1
|
Zhong Z, Liu J, Luo Y, Wu M, Qiu F, Zhao H, Liu Y, Wang Y, Long H, Zhao L, Wang Y, Han Y, Meng P. Jujuboside A Regulates Calcium Homeostasis and Structural Plasticity to Alleviate Depression-Like Behavior via Shh Signaling in Immature Neurons. Drug Des Devel Ther 2024; 18:4565-4584. [PMID: 39416424 PMCID: PMC11482263 DOI: 10.2147/dddt.s479055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Background Depression, a leading cause of disability worldwide, is characterized by dysfunction of immature neurons, resulting in dysregulated calcium homeostasis and impaired structural plasticity. Jujuboside A (JuA), a biologically active compound derived from Semen Ziziphi Spinosae, has demonstrated anti-anxiety and anti-insomnia properties. Recent studies suggest that JuA may be a promising antidepressant, but its underlying mechanisms remain unclear. Methods Sprague-Dawley rats were subjected to chronic unpredictable mild stress (CUMS) to induce a depression model. JuA (12.5 mg/kg, 25 mg/kg, 50 mg/kg) was administered orally for 4 weeks. Emotional and cognitive function were assessed. Monoamine neurotransmitter levels were measured using enzyme-linked immunosorbent assay (ELISA). The number of immature neurons and calcium homeostasis were evaluated by immunofluorescence. Western blotting and immunofluorescence were employed to detect the expression of Sonic hedgehog (Shh) signaling proteins. Additionally, lentiviral vector expressing Shh shRNA (LV-Shh-RNAi) were infused intracerebrally to investigate the role of Shh in JuA's antidepressant effects. Results JuA significantly ameliorated depressive-like behavior and cognitive dysfunction in CUMS rats, increased monoamine neurotransmitter levels in serum and hippocampal tissue, reduced the number of BrdU/DCX (bromodeoxyuridine/doublecortin)-positive immature neurons, and attenuated calcium ion (Ca2+) concentration and Ca2+/calmodulin-dependent protein kinase II (CaMKII) levels in immature neurons. JuA also markedly elevated synaptic density and prominence complexity, upregulated Shh, Gli family zinc finger 1 and 2 (Gli1/2), synaptophysin (Syn) and postsynaptic density protein-95 (PSD-95) expression in the ventral dentate gyrus (vDG). However, knockdown of Shh in the vDG counteracted JuA's therapeutic effects. Conclusion These findings collectively suggest that JuA improves depressive-like behavior in CUMS rats by modulating calcium homeostasis and synaptic structural plasticity in immature neurons through the Shh signaling pathway.
Collapse
Affiliation(s)
- Ziyan Zhong
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Yan Luo
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Mei Wu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Feng Qiu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yang Liu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yajing Wang
- Office of Science & Technology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Hongping Long
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Lei Zhao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yuhong Wang
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Yuanshan Han
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Pan Meng
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| |
Collapse
|
2
|
Song Z, Wang KW, Hagar HTC, Chen HR, Kuan CY, Zhang K, Kuo MH. Hyperphosphorylated Tau Inflicts Intracellular Stress Responses that Are Mitigated by Apomorphine. Mol Neurobiol 2024; 61:2653-2671. [PMID: 37919601 PMCID: PMC11043184 DOI: 10.1007/s12035-023-03689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/30/2023] [Indexed: 11/04/2023]
Abstract
Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlies neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, unfolded protein response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress-associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. p-Tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hsiao-Tien Chien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hong-Ru Chen
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
- Present address: Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, 112304
| | - Chia-Yi Kuan
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Song Z, Wang KW, Hagar HTC, Chen HR, Kuan CY, Zhang K, Kuo MH. Hyperphosphorylated tau Inflicts Intracellular Stress Responses That Are Mitigated by Apomorphine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540661. [PMID: 37292976 PMCID: PMC10245566 DOI: 10.1101/2023.05.13.540661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Abnormal phosphorylation of the microtubule-binding protein tau in the brain is a key pathological marker for Alzheimer's disease and additional neurodegenerative tauopathies. However, how hyperphosphorylated tau causes cellular dysfunction or death that underlie neurodegeneration remains an unsolved question critical for the understanding of disease mechanism and the design of efficacious drugs. Methods Using a recombinant hyperphosphorylated tau protein (p-tau) synthesized by the PIMAX approach, we examined how cells responded to the cytotoxic tau and explored means to enhance cellular resistance to tau attack. Results Upon p-tau uptake, the intracellular calcium levels rose promptly. Gene expression analyses revealed that p-tau potently triggered endoplasmic reticulum (ER) stress, Unfolded Protein Response (UPR), ER stress-associated apoptosis, and pro-inflammation in cells. Proteomics studies showed that p-tau diminished heme oxygenase-1 (HO-1), an ER stress associated anti-inflammation and anti-oxidative stress regulator, while stimulated the accumulation of MIOS and other proteins. P-tau-induced ER stress-associated apoptosis and pro-inflammation are ameliorated by apomorphine, a brain-permeable prescription drug widely used to treat Parkinson's disease symptoms, and by overexpression of HO-1. Conclusion Our results reveal probable cellular functions targeted by hyperphosphorylated tau. Some of these dysfunctions and stress responses have been linked to neurodegeneration in Alzheimer's disease. The observations that the ill effects of p-tau can be mitigated by a small compound and by overexpressing HO-1 that is otherwise diminished in the treated cells inform new directions of Alzheimer's disease drug discovery.
