1
|
Wang J, Sui X, Ding Y, Fu Y, Feng X, Liu M, Zhang Y, Xian M, Zhao G. A fast and robust iterative genome-editing method based on a Rock-Paper-Scissors strategy. Nucleic Acids Res 2021; 49:e12. [PMID: 33270888 PMCID: PMC7826264 DOI: 10.1093/nar/gkaa1141] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 11/07/2020] [Indexed: 01/22/2023] Open
Abstract
The production of optimized strains of a specific phenotype requires the construction and testing of a large number of genome modifications and combinations thereof. Most bacterial iterative genome-editing methods include essential steps to eliminate selection markers, or to cure plasmids. Additionally, the presence of escapers leads to time-consuming separate single clone picking and subsequent cultivation steps. Herein, we report a genome-editing method based on a Rock-Paper-Scissors (RPS) strategy. Each of three constructed sgRNA plasmids can cure, or be cured by, the other two plasmids in the system; plasmids from a previous round of editing can be cured while the current round of editing takes place. Due to the enhanced curing efficiency and embedded double check mechanism, separate steps for plasmid curing or confirmation are not necessary, and only two times of cultivation are needed per genome-editing round. This method was successfully demonstrated in Escherichia coli and Klebsiella pneumoniae with both gene deletions and replacements. To the best of our knowledge, this is the fastest and most robust iterative genome-editing method, with the least times of cultivation decreasing the possibilities of spontaneous genome mutations.
Collapse
Affiliation(s)
- Jichao Wang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Xinyue Sui
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yamei Ding
- Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China
| | - Yingxin Fu
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Xinjun Feng
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Min Liu
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Guang Zhao
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| |
Collapse
|
2
|
Guzmán GI, Sandberg TE, LaCroix RA, Nyerges Á, Papp H, de Raad M, King ZA, Hefner Y, Northen TR, Notebaart RA, Pál C, Palsson BO, Papp B, Feist AM. Enzyme promiscuity shapes adaptation to novel growth substrates. Mol Syst Biol 2019; 15:e8462. [PMID: 30962359 PMCID: PMC6452873 DOI: 10.15252/msb.20188462] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Evidence suggests that novel enzyme functions evolved from low‐level promiscuous activities in ancestral enzymes. Yet, the evolutionary dynamics and physiological mechanisms of how such side activities contribute to systems‐level adaptations are not well characterized. Furthermore, it remains untested whether knowledge of an organism's promiscuous reaction set, or underground metabolism, can aid in forecasting the genetic basis of metabolic adaptations. Here, we employ a computational model of underground metabolism and laboratory evolution experiments to examine the role of enzyme promiscuity in the acquisition and optimization of growth on predicted non‐native substrates in Escherichia coli K‐12 MG1655. After as few as approximately 20 generations, evolved populations repeatedly acquired the capacity to grow on five predicted non‐native substrates—D‐lyxose, D‐2‐deoxyribose, D‐arabinose, m‐tartrate, and monomethyl succinate. Altered promiscuous activities were shown to be directly involved in establishing high‐efficiency pathways. Structural mutations shifted enzyme substrate turnover rates toward the new substrate while retaining a preference for the primary substrate. Finally, genes underlying the phenotypic innovations were accurately predicted by genome‐scale model simulations of metabolism with enzyme promiscuity.
Collapse
Affiliation(s)
- Gabriela I Guzmán
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ryan A LaCroix
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ákos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Henrietta Papp
- Virological Research Group, Szentágothai Research Centre University of Pécs, Pécs, Hungary
| | - Markus de Raad
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Zachary A King
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, USA
| | - Richard A Notebaart
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
3
|
Mahalik S, Sharma AK, Mukherjee KJ. Genome engineering for improved recombinant protein expression in Escherichia coli. Microb Cell Fact 2014; 13:177. [PMID: 25523647 PMCID: PMC4300154 DOI: 10.1186/s12934-014-0177-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023] Open
Abstract
A metabolic engineering perspective which views recombinant protein
expression as a multistep pathway allows us to move beyond vector design and
identify the downstream rate limiting steps in expression. In E.coli these are typically at the translational level
and the supply of precursors in the form of energy, amino acids and nucleotides.
