1
|
Andrews NE, Ireland D, Vijayakumar P, Burvill L, Hay E, Westerman D, Rose T, Schlumpf M, Strong J, Claus A. Acceptability of a Pain History Assessment and Education Chatbot (Dolores) Across Age Groups in Populations With Chronic Pain: Development and Pilot Testing. JMIR Form Res 2023; 7:e47267. [PMID: 37801342 PMCID: PMC10589833 DOI: 10.2196/47267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The delivery of education on pain neuroscience and the evidence for different treatment approaches has become a key component of contemporary persistent pain management. Chatbots, or more formally conversation agents, are increasingly being used in health care settings due to their versatility in providing interactive and individualized approaches to both capture and deliver information. Research focused on the acceptability of diverse chatbot formats can assist in developing a better understanding of the educational needs of target populations. OBJECTIVE This study aims to detail the development and initial pilot testing of a multimodality pain education chatbot (Dolores) that can be used across different age groups and investigate whether acceptability and feedback were comparable across age groups following pilot testing. METHODS Following an initial design phase involving software engineers (n=2) and expert clinicians (n=6), a total of 60 individuals with chronic pain who attended an outpatient clinic at 1 of 2 pain centers in Australia were recruited for pilot testing. The 60 individuals consisted of 20 (33%) adolescents (aged 10-18 years), 20 (33%) young adults (aged 19-35 years), and 20 (33%) adults (aged >35 years) with persistent pain. Participants spent 20 to 30 minutes completing interactive chatbot activities that enabled the Dolores app to gather a pain history and provide education about pain and pain treatments. After the chatbot activities, participants completed a custom-made feedback questionnaire measuring the acceptability constructs pertaining to health education chatbots. To determine the effect of age group on the acceptability ratings and feedback provided, a series of binomial logistic regression models and cumulative odds ordinal logistic regression models with proportional odds were generated. RESULTS Overall, acceptability was high for the following constructs: engagement, perceived value, usability, accuracy, responsiveness, adoption intention, esthetics, and overall quality. The effect of age group on all acceptability ratings was small and not statistically significant. An analysis of open-ended question responses revealed that major frustrations with the app were related to Dolores' speech, which was explored further through a comparative analysis. With respect to providing negative feedback about Dolores' speech, a logistic regression model showed that the effect of age group was statistically significant (χ22=11.7; P=.003) and explained 27.1% of the variance (Nagelkerke R2). Adults and young adults were less likely to comment on Dolores' speech compared with adolescent participants (odds ratio 0.20, 95% CI 0.05-0.84 and odds ratio 0.05, 95% CI 0.01-0.43, respectively). Comments were related to both speech rate (too slow) and quality (unpleasant and robotic). CONCLUSIONS This study provides support for the acceptability of pain history and education chatbots across different age groups. Chatbot acceptability for adolescent cohorts may be improved by enabling the self-selection of speech characteristics such as rate and personable tone.
Collapse
Affiliation(s)
- Nicole Emma Andrews
- RECOVER Injury Research Centre, The University of Queensland, Herston, Australia
- Tess Cramond Pain and Research Centre, The Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Herston, Australia
- The Occupational Therapy Department, The Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Herston, Australia
- Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Herston, Australia
| | - David Ireland
- Australian eHealth Research Centre, The Commonwealth Scientific and Industrial Research Organisation, Herston, Australia
| | - Pranavie Vijayakumar
- Australian eHealth Research Centre, The Commonwealth Scientific and Industrial Research Organisation, Herston, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Lyza Burvill
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Australia
| | - Elizabeth Hay
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Australia
| | - Daria Westerman
- Queensland Interdisciplinary Paediatric Persistent Pain Service, Queensland Children's Hospital, South Brisbane, Australia
| | - Tanya Rose
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Australia
| | - Mikaela Schlumpf
- Queensland Interdisciplinary Paediatric Persistent Pain Service, Queensland Children's Hospital, South Brisbane, Australia
| | - Jenny Strong
- Tess Cramond Pain and Research Centre, The Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Herston, Australia
- The Occupational Therapy Department, The Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Herston, Australia
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Australia
| | - Andrew Claus
- Tess Cramond Pain and Research Centre, The Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Herston, Australia
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
2
|
Giovanelli A, Rowe J, Taylor M, Berna M, Tebb KP, Penilla C, Pugatch M, Lester J, Ozer EM. Supporting Adolescent Engagement with Artificial Intelligence-Driven Digital Health Behavior Change Interventions. J Med Internet Res 2023; 25:e40306. [PMID: 37223987 PMCID: PMC10248780 DOI: 10.2196/40306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 05/25/2023] Open
Abstract
Understanding and optimizing adolescent-specific engagement with behavior change interventions will open doors for providers to promote healthy changes in an age group that is simultaneously difficult to engage and especially important to affect. For digital interventions, there is untapped potential in combining the vastness of process-level data with the analytical power of artificial intelligence (AI) to understand not only how adolescents engage but also how to improve upon interventions with the goal of increasing engagement and, ultimately, efficacy. Rooted in the example of the INSPIRE narrative-centered digital health behavior change intervention (DHBCI) for adolescent risky behaviors around alcohol use, we propose a framework for harnessing AI to accomplish 4 goals that are pertinent to health care providers and software developers alike: measurement of adolescent engagement, modeling of adolescent engagement, optimization of current interventions, and generation of novel interventions. Operationalization of this framework with youths must be situated in the ethical use of this technology, and we have outlined the potential pitfalls of AI with particular attention to privacy concerns for adolescents. Given how recently AI advances have opened up these possibilities in this field, the opportunities for further investigation are plenty.
Collapse
Affiliation(s)
- Alison Giovanelli
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Jonathan Rowe
- Department of Computer Science, North Carolina State University, Raleigh, CA, United States
| | - Madelynn Taylor
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Mark Berna
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Kathleen P Tebb
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Carlos Penilla
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Marianne Pugatch
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - James Lester
- Department of Computer Science, North Carolina State University, Raleigh, CA, United States
| | - Elizabeth M Ozer
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Office of Diversity and Outreach, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|