1
|
Chen SH, Lan B, Zhang YY, Li GH, Qian YL, Hu MX, Tian YL, Zang WD, Cao J, Wang GH, Wang YG. Activation of zona incerta gamma-aminobutyric acid-ergic neurons alleviates depression-like and anxiety-like behaviors induced by chronic restraint stress. World J Psychiatry 2025; 15:101807. [PMID: 39974487 PMCID: PMC11758062 DOI: 10.5498/wjp.v15.i2.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND Depression is a prevalent affective disorder, but its pathophysiology remains unclear. Dysfunction in the gamma-aminobutyric acid (GABA)-ergic system may contribute to its onset. Recently, antidepressants (e.g., brexanolone, zuranolone) targeting the GABA-A receptor were introduced. The zona incerta (ZI), an inhibitory subthalamic region mainly composed of GABAergic neurons, has been implicated in emotional regulation. Deep brain stimulation of the ZI in humans affects anxiety and depression symptoms, while activation of ZI neurons in mice can either worsen or alleviate anxiety. Currently, there is no direct evidence linking GABAergic neurons in the ZI to depression-like behaviors in rodents. AIM To explore the relationship between GABAergic neurons in the ZI and depression-like behaviors in mice. METHODS A chronic restraint stress (CRS) model was utilized to induce depression in mice. Whole-cell patch-clamp recordings assessed the excitability changes of GABAergic neurons in the ZI. Additionally, chemogenetic techniques were employed to modulate ZI GABAergic neurons. The performance of the mice in behavioral tests for depression and anxiety was observed. RESULTS The findings indicated that GABAergic neurons in the ZI were closely associated with depression-like behaviors in mice. Twenty-eight days after the CRS model was established, depression-like and anxiety-like behaviors were observed in the mice. The excitability of GABAergic neurons in the ZI was reduced. Chemogenetic activation of these neurons alleviated CRS-induced depression-like and anxiety-like behaviors. Conversely, inhibition of GABAergic neurons in the ZI led to changes in emotion-related behavioral outcomes in mice. CONCLUSION Activity of GABAergic neurons in the ZI was closely associated with depression-like phenotypes in mice, suggesting that these neurons could be a potential therapeutic target for treating depression.
Collapse
Affiliation(s)
- Si-Hai Chen
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Bo Lan
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Ying-Ying Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Guo-Hui Li
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Yu-Long Qian
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Ming-Xing Hu
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Yin-Lin Tian
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Wei-Dong Zang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Jing Cao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
- School of Nursing and Health, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Guang-Hai Wang
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Yi-Gang Wang
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| |
Collapse
|
2
|
Steyn SF. An Updated Bio-Behavioral Profile of the Flinders Sensitive Line Rat: Reviewing the Findings of the Past Decade. Pharmacol Res Perspect 2025; 13:e70058. [PMID: 39786312 PMCID: PMC11717001 DOI: 10.1002/prp2.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/12/2025] Open
Abstract
The Flinders sensitive line (FSL) rat is an accepted rodent model for depression that presents with strong face, construct, and predictive validity, thereby making it suitable to investigate novel antidepressant mechanisms. Despite the translatability of this model, available literature on this model has not been reviewed for more than ten years. The PubMed, ScienceDirect and Web of Science databases were searched for relevant articles between 2013 and 2024, with keywords relating to the Flinders line rat, and all findings relevant to treatment naïve animals, included. Following screening, 77 studies were included and used to create behavioral reference standards and calculate FSL favor ratios for the various behavioral parameters. The GRADE and SYRCLE risk of bias tools were used to scale the quality of these studies. Based on these results, FSL rats display reliable and reproducible depressive-like behavior in the forced swim test, together with hyperlocomotor activity across various behavioral tests. Despite reports of increased anhedonia, anxiety-like behavior, and cognitive dysfunction, the reviewed findings indicate that these parameters are comparable between strains. For the various neuro- and biological constructs, oxidative stress, energy production, and glutamatergic, noradrenergic and serotonergic neurotransmission received the most support for strain differences. Taken together, the FSL remains a reliable, popular, and translatable rodent model of depression, with strong face and construct validity. As for predictive validity, similar review approaches should be considered to establish whether the mentioned behavioral aspects and neurochemical constructs may be more sensitive (or resistant) to certain antidepressant strategies.
