1
|
Hughes SR, Dowd PF, Hector RE, Riedmuller SB, Bartolett S, Mertens JA, Qureshi N, Liu S, Bischoff KM, Li XL, Jackson JS, Sterner D, Panavas T, Rich JO, Farrelly PJ, Butt T, Cotta MA. Cost-Effective High-Throughput Fully Automated Construction of a Multiplex Library of Mutagenized Open Reading Frames for an Insecticidal Peptide Using a Plasmid-Based Functional Proteomic Robotic Workcell with Improved Vacuum System. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jala.2007.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Robotic platforms are essential for production of large numbers of expression-ready plasmid sets to develop optimized clones and improved microbial strains for crucial bioenergy applications and simultaneous high-value peptide expression. Here we demonstrate a plasmid-based integrated robotic workcell, modified with a motorized vacuum filtration system, for performing fully automated molecular biology protocols, including assembly of mutagenized gene sequences, purification of PCR amplicons, ligation of PCR products into vectors, transformation of competent Escherichia coli, plating of recovered transformants, plasmid preparation, cloning, and expression of optimized genes. A library of genes encoding variants of wolf spider lycotoxin-1, a candidate bioinsecticide, was produced using PCR mutagenesis in an amino acid scanning strategy to generate a complete set of mutations across the lycotoxin-1 gene. The improved vacuum filtration system permits automated purification of PCR products. Methods for recovery and growth of bacteria containing plasmids with PCR inserts allow individual colony formation on a novel solid medium in a deepwell plate. Inserts are cloned into a bacterial vector to verify expression. These protocols form the core of a fully automated molecular biology platform that reduces the cost and time required to perform all operations. (JALA 2007;12:202–12)
Collapse
Affiliation(s)
- Stephen R. Hughes
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL
| | - Patrick F. Dowd
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL
| | - Ronald E. Hector
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL
| | | | | | - Jeffrey A. Mertens
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL
| | - Nasib Qureshi
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL
| | - Siqing Liu
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL
| | - Kenneth M. Bischoff
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL
| | - Xin-Liang Li
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL
| | - John S. Jackson
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL
| | | | | | - Joseph O. Rich
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL
| | | | | | - Michael A. Cotta
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL
| |
Collapse
|
2
|
Bonacci S, Buccato S, Maione D, Petracca R. Successful completion of a semi-automated enzyme-free cloning method. ACTA ACUST UNITED AC 2016; 17:57-66. [PMID: 27507291 DOI: 10.1007/s10969-016-9207-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022]
Abstract
Nowadays, in scientific fields such as Structural Biology or Vaccinology, there is an increasing need of fast, effective and reproducible gene cloning and expression processes. Consequently, the implementation of robotic platforms enabling the automation of protocols is becoming a pressing demand. The main goal of our study was to set up a robotic platform devoted to the high-throughput automation of the polymerase incomplete primer extension cloning method, and to evaluate its efficiency compared to that achieved manually, by selecting a set of bacterial genes that were processed either in the automated platform (330) or manually (94). Here we show that we successfully set up a platform able to complete, with high efficiency, a wide range of molecular biology and biochemical steps. 329 gene targets (99 %) were effectively amplified using the automated procedure and 286 (87 %) of these PCR products were successfully cloned in expression vectors, with cloning success rates being higher for the automated protocols respect to the manual procedure (93.6 and 74.5 %, respectively).
Collapse
|
3
|
Lindquist MR, López-Núñez JC, Jones MA, Cox EJ, Pinkelman RJ, Bang SS, Moser BR, Jackson MA, Iten LB, Kurtzman CP, Bischoff KM, Liu S, Qureshi N, Tasaki K, Rich JO, Cotta MA, Saha BC, Hughes SR. Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates. Appl Microbiol Biotechnol 2015; 99:9723-43. [PMID: 26272089 PMCID: PMC4628078 DOI: 10.1007/s00253-015-6852-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/12/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023]
Abstract
Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production.