Further recombinant protein production triggers a global cellular stress response
which feedback inhibits both growth and product formation. Countering this requires
a system level analysis followed by a rational host cell engineering to sustain
expression for longer time periods. Another strategy to increase protein yields
could be to divert the metabolic flux away from biomass formation and towards
recombinant protein production. This would require a growth stoppage mechanism which
does not affect the metabolic activity of the cell or the transcriptional or
translational efficiencies. Finally cells have to be designed for efficient export
to prevent buildup of proteins inside the cytoplasm and also simplify downstream
processing. The rational and the high throughput strategies that can be used for the
construction of such improved host cell platforms for recombinant protein expression
is the focus of this review.
Collapse
Affiliation(s)
- Shubhashree Mahalik
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ashish K Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Krishna J Mukherjee
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Haitjema CH, Boock JT, Natarajan A, Dominguez MA, Gardner JG, Keating DH, Withers ST, DeLisa MP. Universal genetic assay for engineering extracellular protein expression. ACS Synth Biol 2014; 3:74-82. [PMID: 24200127 DOI: 10.1021/sb400142b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A variety of strategies now exist for the extracellular expression of recombinant proteins using laboratory strains of Escherichia coli . However, secreted proteins often accumulate in the culture medium at levels that are too low to be practically useful for most synthetic biology and metabolic engineering applications. The situation is compounded by the lack of generalized screening tools for optimizing the secretion process. To address this challenge, we developed a genetic approach for studying and engineering protein-secretion pathways in E. coli . Using the YebF pathway as a model, we demonstrate that direct fluorescent labeling of tetracysteine-motif-tagged secretory proteins with the biarsenical compound FlAsH is possible in situ without the need to recover the cell-free supernatant. High-throughput screening of a bacterial strain library yielded superior YebF expression hosts capable of secreting higher titers of YebF and YebF-fusion proteins into the culture medium. We also show that the method can be easily extended to other secretory pathways, including type II and type III secretion, directly in E. coli . Thus, our FlAsH-tetracysteine-based genetic assay provides a convenient, high-throughput tool that can be applied generally to diverse secretory pathways. This platform should help to shed light on poorly understood aspects of these processes as well as to further assist in the construction of engineered E. coli strains for efficient secretory-protein production.
Collapse
Affiliation(s)
- Charles H. Haitjema
- Department
of Microbiology, Cornell University, Ithaca, New York 14853, United States
| | - Jason T. Boock
- School
of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Aravind Natarajan
- Department
of Microbiology, Cornell University, Ithaca, New York 14853, United States
| | - Miguel A. Dominguez
- Great
Lakes Bioenergy Research Center, Madison, Wisconsin 53706, United States
| | - Jeffrey G. Gardner
- Great
Lakes Bioenergy Research Center, Madison, Wisconsin 53706, United States
| | - David H. Keating
- Great
Lakes Bioenergy Research Center, Madison, Wisconsin 53706, United States
| | - Sydnor T. Withers
- Great
Lakes Bioenergy Research Center, Madison, Wisconsin 53706, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, Ithaca, New York 14853, United States
- School
of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J Bacteriol 2012; 195:135-44. [PMID: 23104810 DOI: 10.1128/jb.01477-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Escherichia coli has been used as a platform host for studying the production of free fatty acids (FFA) and other energy-dense compounds useful in biofuel applications. Most of the FFA produced by E. coli are found extracellularly. This finding suggests that a mechanism for transport across the cell envelope exists, yet knowledge of proteins that may be responsible for export remains incomplete. Production of FFA has been shown to cause cell lysis, induce stress responses, and impair basic physiological processes. These phenotypes could potentially be diminished if efflux rates were increased. Here, a total of 15 genes and operons were deleted and screened for their impact on cell viability and titer in FFA-producing E. coli. Deletions of acrAB and rob and, to a lower degree of statistical confidence, emrAB, mdtEF, and mdtABCD reduced multiple measures of viability, while deletion of tolC nearly abolished FFA production. An acrAB emrAB deletion strain exhibited greatly reduced FFA titers approaching the tolC deletion phenotype. Expression of efflux pumps on multicopy plasmids did not improve endogenous FFA production in an acrAB(+) strain, but plasmid-based expression of acrAB, mdtEF, and an mdtEF-tolC artificial operon improved the MIC of exogenously added decanoate for an acrAB mutant strain. The findings suggest that AcrAB-TolC is responsible for most of the FFA efflux in E. coli, with residual activity provided by other resistance-nodulation-cell division superfamily-type efflux pumps, including EmrAB-TolC and MdtEF-TolC. While the expression of these proteins on multicopy plasmids did not improve production over the basal level, their identification enables future engineering efforts.
Collapse
|