Collapse
|
4
|
Neha, Parvez S. Emerging therapeutics agents and recent advances in drug repurposing for Alzheimer's disease. Ageing Res Rev 2023; 85:101815. [PMID: 36529440 DOI: 10.1016/j.arr.2022.101815] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a multivariate and diversified disease and affects the most sensitive areas of the brain, the cerebral cortex, and the hippocampus. AD is a progressive age-related neurodegenerative disease most often associated with memory deficits and cognition that get more worsen over time. The central theory on the pathophysiological hallmark features of AD is characterized by the accumulation of amyloid β (Aβ) peptides, also associated with tau proteins (τ) dysfunctioning which leads to distorted microtubular structure, affects the cholinergic system, and mitochondrial biogenesis. This review emphasizes how simple it is to find novel treatments for AD and focuses on several recently developed medications through repurposing that can speed up traditional drug development.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
5
|
Li Y, Han X, Fan H, Sun J, Ni M, Zhang L, Fang F, Zhang W, Ma P. Circular RNA AXL increases neuron injury and inflammation through targeting microRNA-328 mediated BACE1 in Alzheimer’s disease. Neurosci Lett 2022; 776:136531. [DOI: 10.1016/j.neulet.2022.136531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
6
|
Ge M, Zhang J, Chen S, Huang Y, Chen W, He L, Zhang Y. Role of Calcium Homeostasis in Alzheimer's Disease. Neuropsychiatr Dis Treat 2022; 18:487-498. [PMID: 35264851 PMCID: PMC8901263 DOI: 10.2147/ndt.s350939] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease associated with senile plaques (SP) and neurofibrillary tangles (NFTs) in the brain. With aging of the population, AD has become the most common form of dementia. However, the mechanisms leading to AD are still under investigation, and there are currently no specific drugs for its treatment. Therefore, further study on the pathogenesis of AD to develop new drugs for AD treatment remains a top priority. Several studies have suggested that intracellular calcium homeostasis is dysregulated in AD, and this has been implicated in the deposition of amyloid β (Aβ), hyperphosphorylation of tau protein, abnormal synaptic plasticity, and apoptosis, all of which are involved in the occurrence and development of AD. In addition, some based on pathways linking calcium homeostasis and AD have achieved results in AD treatment. This review comprehensively explores the relationship between calcium homeostasis and the pathogenesis of AD to provide a theoretical basis for the future exploration of AD and the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Mengqian Ge
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jinghui Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Simiao Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yanfen Huang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Weiyan Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Lan He
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
7
|
Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer's Disease? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8409329. [PMID: 31885820 PMCID: PMC6914903 DOI: 10.1155/2019/8409329] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterised by impairments in the cognitive domains associated with orientation, recording, and memory. This pathology results from an abnormal deposition of the β-amyloid (Aβ) peptide and the intracellular accumulation of neurofibrillary tangles. Mitochondrial dysfunctions play an important role in the pathogenesis of AD, due to disturbances in the bioenergetic properties of cells. To date, the usual therapeutic drugs are limited because of the diversity of cellular routes in AD and the toxic potential of these agents. In this context, alpha-lipoic acid (α-LA) is a well-known fatty acid used as a supplement in several health conditions and diseases, such as periphery neuropathies and neurodegenerative disorders. It is produced in several cell types, eukaryotes, and prokaryotes, showing antioxidant and anti-inflammatory properties. α-LA acts as an enzymatic cofactor able to regulate metabolism, energy production, and mitochondrial biogenesis. In addition, the antioxidant capacity of α-LA is associated with two thiol groups that can be oxidised or reduced, prevent excess free radical formation, and act on improvement of mitochondrial performance. Moreover, α-LA has mechanisms of epigenetic regulation in genes related to the expression of various inflammatory mediators, such PGE2, COX-2, iNOS, TNF-α, IL-1β, and IL-6. Regarding the pharmacokinetic profile, α-LA has rapid uptake and low bioavailability and the metabolism is primarily hepatic. However, α-LA has low risk in prolonged use, although its therapeutic potential, interactions with other substances, and adverse reactions have not been well established in clinical trials with populations at higher risk for diseases of aging. Thus, this review aimed to describe the pharmacokinetic profile, bioavailability, therapeutic efficacy, safety, and effects of combined use with centrally acting drugs, as well as report in vitro and in vivo studies that demonstrate the mitochondrial mechanisms of α-LA involved in AD protection.
