1
|
Nayak TK, Parasania D, Tilley DG. Adrenergic orchestration of immune cell dynamics in response to cardiac stress. J Mol Cell Cardiol 2024; 196:115-124. [PMID: 39303854 PMCID: PMC12059806 DOI: 10.1016/j.yjmcc.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Immune cells contribute approximately 5-10 % of the heart's total cell population, including several myeloid cell and lymphocyte cell subsets, which, despite their relatively small percentages, play important roles in cardiac homeostasis and remodeling responses to various forms of injury and long-term stress. Pathological cardiac stress activates the sympathetic nervous system (SNS), resulting in the release of the catecholamines epinephrine and norepinephrine either systemically or from sympathetic nerve terminals within various lymphoid organs. Acting at α- or β-adrenergic receptors (αAR, βAR), catecholamines regulate immune cell hematopoiesis, egress and migration in response to stress. Classically, αAR stimulation tends to promote inflammatory responses while βAR stimulation has typically been shown to be immunosuppressive, though the effects can be nuanced depending on the immune cells subtype, the site of regulation and pathophysiological context. Herein, we will discuss several facets of SNS-mediated regulation of immune cells and their response to cardiac stress, including: catecholamine response to cardiovascular stress and action at their receptors, adrenergic regulation of hematopoiesis, immune cell retention and release from the bone marrow, adrenergic regulation of splenic immune cells and their retention, as well as adrenergic regulation of immune cell recruitment to the injured heart, including neutrophils, monocytes and macrophages. A particular focus will be given to βAR-mediated effects on myeloid cells in response to acute or chronic cardiac stress.
Collapse
Affiliation(s)
- Tapas K Nayak
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dev Parasania
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Luo S, Li P, Zhang A, Meng L, Huang L, Wu X, Cheng H, Tu H, Gong X. G-CSF improving combined whole brain radiotherapy and immunotherapy prognosis of non-small cell lung cancer brain metastases. Int Immunopharmacol 2024; 130:111705. [PMID: 38412673 DOI: 10.1016/j.intimp.2024.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE To evaluate the therapeutic advantage of G-CSF to whole brain radiotherapy (WBRT) in combination with immunotherapy as a first-line treatment for non-small cell lung cancer (NSCLC) brain metastases (BMs). METHODS In this retrospective study, 117 patients (37 in G-CSF group and 80 in no G-CSF group) who underwent first-line WBRT combined with immunotherapy were enrolled. Their survival, intracranial response, BM-related symptoms and toxicity were evaluated. RESULTS The overall survival (OS) of patients in G-CSF group was significantly improved compared to patients no G-CSF group (median time: 14.8 vs 10.2 months; HR: 0.61, 95 % CI: 0.38-0.97, p = 0.035). However, there were no significant differences in intracranial responses between the two groups (p > 0.05). The G-CSF group exhibited a significantly higher rate of relief from BM-related symptoms compared to the no G-CSF group (91.7 % vs 59.5 %, p = 0.037). Cox proportional hazards regression analyses indicated that after-treatment ALC > 0.9 × 10^9/L (HR 0.57, 95 % CI 0.32-0.99, p = 0.046) and Hb > 110 g/dL (HR 0.41, 95 % CI 0.24-0.71, p = 0.001) were significant potential factors associated with extended OS. The addition of G-CSF was well tolerated and effectively reduced the incidence of neutropenia (0 % vs 5.0 %, p = 0.17). CONCLUSION Integrating G-CSF with WBRT and immunotherapy as a first-line treatment for NSCLC-BMs has exhibited significant efficacy and favorable tolerability.
