1
|
Suo X, Pan N, Chen L, Li L, Kemp GJ, Wang S, Gong Q. Resolving Heterogeneity in Posttraumatic Stress Disorder Using Individualized Structural Covariance Network Analysis. Depress Anxiety 2024; 2024:4399757. [PMID: 40226723 PMCID: PMC11919208 DOI: 10.1155/2024/4399757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 04/15/2025] Open
Abstract
The heterogeneity of posttraumatic stress disorder (PTSD) is an obstacle to both understanding and therapy, and this has prompted a search for internally homogeneous neuroradiological subgroups within the broad clinical diagnosis. We set out to do this using the individual differential structural covariance network (IDSCN). We constructed cortical thickness-based IDSCN using T1-weighted images of 89 individuals with PTSD (mean age 42.8 years, 60 female) and 89 demographically matched trauma-exposed non-PTSD (TENP) controls (mean age 43.1 years, 63 female). The IDSCN metric quantifies how the structural covariance edges in a patient differ from those in the controls. We examined the structural diversity of PTSD and variation among subtypes using a hierarchical clustering analysis. PTSD patients exhibited notable diversity in distinct structural covariance edges but mainly affecting three networks: default mode, ventral attention, and sensorimotor. These changes predicted individual PTSD symptom severity. We identified two neuroanatomical subtypes: the one with higher PTSD symptom severity showed lower structural covariance edges in the frontal cortex and between frontal, parietal, and occipital cortex-regions that are functionally implicated in selective attention, response selection, and learning tasks. Thus, deviations in structural covariance in large-scale networks are common in PTSD but fall into two subtypes. This work sheds light on the neurobiological mechanisms underlying the clinical heterogeneity and may aid in personalized diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Xueling Suo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Nanfang Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Li Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Lingjiang Li
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Song Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
- Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361022, Fujian, China
| |
Collapse
|
2
|
Frumento S, Preatoni G, Chee L, Gemignani A, Ciotti F, Menicucci D, Raspopovic S. Unconscious multisensory integration: behavioral and neural evidence from subliminal stimuli. Front Psychol 2024; 15:1396946. [PMID: 39091706 PMCID: PMC11291458 DOI: 10.3389/fpsyg.2024.1396946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction The prevailing theories of consciousness consider the integration of different sensory stimuli as a key component for this phenomenon to rise on the brain level. Despite many theories and models have been proposed for multisensory integration between supraliminal stimuli (e.g., the optimal integration model), we do not know if multisensory integration occurs also for subliminal stimuli and what psychophysical mechanisms it follows. Methods To investigate this, subjects were exposed to visual (Virtual Reality) and/or haptic stimuli (Electro-Cutaneous Stimulation) above or below their perceptual threshold. They had to discriminate, in a two-Alternative Forced Choice Task, the intensity of unimodal and/or bimodal stimuli. They were then asked to discriminate the sensory modality while recording their EEG responses. Results We found evidence of multisensory integration for supraliminal condition, following the classical optimal model. Importantly, even for subliminal trials participant's performances in the bimodal condition were significantly more accurate when discriminating the intensity of the stimulation. Moreover, significant differences emerged between unimodal and bimodal activity templates in parieto-temporal areas known for their integrative role. Discussion These converging evidences - even if preliminary and needing confirmation from the collection of further data - suggest that subliminal multimodal stimuli can be integrated, thus filling a meaningful gap in the debate about the relationship between consciousness and multisensory integration.
Collapse
Affiliation(s)
- Sergio Frumento
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Greta Preatoni
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Lauren Chee
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
- Clinical Psychology Branch, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Federico Ciotti
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Danilo Menicucci
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Kim GW, Park JI, Yang JC. Brain morphological changes and functional neuroanatomy related to cognitive and emotional distractors during working memory maintenance in post-traumatic stress disorder. Brain Res Bull 2024; 211:110946. [PMID: 38614407 DOI: 10.1016/j.brainresbull.2024.110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Post-traumatic stress disorder (PTSD) is associated with abnormalities in the processing and regulation of emotion as well as cognitive deficits. This study evaluated the differential brain activation patterns associated with cognitive and emotional distractors during working memory (WM) maintenance for human faces between patients with PTSD and healthy controls (HCs) and assessed the relationship between changes in the activation patterns by the opposing effects of distraction types and gray matter volume (GMV). Twenty-two patients with PTSD and twenty-two HCs underwent T1-weighted magnetic resonance imaging (MRI) and event-related functional MRI (fMRI), respectively. Event-related fMRI data were recorded while subjects performed a delayed-response WM task with human face and trauma-related distractors. Compared to the HCs, the patients with PTSD showed significantly reduced GMV of the inferior frontal gyrus (IFG) (p < 0.05, FWE-corrected). For the human face distractor trial, the patients showed significantly decreased activities in the superior frontal gyrus and IFG compared with HCs (p < 0.05, FWE-corrected). The patients showed lower accuracy scores and slower reaction times for the face recognition task with trauma-related distractors compared with HCs as well as significantly increased brain activity in the STG during the trauma-related distractor trial was observed (p < 0.05, FWE-corrected). Such differential brain activation patterns associated with the effects of distraction in PTSD patients may be linked to neural mechanisms associated with impairments in both cognitive control for confusable distractors and the ability to control emotional distraction.
Collapse
Affiliation(s)
- Gwang-Won Kim
- Advanced Institute of Aging Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Il Park
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Jong-Chul Yang
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea.
| |
Collapse
|
4
|
Frumento S, Frumento P, Laurino M, Menicucci D, Gemignani A. The fear of spiders: perceptual features assessed in augmented reality. Front Behav Neurosci 2024; 18:1355879. [PMID: 38450021 PMCID: PMC10915047 DOI: 10.3389/fnbeh.2024.1355879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Background Persons with specific phobias typically generalize the dangerousness of the phobic animal to all members of its species, possibly as a result of malfunctioning brain circuitry normally providing quick and dirty identification of evolutionary-relevant stimuli. An objective assessment of which perceptual features make an animal more or less scary to phobic and non-phobic people would help overcome the limitations of the few studies available so far, based on self-reports. Objective To achieve this aim, we built an augmented reality setting where volunteers with different levels of fear of spiders were asked to make holographic spiders that look either dangerous or harmless. To reach this goal, a computerized interface allowed participants to modify the spider's perceptual features (hairiness, body/leg size, and locomotion) in real time. Results On average, the dangerous spiders were made hairy, thick, and moving according to spider-like locomotion; coherently, the harmless spiders were made hairless, slim, and moving according to a butterfly-like locomotion. However, these averaged preferences could not fully describe the complex relationship between perceptual preferences with each other and with arachnophobia symptoms. An example of a key finding revealed by cluster analysis is the similarity in perceptual preferences among participants with little or no fear of spiders, whereas participants with more arachnophobia symptoms expressed more varying preferences. Conclusion Perceptual preferences toward the spider's features were behaviorally assessed through an observational study, objectively confirming a generalization effect characterizing spider-fearful participants. These results advance our knowledge of phobic preferences and could be used to improve the acceptability of exposure therapies.
Collapse
Affiliation(s)
- Sergio Frumento
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Paolo Frumento
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Marco Laurino
- Pisa Research Area, National Research Council (CNR), Pisa, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|