MD, Arun EV, Srinivasan K, Sharma SS, Datusalia AK. An insight into crosstalk among multiple signalling pathways contributing to the pathophysiology of PTSD and depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110943. [PMID: 38228244 DOI: 10.1016/j.pnpbp.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Post-traumatic stress disorder (PTSD) and depressive disorders represent two significant mental health challenges with substantial global prevalence. These are debilitating conditions characterized by persistent, often comorbid, symptoms that severely impact an individual's quality of life. Both PTSD and depressive disorders are often precipitated by exposure to traumatic events or chronic stress. The profound impact of PTSD and depressive disorders on individuals and society necessitates a comprehensive exploration of their shared and distinct pathophysiological features. Although the activation of the stress system is essential for maintaining homeostasis, the ability to recover from it after diminishing the threat stimulus is also equally important. However, little is known about the main reasons for individuals' differential susceptibility to external stressful stimuli. The solution to this question can be found by delving into the interplay of stress with the cognitive and emotional processing of traumatic incidents at the molecular level. Evidence suggests that dysregulation in these signalling cascades may contribute to the persistence and severity of PTSD and depressive symptoms. The treatment strategies available for this disorder are antidepressants, which have shown good efficiency in normalizing symptom severity; however, their efficacy is limited in most individuals. This calls for the exploration and development of innovative medications to address the treatment of PTSD. This review delves into the intricate crosstalk among multiple signalling pathways implicated in the development and manifestation of these mental health conditions. By unravelling the complexities of crosstalk among multiple signalling pathways, this review aims to contribute to the broader knowledge base, providing insights that could inform the development of targeted interventions for individuals grappling with the challenges of PTSD and depressive disorders.
Collapse
Affiliation(s)
- Sumadhura Bommaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - E V Arun
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India
| | - Krishnamoorthy Srinivasan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh (UP) 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Uttar Pradesh (UP) 226002, India.
| |
Collapse
|
7
|
Prajapati SK, Ahmed S, Rai V, Gupta SC, Krishnamurthy S. Suvorexant improves mitochondrial dynamics with the regulation of orexinergic and mTOR activation in rats exhibiting PTSD-like symptoms. J Affect Disord 2024; 350:24-38. [PMID: 38185385 DOI: 10.1016/j.jad.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Increasing evidence suggests that mitochondrial dysfunction plays a significant role in PTSD. However, the exact mechanism is still unclear. Mitochondrial dynamics could be one of the mechanisms, as it is crucial for mitochondrial homeostasis and is widely affected in traumatic situations. Mitochondrial dynamics regulate mitochondrial homeostasis via orexinergic receptors, and it is shown that antagonism of orexinergic receptors attenuates PTSD-like symptoms. Therefore, the present study aimed to determine how orexin antagonists affect mitochondrial dynamics in rats exhibiting PTSD-like symptoms. METHODS Using rats, a stress-re-stress (SRS) model with PTSD-like symptoms was established. On day 2 (D-2), the animals were exposed to variable stressors including 2 h of restraint followed by brief mild foot shock and exposure to 4%halothane. Foot shock was performed as a re-stress from D-8 to D-32 at six-day intervals. RESULTS SRS exposure caused PTSD-like phenotype, hypothalamic-pituitary-adrenal axis dysfunction, activation of mammalian target of rapamycin (mTOR), and mitochondrial-fission-process-1 (MTFP-1). SRS-subjected rats exhibited enhanced expression of fission-regulating proteins, including dynamin-related protein-1 and mitochondrial-fission-protein-1 and reduced expression of fusion-regulating proteins, including optic-atrophy-1 and mitofusin-2, in the amygdala. TEM analysis revealed that SRS exposure further damaged the mitochondria. Treatment with suvorexant with rapamycin significantly mitigated PTSD-like symptoms and improved mitochondrial dynamics in SRS-exposed rats. However, their combination showed a more pronounced effect. Further, suvorexant in combination with rapamycin significantly mitigated mTOR and MTFP-1 activation. Sertraline attenuated PTSD-like symptoms without affecting SRS-induced activation of mTOR and disparity in mitochondrial dynamics. Suvorexant pharmacological effects on mitochondrial biogenesis also involve the mTOR pathway. LIMITATION The role of orexinergic pathway in SRS-induced mitochondrial mitophagy was not explored. CONCLUSIONS Targeting both the orexinergic and mTOR pathways might exert a beneficial synergistic effect for treating PTSD.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, U.P., India; Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33613, USA
| | - Sahabuddin Ahmed
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Vipin Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Subhas Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, U.P., India.