Collapse
Affiliation(s)
- Shilan Luo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Anqi Zhang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Meng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Litang Huang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoting Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongxia Cheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongbin Tu
- Department of Integrated TCM & Western Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaomei Gong
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Efron PA, Brakenridge SC, Mohr AM, Barrios EL, Polcz VE, Anton S, Ozrazgat-Baslanti T, Bihorac A, Guirgis F, Loftus TJ, Rosenthal M, Leeuwenburgh C, Mankowski R, Moldawer LL, Moore FA. The persistent inflammation, immunosuppression, and catabolism syndrome 10 years later. J Trauma Acute Care Surg 2023; 95:790-799. [PMID: 37561664 PMCID: PMC10615691 DOI: 10.1097/ta.0000000000004087] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
With the implementation of new intensive care unit (ICU) therapies in the 1970s, multiple organ failure (MOF) emerged as a fulminant inflammatory phenotype leading to early ICU death. Over the ensuing decades, with fundamental advances in care, this syndrome has evolved into a lingering phenotype of chronic critical illness (CCI) leading to indolent late post-hospital discharge death. In 2012, the University of Florida (UF) Sepsis Critical Illness Research Center (SCIRC) coined the term Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) to provide a mechanistic framework to study CCI in surgical patients. This was followed by a decade of research into PICS-CCI in surgical ICU patients in order to define the epidemiology, dysregulated immunity, and long-term outcomes after sepsis. Other focused studies were performed in trauma ICU patients and emergency department sepsis patients. Early deaths were surprisingly low (4%); 63% experienced rapid recovery. Unfortunately, 33% progressed to CCI, of which 79% had a poor post-discharge disposition and 41% were dead within one year. These patients had biomarker evidence of PICS, and these biomarkers enhanced clinical prediction models for dismal one-year outcomes. Emergency myelopoiesis appears to play a central role in the observed persistent immune dysregulation that characterizes PICS-CCI. Older patients were especially vulnerable. Disturbingly, over half of the older CCI patients were dead within one year and older CCI survivors remained severely disabled. Although CCI is less frequent (20%) after major trauma, PICS appears to be a valid concept. This review will specifically detail the epidemiology of CCI, PICS biomarkers, effect of site of infection, acute kidney injury, effect on older patients, dysfunctional high-density lipoproteins, sarcopenia/cachexia, emergency myelopoiesis, dysregulated erythropoiesis, and potential therapeutic interventions. A review of UF SCIRC’s research efforts characterizing CCI, PICS biomarkers, effect of site of infection, acute kidney injury, effects on older patients, dysfunctional high-density lipoproteins, sarcopenia/cachexia, emergency myelopoiesis, and dysregulated erythropoiesis.
Collapse
Affiliation(s)
- Philip A Efron
- From the Department of Surgery and Anesthesiology (P.A.E., A.M.M., M.R.), University of Florida, Gainesville, Florida, Department of Surgery (S.C.B.), University of Washington, Seattle, Washington; Department of Surgery (E.L.B., V.E.P., T.J.L., L.L.M., F.A.M.), Department of Physiology and Aging (S.A., C.L., R.M.), Department of Medicine (T.O.-B., A.B.), University of Florida, Gainesville; and Department of Emergency Medicine (F.G.), University of Florida, Jacksonville, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Smith JA, Nguyen T, Davis BC, Lahiri DK, Hato T, Obukhov AG, White FA. Propranolol treatment during repetitive mild traumatic brain injuries induces transcriptomic changes in the bone marrow of mice. Front Neurosci 2023; 17:1219941. [PMID: 37817806 PMCID: PMC10561692 DOI: 10.3389/fnins.2023.1219941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/25/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction There are 1.5 million new mild traumatic brain injuries (mTBI) annually in the US, with many of the injured experiencing long-term consequences lasting months after the injury. Although the post injury mechanisms are not well understood, current knowledge indicates peripheral immune system activation as a causal link between mTBI and long-term side effects. Through a variety of mechanisms, peripheral innate immune cells are recruited to the CNS after TBI to repair and heal the injured tissue; however, the recruitment and activation of these cells leads to further inflammation. Emerging evidence suggests sympathetic nervous system (SNS) activity plays a substantial role in the recruitment of immune cells post injury. Methods We sought to identify the peripheral innate immune response after repeated TBIs in addition to repurposing the nonselective beta blocker propranolol as a novel mTBI therapy to limit SNS activity and mTBI pathophysiology in the mouse. Mice underwent repetitive mTBI or sham injury followed by i.p. saline or propranolol. Isolated mRNA derived from femur bone marrow of mice was assayed for changes in gene expression at one day, one week, and four weeks using Nanostring nCounter® stem cell characterization panel. Results Differential gene expression analysis for bone marrow uncovered significant changes in many genes following drug alone, mTBI alone and drug combined with mTBI. Discussion Our data displays changes in mRNA at various timepoints, most pronounced in the mTBI propranolol group, suggesting a single dose propranolol injection as a viable future mTBI therapy in the acute setting.