Collapse
Affiliation(s)
- Mitch R Lindquist
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Juan Carlos López-Núñez
- National Coffee Research Centre - Cenicafe, National Federation of Coffee Growers of Colombia - FNC, Cenicafé Planalto Km 4 vía Antigua Chinchiná, Manizales, Caldas, Colombia
| | - Marjorie A Jones
- 4160 Department of Chemistry, Illinois State University, 214 Julian Hall, Normal, IL, 61790-4160, USA
| | - Elby J Cox
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Rebecca J Pinkelman
- South Dakota School of Mines & Technology, Chemical and Biological Engineering, 501 East Saint Joseph Street, Rapid City, SD, 57701-3995, USA
| | - Sookie S Bang
- South Dakota School of Mines & Technology, Chemical and Biological Engineering, 501 East Saint Joseph Street, Rapid City, SD, 57701-3995, USA
| | - Bryan R Moser
- USDA, ARS, NCAUR, Bio-oils Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Michael A Jackson
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Loren B Iten
- USDA, ARS, NCAUR, Bioenergy Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Cletus P Kurtzman
- USDA, ARS, NCAUR, Bacterial Foodborne Pathogens and Mycology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Kenneth M Bischoff
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Siqing Liu
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Nasib Qureshi
- USDA, ARS, NCAUR, Bioenergy Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Kenneth Tasaki
- Mitsubishi Chemical, USMC Research & Innovation, 410 Palos Verdes Blvd, Redondo Beach, CA, 90277, USA
| | - Joseph O Rich
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Michael A Cotta
- USDA, ARS, NCAUR, Bioenergy Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Badal C Saha
- USDA, ARS, NCAUR, Bioenergy Research Unit, 1815 North University Street, Peoria, IL, 61604, USA
| | - Stephen R Hughes
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Renewable Product Technology Research Unit, 1815 North University Street, Peoria, IL, 61604, USA.
| |
Collapse
|
4
|
Integrated Automation for Continuous High-Throughput Synthetic Chromosome Assembly and Transformation to Identify Improved Yeast Strains for Industrial Production of Biofuels and Bio-based Chemicals. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10503-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Effect of fermentation with Saccharomyces cerevisiae strain PJ69-4 on the phytic acid, raffinose, and stachyose contents of soybean meal. ACTA ACUST UNITED AC 2013. [DOI: 10.15232/s1080-7446(15)30274-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Rudnicki S, Johnston S. Overview of liquid handling instrumentation for high-throughput screening applications. ACTA ACUST UNITED AC 2013; 1:43-54. [PMID: 23839961 DOI: 10.1002/9780470559277.ch090151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Liquid handling in the laboratory has unique challenges specific to the types of research being performed. The devices employed for purposes of performing liquid handling can be broken down into three general categories: bulk reagent dispensers, transfer devices, and plate washers. An overview of these types of liquid handlers, as well as common features and relevance to high-throughput applications, are discussed in this article. Important topics such as sterility, ease of use, cost, and instrument design advantages and disadvantages are also covered. Curr. Protoc. Chem Biol. 1:43-54. © 2009 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Stewart Rudnicki
- ICCB-Longwood Screening Facility, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
7
|
Synthetic resin-bound truncated Candida antarctica lipase B for production of fatty acid alkyl esters by transesterification of corn and soybean oils with ethanol or butanol. J Biotechnol 2012; 159:69-77. [PMID: 22342374 DOI: 10.1016/j.jbiotec.2012.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/15/2011] [Accepted: 01/24/2012] [Indexed: 11/22/2022]
Abstract
A gene encoding a synthetic truncated Candida antarctica lipase B (CALB) was generated via automated PCR and expressed in Saccharomyces cerevisiae. Western blot analysis detected five truncated CALB variants, suggesting multiple translation starts from the six in-frame ATG codons. The longest open reading frame, which corresponds to amino acids 35-317 of the mature lipase, appeared to be expressed in the greatest amount. The truncated CALB was immobilized on Sepabeads® EC-EP resin and used to produce ethyl and butyl esters from crude corn oil and refined soybean oil. The yield of ethyl esters was 4-fold greater from corn oil than from soybean oil and was 36% and 50% higher, respectively, when compared to a commercially available lipase resin (Novozym 435) using the same substrates. A 5:1 (v/v) ratio of ethanol to corn oil produced 3.7-fold and 8.4-fold greater yields than ratios of 15:1 and 30:1, respectively. With corn oil, butyl ester production was 56% higher than ethyl ester production. Addition of an ionic catalytic resin step prior to the CALB resin increased yields of ethyl esters from corn oil by 53% compared to CALB resin followed by ionic resin. The results suggest resin-bound truncated CALB has potential application in biodiesel production using biocatalysts.