Collapse
|
8
|
Gant JC, Kadish I, Chen KC, Thibault O, Blalock EM, Porter NM, Landfield PW. Aging-Related Calcium Dysregulation in Rat Entorhinal Neurons Homologous with the Human Entorhinal Neurons in which Alzheimer's Disease Neurofibrillary Tangles First Appear. J Alzheimers Dis 2019; 66:1371-1378. [PMID: 30412490 PMCID: PMC6294592 DOI: 10.3233/jad-180618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aging is the leading risk factor for idiopathic Alzheimer’s disease (AD), indicating that normal aging processes promote AD and likely are present in the neurons in which AD pathogenesis originates. In AD, neurofibrillary tangles (NFTs) appear first in entorhinal cortex, implying that aging processes in entorhinal neurons promote NFT pathogenesis. Using electrophysiology and immunohistochemistry, we find pronounced aging-related Ca2 + dysregulation in rat entorhinal neurons homologous with the human neurons in which NFTs originate. Considering that humans recapitulate many aspects of animal brain aging, these results support the hypothesis that aging-related Ca2 + dysregulation occurs in human entorhinal neurons and promotes NFT pathogenesis.
Collapse
Affiliation(s)
- John C Gant
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Inga Kadish
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kuey-Chu Chen
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Olivier Thibault
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Eric M Blalock
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Nada M Porter
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Philip W Landfield
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
9
|
Yang H, Wang H, Shang H, Chen X, Yang S, Qu Y, Ding J, Li X. Circular RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer's disease. Cell Cycle 2019; 18:2197-2214. [PMID: 31373242 DOI: 10.1080/15384101.2019.1629773] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate the effect of circ_0000950/miR-103 network on regulating neuron apoptosis, neurite outgrowth and inflammation in Alzheimer's disease (AD). Cellular AD model of rat pheochromocytoma cell line PC12 cells and cellular AD model of rat cerebral cortex neurons were constructed, and the effect of circ_0000950 on apoptosis, neurite outgrowth and inflammation in both cellular AD models was determined through upregulation and knockdown of circ_0000950 expression by transfection. Compensation experiments and luciferase assay were further performed to validate the sponging effect of circ_0000950 on miR-103 as well as the mechanisms of circ_0000950/miR-103 on regulating apoptosis, neurite outgrowth and inflammation in both cellular AD models. Circ_0000950 reduced miR-103 expression and increased prostaglandin-endoperoxide synthase 2 (PTGS2) expression in both two cellular AD models. And circ_0000950 overexpression promoted neuron apoptosis, suppressed neurite outgrowth and elevated IL-1β, IL-6 and TNF-α levels compared with overexpression control, whereas circ_0000950 knockdown inhibited neuron apoptosis, enhanced neurite outgrowth and lowered IL-1β, IL-6 and TNF-α levels compared with shRNA control in both two cellular AD models. Compensation experiments along with luciferase reporter assay validated that circ_0000950 promoted cell apoptosis, suppressed neurite outgrowth and elevated inflammatory cytokines levels via directly sponging miR-103. In conclusion, circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels through directly sponging miR-103 in AD.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University , Harbin , China
| | - Huan Wang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University , Harbin , China
| | - Hong Shang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University , Harbin , China
| | - Xiufen Chen
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University , Harbin , China
| | - Shiqi Yang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University , Harbin , China
| | - Yang Qu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University , Harbin , China
| | - Jing Ding
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University , Harbin , China
| | - Xuling Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University , Harbin , China
| |
Collapse
|
10
|
The TRPM2 channel nexus from oxidative damage to Alzheimer's pathologies: An emerging novel intervention target for age-related dementia. Ageing Res Rev 2018; 47:67-79. [PMID: 30009973 DOI: 10.1016/j.arr.2018.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative condition, is the most common cause of dementia among the elder people, but currently there is no treatment. A number of putative pathogenic events, particularly amyloid β peptide (Aβ) accumulation, are believed to be early triggers that initiate AD. However, thus far targeting Aβ generation/aggregation as the mainstay strategy of drug development has not led to effective AD-modifying therapeutics. Oxidative damage is a conspicuous feature of AD, but this remains poorly defined phenomenon and mechanistically ill understood. The TRPM2 channel has emerged as a potentially ubiquitous molecular mechanism mediating oxidative damage and thus plays a vital role in the pathogenesis and progression of diverse neurodegenerative diseases. This article will review the emerging evidence from recent studies and propose a novel 'hypothesis' that multiple TRPM2-mediated cellular and molecular mechanisms cascade Aβ and/or oxidative damage to AD pathologies. The 'hypothesis' based on these new findings discusses the prospect of considering the TRPM2 channel as a novel therapeutic target for intervening AD and age-related dementia.