Collapse
Affiliation(s)
- Jared A. Smith
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tyler Nguyen
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brittany C. Davis
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Takashi Hato
- Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Alexander G. Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Fletcher A. White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
5
|
Munley JA, Kelly LS, Gillies GS, Kannan KB, Pons EE, Bible LE, Efron PA, Mohr AM. EFFECTS OF TRAUMA PLASMA-DERIVED EXOSOMES ON HEMATOPOIETIC PROGENITOR CELLS. Shock 2023; 59:591-598. [PMID: 36772985 PMCID: PMC10065931 DOI: 10.1097/shk.0000000000002094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
ABSTRACT Background: Severe trauma disrupts bone marrow function resulting in persistent anemia and immunosuppression. Exosomes are extracellular vesicles implicated in disease, cellular functions, and immunomodulation. The effects of trauma plasma-derived exosomes on bone marrow hematopoiesis are unstudied; we hypothesized that trauma plasma-derived exosomes suppress bone marrow hematopoietic progenitor cell (HPC) growth and contribute to increased inflammatory cytokines and HPC mobilization. Methods: Plasma was collected from a prospective, cohort study of trauma patients (n = 15) with hip and/or femur fractures and an ISS > 15 and elective total hip arthroplasty (THA) patients (n = 15). Exosomes were isolated from both groups using the Invitrogen Total Exosome Isolation Kit. Healthy bone marrow was cultured with 2% plasma, 50 μg, 100 μg, or 200 μg of exosomal protein and HPC (granulocyte, erythrocyte, monocyte, megakaryocyte colony-forming units [CFU-GEMM], erythroid burst-forming units [BFU-E], and macrophage colony-forming units [CFU-GM]) growth assessed. After culturing healthy bone marrow stroma with 100 μg of exosomal protein, expression of cytokines and factors influencing HPC mobilization were assessed by qPCR. Differences were compared using the ANOVA, with significance defined as P < 0.05. Results: The only demographic difference was age; trauma patients were significantly younger than THA (mean 44 vs. 63 years). In vitro exposure to trauma plasma significantly decreased growth of all HPCs. In vitro exposure to 100 μg or 200 μg of trauma exosomal protein significantly decreased growth of BFU-E and CFU-GM, whereas 50 μg had no effect. Culture of trauma exosomal protein with bone marrow stromal cells resulted in increased expression of IFN-γ, IL-1α, TNF-α, G-CSF, CXCR4, SDF-1, and VCAM-1 in bone marrow stroma. Conclusions: Both plasma and plasma-derived exosomes from trauma patients adversely affect bone marrow function. Plasma-derived exosomes may contribute to altered hematopoiesis after severe trauma; analysis of exosomal content may improve our understanding of altered bone marrow function.