Collapse
|
8
|
Design and Construction of a First-Generation High-Throughput Integrated Robotic Molecular Biology Platform for Bioenergy Applications. ACTA ACUST UNITED AC 2011; 16:292-307. [DOI: 10.1016/j.jala.2011.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Indexed: 01/01/2023]
Abstract
The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains Published by Elsevier Inc. on behalf of the Society for Laboratory Automation and Screening for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries.
Collapse
|
9
|
Reduction of Carry over in Liquid-Handling Systems with a Decontamination Step Integrated in the Washing Procedure. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.jala.2010.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Robotic liquid-handling systems can be equipped with disposable pipetting tips or fixed reusable pipetting tips. The use of disposable tips is perceived as the best option to avoid carry over (CO) of analyte from sample to sample. We recently developed standardized CO test procedures that allow precise and reproducible quantification of CO for fixed reusable tips. We used these test procedures to reduce CO of the analytes fluorescein, IgG, and hepatitis B surface antigen (HBsAg) to minimal levels. Variations of washing intensity, using water as a washing solution, did not lower CO below acceptable target levels. These target levels would preclude a false-positive detection of IgG and HBsAg in human serum when a negative sample is measured subsequent to a sample with a high analyte concentration. We therefore integrated a decontamination step into the washing procedure. Screening of 12 decontamination solutions showed that sodium hypochlorite solution was very efficient in reducing CO. Optimization led to a final washing routine in which tips are exposed for 0.2 s to 0.17 M NaOCI and subsequently rinsed with 2 mL of water to remove any remaining decontaminant solution. The washing procedure only takes 15 s and is thus suitable for high-throughput applications. The procedure was able to lower CO of IgG and HBsAg in human sera below relevant levels. The decontamination step with hypochlorite can easily be integrated into different liquid-handling systems and is likely to be effective against CO of most proteins and peptides.
Collapse
|
10
|
Hughes SR, Hector RE, Rich JO, Qureshi N, Bischoff KM, Dien BS, Saha BC, Liu S, Cox EJ, Jackson JS, Sterner DE, Butt TR, LaBaer J, Cotta MA. Automated Yeast Mating Protocol Using Open Reading Frames from Saccharomyces cerevisiae Genome to Improve Yeast Strains for Cellulosic Ethanol Production. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.jala.2008.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Engineering the industrial ethanologen Saccharomyces cerevisiae to use pentose sugars from lignocellulosic biomass is critical for commercializing cellulosic fuel ethanol production. Approaches to engineer pentose-fermenting yeasts have required expression of additional genes. We implemented a high-throughput strategy to improve anaerobic growth on xylose and rate of ethanol production by evaluating overexpression of each native S. cerevisiae gene from a collection of haploid PJ69–4 MATa strains expressing the gene open reading frames (ORFs) mated to a haploid PJ69–4 MATalpha strain expressing the Piromyces sp.E2 xylose isomerase (XI) gene. The resulting 6113 diploid strains containing the XI gene and a different yeast gene ORF were screened for growth on xylose in anaerobic plate cultures using an integrated robotic workcell. Nine unique strains were isolated; two were found to no longer grow on glucose; seven were further evaluated for fermentation of alkaline peroxide pretreated enzymatically saccharified wheat straw hydrolysate. All successfully used glucose and xylose, consuming most of the glucose and a small amount of the xylose. Transforming the strains with an additional vector expressing xylulokinase gene did not improve anaerobic growth on xylose but improved glucose use and ethanol production on the hydrolysate, with three strains giving maximum ethanol production ≥ 14.0 g L −1 .