Collapse
Affiliation(s)
- Stephan F. Steyn
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical SciencesNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
3
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
4
|
Zielinski JM, Reisert M, Sajonz BEA, Teo SJ, Thierauf-Emberger A, Wessolleck J, Frosch M, Spittau B, Leupold J, Döbrössy MD, Coenen VA. In Search for a Pathogenesis of Major Depression and Suicide-A Joint Investigation of Dopamine and Fiber Tract Anatomy Focusing on the Human Ventral Mesencephalic Tegmentum: Description of a Workflow. Brain Sci 2024; 14:723. [PMID: 39061463 PMCID: PMC11275155 DOI: 10.3390/brainsci14070723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Major depressive disorder (MDD) is prevalent with a high subjective and socio-economic burden. Despite the effectiveness of classical treatment methods, 20-30% of patients stay treatment-resistant. Deep Brain Stimulation of the superolateral branch of the medial forebrain bundle is emerging as a clinical treatment. The stimulation region (ventral tegmental area, VTA), supported by experimental data, points to the role of dopaminergic (DA) transmission in disease pathology. This work sets out to develop a workflow that will allow the performance of analyses on midbrain DA-ergic neurons and projections in subjects who have committed suicide. Human midbrains were retrieved during autopsy, formalin-fixed, and scanned in a Bruker MRI scanner (7T). Sections were sliced, stained for tyrosine hydroxylase (TH), digitized, and integrated into the Montreal Neurological Institute (MNI) brain space together with a high-resolution fiber tract atlas. Subnuclei of the VTA region were identified. TH-positive neurons and fibers were semi-quantitatively evaluated. The study established a rigorous protocol allowing for parallel histological assessments and fiber tractographic analysis in a common space. Semi-quantitative readings are feasible and allow the detection of cell loss in VTA subnuclei. This work describes the intricate workflow and first results of an investigation of DA anatomy in VTA subnuclei in a growing naturalistic database.
Collapse
Affiliation(s)
- Jana M. Zielinski
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Straße 64, 79106 Freiburg i.Br., Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Straße 64, 79106 Freiburg i.Br., Germany
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Bastian E. A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Straße 64, 79106 Freiburg i.Br., Germany
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
| | - Shi Jia Teo
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Annette Thierauf-Emberger
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Institute of Forensic Medicine, Medical Center of Freiburg University, 79104 Freiburg, Germany
| | - Johanna Wessolleck
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
| | - Maximilian Frosch
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Institute of Neuropathology, Medical Center of Freiburg University, 79106 Freiburg, Germany
| | - Björn Spittau
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, 33501 Bielefeld, Germany
- Institute for Anatomy and Cell Biology, Department of Molecular Embryologie, Faculty of Medicine, Freiburg University, 79104 Freiburg, Germany
| | - Jochen Leupold
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Máté D. Döbrössy
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Straße 64, 79106 Freiburg i.Br., Germany
- Medical Faculty of University of Freiburg, 79106 Freiburg, Germany
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Center for Basics in Neuromodulation, Medical Faculty of Freiburg University, 79106 Freiburg, Germany
| |
Collapse
|
5
|
Zheng Z, Zhou H, Yang L, Zhang L, Guo M. Selective disruption of mTORC1 and mTORC2 in VTA astrocytes induces depression and anxiety-like behaviors in mice. Behav Brain Res 2024; 463:114888. [PMID: 38307148 DOI: 10.1016/j.bbr.2024.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Dysfunction of the mechanistic target of rapamycin (mTOR) signaling pathway is implicated in neuropsychiatric disorders including depression and anxiety. Most studies have been focusing on neurons, and the function of mTOR signaling pathway in astrocytes is less investigated. mTOR forms two distinct complexes, mTORC1 and mTORC2, with key scaffolding protein Raptor and Rictor, respectively. The ventral tegmental area (VTA), a vital component of the brain reward system, is enrolled in regulating both depression and anxiety. In the present study, we aimed to examine the regulation effect of VTA astrocytic mTOR signaling pathway on depression and anxiety. We specifically deleted Raptor or Rictor in VTA astrocytes in mice and performed a series of behavioral tests for depression and anxiety. Deletion of Raptor and Rictor both decreased the immobility time in the tail suspension test and the latency to eat in the novelty suppressed feeding test, and increased the horizontal activity and the movement time in locomotor activity. Deletion of Rictor decreased the number of total arm entries in the elevated plus-maze test and the vertical activity in locomotor activity. These data suggest that VTA astrocytic mTORC1 plays a role in regulating depression-related behaviors and mTORC2 is involved in both depression and anxiety-related behaviors. Our results indicate that VTA astrocytic mTOR signaling pathway might be new targets for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Ziteng Zheng
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Han Zhou
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Lu Yang
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Lanlan Zhang
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Ming Guo
- Department of Psychology, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, the First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong 256603, China.
| |
Collapse
|