Collapse
Affiliation(s)
- Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Gwendolyn S. Gillies
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Erick E. Pons
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
6
|
Noel JG, Ramser SW, Pitstick L, Goetzman HS, Dale EL, Potter A, Adam M, Potter SS, Gardner JC. IL-1/MyD88-Dependent G-CSF and IL-6 Secretion Mediates Postburn Anemia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:972-980. [PMID: 36779805 PMCID: PMC10038902 DOI: 10.4049/jimmunol.2200785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/27/2023] [Indexed: 02/14/2023]
Abstract
The anemia of critical illness (ACI) is a nearly universal pathophysiological consequence of burn injury and a primary reason burn patients require massive quantities of transfused blood. Inflammatory processes are expected to drive postburn ACI and prevent meaningful erythropoietic stimulation through iron or erythropoietin supplementation, but to this day no specific inflammatory pathways have been identified as a critical mechanism. In this study, we examined whether secretion of G-CSF and IL-6 mediates distinct features of postburn ACI and interrogated inflammatory mechanisms that could be responsible for their secretion. Our analysis of mouse and human skin samples identified the burn wound as a primary source of G-CSF and IL-6 secretion. We show that G-CSF and IL-6 are secreted independently through an IL-1/MyD88-dependent mechanism, and we ruled out TLR2 and TLR4 as critical receptors. Our results indicate that IL-1/MyD88-dependent G-CSF secretion plays a key role in impairing medullary erythropoiesis and IL-6 secretion plays a key role in limiting the access of erythroid cells to iron. Importantly, we found that IL-1α/β neutralizing Abs broadly attenuated features of postburn ACI that could be attributed to G-CSF or IL-6 secretion and rescued deficits of circulating RBC counts, hemoglobin, and hematocrit caused by burn injury. We conclude that wound-based IL-1/MyD88 signaling mediates postburn ACI through induction of G-CSF and IL-6 secretion.
Collapse
Affiliation(s)
- John G Noel
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Seth W Ramser
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Lori Pitstick
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Holly S Goetzman
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Elizabeth L Dale
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Andrew Potter
- Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Mike Adam
- Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - S Steven Potter
- Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jason C Gardner
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
7
|
Kelly LS, Munley JA, Kannan KB, Pons EE, Coldwell PS, Bible LE, Parvataneni HK, Hagen JE, Efron PA, Mohr AM. Anemia Recovery after Trauma: A Longitudinal Study. Surg Infect (Larchmt) 2023; 24:39-45. [PMID: 36579920 PMCID: PMC9894600 DOI: 10.1089/sur.2022.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Post-injury inflammation and its correlation with anemia recovery after severe trauma is poorly described. Severe injury induces a systemic inflammatory response associated with critical illness and organ dysfunction, including disordered hematopoiesis, and anemia. This study sought to characterize the resolution of post-injury inflammation and anemia to identify risk factors associated with persistence of anemia. Patients and Methods: This single-institution study prospectively enrolled 73 trauma patients with an injury severity score >15, hemorrhagic shock, and a lower extremity long bone orthopedic injury. Blood was obtained at enrollment and after 14 days, one, three, and six months. Analytes were compared using Mann-Whitney U tests with correction for multiple comparisons. Results: Median age was 45 years and Injury Severity Score (ISS) was 27, with anemia rates of 97% at two weeks, 80% at one month, 52% at three months, and 30% at six months. Post-injury elevations in erythropoietin, interleukin-6, and C-reactive protein resolved by one month, three months, and six months, respectively. Median granulocyte colony-stimulating factor (G-CSF) and tumor necrosis factor (TNF)-α concentrations remained elevated throughout the six-month follow-up period. Patients with persistent anemia had longer intensive care unit and hospital lengths of stay, more infectious complications, and received more packed red blood cell transfusions compared to those with early anemia recovery. Conclusions: Severe trauma is associated with a prolonged inflammatory response, which is associated with increased transfusion requirements, lengths of stay, and persistent anemia. Further analysis is needed to identify correlations between prolonged inflammation and clinical outcomes after discharge.