| |
Collapse
|
8
|
Ren P, Wang JY, Chen HL, Wang Y, Cui LY, Duan JY, Guo WZ, Zhao YQ, Li YF. Activation of σ-1 receptor mitigates estrogen withdrawal-induced anxiety/depressive-like behavior in mice via restoration of GABA/glutamate signaling and neuroplasticity in the hippocampus. J Pharmacol Sci 2024; 154:236-245. [PMID: 38485341 DOI: 10.1016/j.jphs.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
Postpartum depression (PPD) is a significant contributor to maternal morbidity and mortality. The Sigma-1 (σ-1) receptor has received increasing attention in recent years because of its ability to link different signaling systems and exert its function in the brain through chaperone actions, especially in neuropsychiatric disorders. YL-0919, a novel σ-1 receptor agonist developed by our institute, has shown antidepressive and anxiolytic effects in a variety of animal models, but effects on PPD have not been revealed. In the present study, excitatory/inhibitory signaling in the hippocampus was reflected by GABA and glutamate and their associated excitatory-inhibitory receptor proteins, the HPA axis hormones in the hippocampus were assessed by ELISA. Finally, immunofluorescence for markers of newborn neuron were undertaken in the dentate gyri, along with dendritic spine staining and dendritic arborization tracing. YL-0919 rapidly improves anxiety and depressive-like behavior in PPD-like mice within one week, along with normalizing the excitation/inhibition signaling as well as the HPA axis activity. YL-0919 rescued the decrease in hippocampal dendritic complexity and spine density induced by estrogen withdrawal. The study results suggest that YL-0919 elicits a therapeutic effect on PPD-like mice; therefore, the σ-1 receptor may be a novel promising target for PPD treatment in the future.
Collapse
Affiliation(s)
- Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hong-Lei Chen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yue Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Lin-Yu Cui
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Jing-Yao Duan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Wen-Zhi Guo
- Department of Anesthesiology, 7th Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Yong-Qi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| |
Collapse
|
9
|
Liu Q, Ding X, Wang Y, Chu H, Guan Y, Li M, Sun K. Artemisinin reduces PTSD-like symptoms, improves synaptic plasticity, and inhibits apoptosis in rats subjected to single prolonged stress. Front Pharmacol 2024; 15:1303123. [PMID: 38379899 PMCID: PMC10876839 DOI: 10.3389/fphar.2024.1303123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a chronic mental disorder characterized by symptoms of panic and anxiety, depression, impaired cognitive functioning, and difficulty in social interactions. While the effect of the traditional Chinese medicine artemisinin (AR) on PTSD is unknown, its therapeutic benefits have been demonstrated by studies on models of multiple neurological disorders. This study aimed to extend such findings by investigating the effects of AR administration on a rat model of PTSD induced by a regimen of single prolonged stress (SPS). After rats were subjected to the SPS protocol, AR was administered and its impact on PTSD-like behaviors was evaluated. In the present study, rats were subjected to a multitude of behavioral tests to evaluate behaviors related to anxiety, memory function, and social interactions. The expression of hippocampal synaptic plasticity-related proteins was detected using Western blot and immunofluorescence. The ultrastructure of synapses was observed under transmission electron microscopy. The apoptosis of hippocampal neurons was examined with Western blot, TUNEL staining, and HE staining. The results showed that AR administration alleviated the PTSD-like phenotypes in SPS rats, including behavior indicative of anxiety, cognitive deficits, and diminished sociability. AR administration was further observed to improve synaptic plasticity and inhibit neuronal apoptosis in SPS rats. These findings suggest that administering AR after the onset of severe traumatic events may alleviate anxiety, cognitive deficits, and impaired social interaction, improve synaptic plasticity, and diminish neuronal apoptosis. Hence, the present study provides evidence for AR's potential as a multi-target agent in the treatment of PTSD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kuisheng Sun
- School of Laboratory Medicine, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
10
|
Numakawa T, Kajihara R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 2023; 16:1247422. [PMID: 37781095 PMCID: PMC10537938 DOI: 10.3389/fnmol.2023.1247422] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders. Recent evidence has also highlighted a possible link between the alteration of TrkB signaling and chronic stress. Furthermore, it has been demonstrated that downregulation of the BDNF/TrkB system and chronic stress have a role in the pathogenesis of Alzheimer's disease (AD) and mental disorders. In this review, we introduce current evidence showing a close relationship between the BDNF/TrkB system and the development of cognition impairment in stress-related disorders, and the possible contribution of the upregulation of the BDNF/TrkB system in a therapeutic approach against these brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Kajihara
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|