Collapse
Affiliation(s)
- Stephen R. Hughes
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioproducts and Biocatalysis (BBC) Research Unit, Peoria, IL
| | - Ronald E. Hector
- USDA, ARS, NCAUR, Fermentation Biotechnology (FBT) Research Unit, Peoria, IL
| | - Joseph O. Rich
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioproducts and Biocatalysis (BBC) Research Unit, Peoria, IL
| | - Nasib Qureshi
- USDA, ARS, NCAUR, Fermentation Biotechnology (FBT) Research Unit, Peoria, IL
| | - Kenneth M. Bischoff
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioproducts and Biocatalysis (BBC) Research Unit, Peoria, IL
| | - Bruce S. Dien
- USDA, ARS, NCAUR, Fermentation Biotechnology (FBT) Research Unit, Peoria, IL
| | - Badal C. Saha
- USDA, ARS, NCAUR, Fermentation Biotechnology (FBT) Research Unit, Peoria, IL
| | - Siqing Liu
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioproducts and Biocatalysis (BBC) Research Unit, Peoria, IL
| | - Elby J. Cox
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioproducts and Biocatalysis (BBC) Research Unit, Peoria, IL
| | - John S. Jackson
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioproducts and Biocatalysis (BBC) Research Unit, Peoria, IL
| | | | | | | | - Michael A. Cotta
- USDA, ARS, NCAUR, Fermentation Biotechnology (FBT) Research Unit, Peoria, IL
| |
Collapse
|
11
|
Hughes SR, Dowd PF, Hector RE, Panavas T, Sterner DE, Qureshi N, Bischoff KM, Bang SS, Mertens JA, Johnson ET, Li XL, Jackson JS, Caughey RJ, Riedmuller SB, Bartolett S, Liu S, Rich JO, Farrelly PJ, Butt TR, Labaer J, Cotta MA. Lycotoxin-1 insecticidal peptide optimized by amino acid scanning mutagenesis and expressed as a coproduct in an ethanologenic Saccharomyces cerevisiae strain. J Pept Sci 2008; 14:1039-50. [PMID: 18465835 DOI: 10.1002/psc.1040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New methods of safe biological pest control are required as a result of evolution of insect resistance to current biopesticides. Yeast strains being developed for conversion of cellulosic biomass to ethanol are potential host systems for expression of commercially valuable peptides, such as bioinsecticides, to increase the cost-effectiveness of the process. Spider venom is one of many potential sources of novel insect-specific peptide toxins. Libraries of mutants of the small amphipathic peptide lycotoxin-1 from the wolf spider were produced in high throughput using an automated integrated plasmid-based functional proteomic platform and screened for ability to kill fall armyworms, a significant cause of damage to corn (maize) and other crops in the United States. Using amino acid scanning mutagenesis (AASM) we generated a library of mutagenized lycotoxin-1 open reading frames (ORF) in a novel small ubiquitin-like modifier (SUMO) yeast expression system. The SUMO technology enhanced expression and improved generation of active lycotoxins. The mutants were engineered to be expressed at high level inside the yeast and ingested by the insect before being cleaved to the active form (so-called Trojan horse strategy). These yeast strains expressing mutant toxin ORFs were also carrying the xylose isomerase (XI) gene and were capable of aerobic growth on xylose. Yeast cultures expressing the peptide toxins were prepared and fed to armyworm larvae to identify the mutant toxins with greatest lethality. The most lethal mutations appeared to increase the ability of the toxin alpha-helix to interact with insect cell membranes or to increase its pore-forming ability, leading to cell lysis. The toxin peptides have potential as value-added coproducts to increase the cost-effectiveness of fuel ethanol bioproduction.
Collapse
Affiliation(s)
- Stephen R Hughes
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Bioproducts and Biocatalysis Research Unit, Peoria, IL 61604, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system. Plasmid 2008; 61:22-38. [PMID: 18831987 DOI: 10.1016/j.plasmid.2008.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/02/2008] [Accepted: 09/02/2008] [Indexed: 12/18/2022]
Abstract
A three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease Ulp1 was developed for production of large amounts of soluble functional protein in Saccharomyces cerevisiae. Each vector has a different selectable marker (URA, TRP, or LEU), and the system provides high expression levels of three different proteins simultaneously. This system was integrated into the protocols on a fully automated plasmid-based robotic platform to screen engineered strains of S. cerevisiae for improved growth on xylose. First, a novel PCR assembly strategy was used to clone a xylose isomerase (XI) gene into the URA-selectable SUMO vector and the plasmid was placed into the S. cerevisiae INVSc1 strain to give the strain designated INVSc1-XI. Second, amino acid scanning mutagenesis was used to generate a library of mutagenized genes encoding the bioinsecticidal peptide lycotoxin-1 (Lyt-1) and the library was cloned into the TRP-selectable SUMO vector and placed into INVSc1-XI to give the strain designated INVSc1-XI-Lyt-1. Third, the Yersinia pestis xylulokinase gene was cloned into the LEU-selectable SUMO vector and placed into the INVSc1-XI-Lyt-1 yeast. Yeast strains expressing XI and xylulokinase with or without Lyt-1 showed improved growth on xylose compared to INVSc1-XI yeast.