Collapse
Affiliation(s)
- Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Erick E. Pons
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Preston S. Coldwell
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Hari K. Parvataneni
- Department of Orthopedic Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jennifer E. Hagen
- Department of Orthopedic Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
8
|
Mechanisms of improved erythroid progenitor growth with removal of chronic stress after trauma. Surgery 2022; 172:759-765. [PMID: 35672167 PMCID: PMC9283291 DOI: 10.1016/j.surg.2022.04.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Erythropoietic dysfunction after trauma and critical illness is associated with anemia, persistent inflammation, increased hematopoietic progenitor cell mobilization from the bone marrow, and reduced erythroid progenitor growth. Yet the duration and reversibility of these postinjury bone marrow changes remain unknown. This study sought to determine whether removal of chronic postinjury stress could induce improvements in erythroid progenitor growth. METHODS Sprague-Dawley rats (n = 8-11/group) were assigned to the following: naïve, lung contusion and hemorrhagic shock, lung contusion and hemorrhagic shock plus daily chronic stress for 7 days followed by 7 days of routine handling to allow recovery (lung contusion and hemorrhagic shock + chronic stress 7), or lung contusion and hemorrhagic shock plus chronic stress for 14 days (lung contusion and hemorrhagic shock + chronic stress 14). Circulating CD117+CD71+ erythroid progenitors were detected by flow cytometry. Rodents were killed on day 14, and bone marrow erythroid progenitor growth and erythroid transcription factors were assessed. Differences were assessed by analysis of variance (P < .05). RESULTS Compared to lung contusion and hemorrhagic shock + chronic stress 14, lung contusion and hemorrhagic shock + chronic stress 7 rodents had improved hemoglobin (8% ± 10% increase vs 6% ± 10% decrease) with fewer mobilized erythroid progenitors (898 × vs 1,524 cells), lower granulocyte-colony stimulating factor levels (3.1 ± 1.1 × pg/mL vs 5.9 ± 1.8 pg/mL), and improved erythroid progenitor growth. Cessation of stress had no impact on erythroid transcription factors GATA-1, GATA-2, LMO2, or KLF1. CONCLUSION Improvements in erythroid progenitor growth and reduced hematopoietic progenitor cell mobilization were seen 7 days after cessation of chronic stress and were associated with an improvement in hemoglobin. Early bone marrow erythropoietic functional recovery may result from resolution of hematopoietic progenitor mobilization rather than upregulation of pro-erythroid transcription factors. This study suggests that postinjury anemia is reversible and has the potential to improve with the cessation of stress.
Collapse
|
9
|
Munley JA, Kelly LS, Mohr AM. Adrenergic Modulation of Erythropoiesis After Trauma. Front Physiol 2022; 13:859103. [PMID: 35514362 PMCID: PMC9063634 DOI: 10.3389/fphys.2022.859103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Severe traumatic injury results in a cascade of systemic changes which negatively affect normal erythropoiesis. Immediately after injury, acute blood loss leads to anemia, however, patients can remain anemic for as long as 6 months after injury. Research on the underlying mechanisms of such alterations of erythropoiesis after trauma has focused on the prolonged hypercatecholaminemia seen after trauma. Supraphysiologic elevation of catecholamines leads to an inhibitive effect on erythropoiesis. There is evidence to show that alleviation of the neuroendocrine stress response following trauma reduces these inhibitory effects. Both beta blockade and alpha-2 adrenergic receptor stimulation have demonstrated increased growth of hematopoietic progenitor cells as well as increased pro-erythropoietic cytokines after trauma. This review will describe prior research on the neuroendocrine stress response after trauma and its consequences on erythropoiesis, which offer insight into underlying mechanisms of prolonged anemia postinjury. We will then discuss the beneficial effects of adrenergic modulation to improve erythropoiesis following injury and propose future directions for the field.