Collapse
|
11
|
FK506-Binding Protein 12.6/1b, a Negative Regulator of [Ca 2+], Rescues Memory and Restores Genomic Regulation in the Hippocampus of Aging Rats. J Neurosci 2017; 38:1030-1041. [PMID: 29255009 PMCID: PMC5783960 DOI: 10.1523/jneurosci.2234-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/10/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022] Open
Abstract
Hippocampal overexpression of FK506-binding protein 12.6/1b (FKBP1b), a negative regulator of ryanodine receptor Ca2+ release, reverses aging-induced memory impairment and neuronal Ca2+ dysregulation. Here, we tested the hypothesis that FKBP1b also can protect downstream transcriptional networks from aging-induced dysregulation. We gave hippocampal microinjections of FKBP1b-expressing viral vector to male rats at either 13 months of age (long-term, LT) or 19 months of age (short-term, ST) and tested memory performance in the Morris water maze at 21 months of age. Aged rats treated ST or LT with FKBP1b substantially outperformed age-matched vector controls and performed similarly to each other and young controls (YCs). Transcriptional profiling in the same animals identified 2342 genes with hippocampal expression that was upregulated/downregulated in aged controls (ACs) compared with YCs (the aging effect). Of these aging-dependent genes, 876 (37%) also showed altered expression in aged FKBP1b-treated rats compared with ACs, with FKBP1b restoring expression of essentially all such genes (872/876, 99.5%) in the direction opposite the aging effect and closer to levels in YCs. This inverse relationship between the aging and FKBP1b effects suggests that the aging effects arise from FKBP1b deficiency. Functional category analysis revealed that genes downregulated with aging and restored by FKBP1b were associated predominantly with diverse brain structure categories, including cytoskeleton, membrane channels, and extracellular region. Conversely, genes upregulated with aging but not restored by FKBP1b associated primarily with glial–neuroinflammatory, ribosomal, and lysosomal categories. Immunohistochemistry confirmed aging-induced rarefaction and FKBP1b-mediated restoration of neuronal microtubular structure. Therefore, a previously unrecognized genomic network modulating diverse brain structural processes is dysregulated by aging and restored by FKBP1b overexpression. SIGNIFICANCE STATEMENT Previously, we found that hippocampal overexpression of FK506-binding protein 12.6/1b (FKBP1b), a negative regulator of intracellular Ca2+ responses, reverses both aging-related Ca2+ dysregulation and cognitive impairment. Here, we tested whether hippocampal FKBP1b overexpression also counteracts aging changes in gene transcriptional networks. In addition to reducing memory deficits in aged rats, FKBP1b selectively counteracted aging-induced expression changes in 37% of aging-dependent genes, with cytoskeletal and extracellular structure categories highly associated with the FKBP1b-rescued genes. Our results indicate that, in parallel with cognitive processes, a novel transcriptional network coordinating brain structural organization is dysregulated with aging and restored by FKBP1b.
Collapse
|
12
|
Khachaturian AS. Letter. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2017; 9:84-87. [PMID: 29255790 PMCID: PMC5725207 DOI: 10.1016/j.dadm.2017.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Ara S. Khachaturian
- Corresponding author. Tel.: 301-309-6730; Fax: (844) 309-6730. http://www.alzheimersanddementia.orghttp://adj.edmgr.com
| |
Collapse
|