Collapse
|
13
|
Hughes SR, Riedmuller SB, Mertens JA, Li XL, Bischoff KM, Qureshi N, Cotta MA, Farrelly PJ. High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell. Proteome Sci 2006; 4:10. [PMID: 16670026 PMCID: PMC1479318 DOI: 10.1186/1477-5956-4-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 05/02/2006] [Indexed: 11/23/2022] Open
Abstract
Background The field of plasmid-based functional proteomics requires the rapid assay of proteins expressed from plasmid libraries. Automation is essential since large sets of mutant open reading frames are being cloned for evaluation. To date no integrated automated platform is available to carry out the entire process including production of plasmid libraries, expression of cloned genes, and functional testing of expressed proteins. Results We used a functional proteomic assay in a multiplexed setting on an integrated plasmid-based robotic workcell for high-throughput screening of mutants of cellulase F, an endoglucanase from the anaerobic fungus Orpinomyces PC-2. This allowed us to identify plasmids containing optimized clones expressing mutants with improved activity at lower pH. A plasmid library of mutagenized clones of the celF gene with targeted variations in the last four codons was constructed by site-directed PCR mutagenesis and transformed into Escherichia coli. A robotic picker integrated into the workcell was used to inoculate medium in a 96-well deep well plate, combining the transformants into a multiplexed set in each well, and the plate was incubated on the workcell. Plasmids were prepared from the multiplexed culture on the liquid handler component of the workcell and used for in vitro transcription/translation. The multiplexed expressed recombinant proteins were screened for improved activity and stability in an azo-carboxymethylcellulose plate assay. The multiplexed wells containing mutants with improved activity were identified and linked back to the corresponding multiplexed cultures stored in glycerol. Spread plates were prepared from the glycerol stocks and the workcell was used to pick single colonies from the spread plates, prepare plasmid, produce recombinant protein, and assay for activity. The screening assay and subsequent deconvolution of the multiplexed wells resulted in identification of improved CelF mutants and corresponding optimized clones in expression-ready plasmids. Conclusion The multiplex method using an integrated automated platform for high-throughput screening in a functional proteomic assay allows rapid identification of plasmids containing optimized clones ready for use in subsequent applications including transformations to produce improved strains or cell lines.
Collapse
Affiliation(s)
- Stephen R Hughes
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioproducts and Biocatalysis (BBC) Research Unit, 1815 North University Street, Peoria, IL 61604, USA
| | | | - Jeffrey A Mertens
- USDA, ARS, NCAUR, Fermentation Biotechnology (FBT) Research Unit, 1815 North University Street, Peoria, IL 61604, USA
| | - Xin-Liang Li
- USDA, ARS, NCAUR, Fermentation Biotechnology (FBT) Research Unit, 1815 North University Street, Peoria, IL 61604, USA
| | - Kenneth M Bischoff
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioproducts and Biocatalysis (BBC) Research Unit, 1815 North University Street, Peoria, IL 61604, USA
| | - Nasib Qureshi
- USDA, ARS, NCAUR, Fermentation Biotechnology (FBT) Research Unit, 1815 North University Street, Peoria, IL 61604, USA
| | - Michael A Cotta
- USDA, ARS, NCAUR, Fermentation Biotechnology (FBT) Research Unit, 1815 North University Street, Peoria, IL 61604, USA
| | - Philip J Farrelly
- Hudson Control Group, Inc., 10 Stern Avenue, Springfield, NJ 07081, USA
| |
Collapse
|