Collapse
Affiliation(s)
- Jennifer A Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Lauren S Kelly
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Alicia M Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Bihari C, Baweja S, Shasthry SM, Lal D, Negi P, Thangariyal S, Tripathi DM, Sarin SK. CEACAM-1 Induced CSF3-receptor Downregulation in Bone Marrow Associated With Refractory Neutropenia in Advanced Cirrhosis. J Clin Transl Hepatol 2022; 10:53-62. [PMID: 35233373 PMCID: PMC8845158 DOI: 10.14218/jcth.2021.00331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Cirrhosis patients exhibit cytopenia, and, at times refractory neutropenia to granulocyte colony-stimulating factor (G-CSF), which acts through the CSF3-receptor (CSF3R), and changes in CSF3R can affect the response. We conducted this study to assess the CSF3R status and its relevance in cirrhotic patients. METHODS Cirrhotic patients (n=127) and controls (n=26) with clinically indicated bone marrow (BM) examination were studied. BM assessment was done by qRT-PCR and immunohistochemistry (IHC) for CSF3R. Circulating G-CSF, CSF3R, and carcinoembryonic antigen cell adhesion molecule-1 (CEACAM1) were measured. BM hematopoietic precursor cells and their alterations were examined by flow cytometry. The findings were validated in liver cirrhosis patients who received G-CSF for severe neutropenia. RESULTS The mean age was 48.6±13.4 years, and 80.3% were men. Circulatory CSF3R reduction was noted with the advancement of cirrhosis, and confirmed by qRT-PCR and IHC in BM. CSF3R decline was related to decreased hematopoietic stem cells (HSCs) and downregulation of CSF3R in the remaining HSCs. Cocultures confirmed that CEACAM1 led to CSF3R downregulation in BM cells by possible lysosomal degradation. Baseline low peripheral blood-(PB)-CSF3R also predisposed development of infections on follow-up. Decreased CSF3R was also associated with nonresponse to exogenous G-CSF treatment of neutropenia. CONCLUSIONS Advanced liver cirrhosis was associated with low CSF3R and high CEACAM1 levels in the BM and circulation, making patients prone to infection and inadequate response to exogenous G-CSF.
Collapse
Affiliation(s)
- Chhagan Bihari
- Department of Pathology and Hematology, Institute of Liver and Biliary Sciences, D1, Vasant Kunj, New Delhi, India
- Correspondence to: Chhagan Bihari, Department of Pathology and Hematology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, India. ORCID: https://orcid.org/0000-0001-5801-9458. Tel/Fax: +91-114-6300000, E-mail: ; Shiv Kumar Sarin, Department of Hepatology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, India. ORCID: https://orcid.org/0000-0002-0544-5610. Tel/Fax: +91-114-6300000, E-mail:
| | - Sukriti Baweja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1, Vasant Kunj, New Delhi, India
- Correspondence to: Chhagan Bihari, Department of Pathology and Hematology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, India. ORCID: https://orcid.org/0000-0001-5801-9458. Tel/Fax: +91-114-6300000, E-mail: ; Shiv Kumar Sarin, Department of Hepatology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, India. ORCID: https://orcid.org/0000-0002-0544-5610. Tel/Fax: +91-114-6300000, E-mail:
| | | | - Deepika Lal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1, Vasant Kunj, New Delhi, India
| | - Preeti Negi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1, Vasant Kunj, New Delhi, India
| | - Swati Thangariyal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1, Vasant Kunj, New Delhi, India
| | - Dinesh Mani Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1, Vasant Kunj, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1, Vasant Kunj, New Delhi, India
- Department of Hepatology, Institute of Liver and Biliary Sciences, D1, Vasant Kunj, New Delhi, India
| |
Collapse
|
11
|
Huo J, Wang L, Tian Y, Sun W, Zhang G, Zhang Y, Liu Y, Zhang J, Yang X, Liu Y. Gene Co-Expression Analysis Identified Preserved and Survival-Related Modules in Severe Blunt Trauma, Burns, Sepsis, and Systemic Inflammatory Response Syndrome. Int J Gen Med 2021; 14:7065-7076. [PMID: 34707398 PMCID: PMC8544272 DOI: 10.2147/ijgm.s336785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022] Open
Abstract
Background Severe trauma and burns accompanied by sepsis are associated with high morbidity and mortality. Little is known about the transcriptional similarity between trauma, burns, sepsis, and systemic inflammatory response syndrome (SIRS). Uncovering key genes and molecular networks is critical to understanding the biology of disease. Conventional analysis of gene changes (fold change) analysis is difficult for time-serial data such as post-injury blood transcriptome. Methods Weighted gene co-expression network analysis (WGCNA) was applied to the trauma dataset to identify modules and hub genes. Module stability was tested by half sampling. Module preservations of burns, sepsis, and SIRS were calculated using trauma as reference. Module functional enrichment was analyzed in gProfiler server. Candidate drugs were screened using Connectivity Map based on hub genes. The modules were visualized in Cytoscape. Results Seventeen modules were identified. The modules were robust to the exclusion of half the sample. They were involved in lymphocyte and platelet activation, erythrocyte differentiation, cell cycle, translation, and interferon signaling. In addition, highly connected hub genes were identified in each module, such as GUCY1B1, BCL11B, HMMR, and CEACAM6. High BCL11B (M13) or low CEACAM6 (M27) expression indicates better survival prognosis in sepsis patients regardless of endotype class and age. Network preservation in burns, sepsis, and SIRS showed a general similarity between trauma and burns. M4, M5, M13, M16, M20, and M27 were significantly associated with injury time in trauma and burns. High M13 (T cell activation), low M15 (cell cycle), and low M27 (neutrophil activation) indicate better survival of sepsis patients, regardless of endotype class and age. Moreover, the modules can efficiently separate patients with different diseases. Some modules and hub genes have good prognostic performance in sepsis. Based on the hub genes of each module, six candidate drugs were screened. Conclusion This study first compared the gene co-expression modules in trauma, burns, sepsis, and SIRS. The identified modules are useful for disease prognosis and drug discovery. BCL11B and CEACAM6 may be promising biomarkers for sepsis risk assessment.
Collapse
Affiliation(s)
- Jingrui Huo
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Lei Wang
- Microbiology and Immunology Department, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Yi Tian
- Microbiology and Immunology Department, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Wenjie Sun
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Guoan Zhang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Yan Zhang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Ying Liu
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Jingjing Zhang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Xiaohui Yang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Yingfu Liu
- Cangzhou Nanobody Technology Innovation Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| |
Collapse
|
12
|
Wu SC, Rau CS, Kuo PJ, Shih FY, Lin HP, Wu YC, Hsieh TM, Liu HT, Hsieh CH. Profiling the Expression of Circulating Acute-Phase Proteins, Cytokines, and Checkpoint Proteins in Patients with Severe Trauma: A Pilot Study. J Inflamm Res 2021; 14:3739-3753. [PMID: 34393495 PMCID: PMC8354739 DOI: 10.2147/jir.s324056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023] Open
Abstract
Purpose Severe trauma may lead to the systemic release of inflammatory mediators into the circulation with profound acute-phase responses; however, the understanding of the expression of these mediators remains limited. This study aimed to characterize the alterations in the expression of circulating acute-phase proteins, cytokines, and checkpoint proteins in patients with severe trauma injuries. Patients and Methods The study population included trauma patients in the intensive care unit (ICU) with an injury severity score equal to or greater than 16 and who had used a ventilator for 48 hours. A total of 12 female and 28 male patients were recruited for the study; six patients died and 34 survived. Blood samples collected at acute stages were compared with those drawn at the subacute stage, the time when the patients were discharged from the ICU, or before the discharge of the patients from the hospital. Results The study identified that the expression of acute-phase proteins, such as alpha-1-acid glycoprotein and C-reactive protein, and cytokines, including granulocyte colony-stimulating factor, interleukin-6, and interleukin-1 receptor antagonist, was elevated in the circulation after severe trauma. In contrast, the levels of acute-phase proteins, such as alpha-2-macroglobulin, serum amyloid P, and von Willebrand factor, and cytokines, including interleukin-4 and interferon gamma-induced protein 10, were reduced. However, there were no significant differences in the expression of checkpoint proteins in the circulation. Conclusion The dysregulated proteins identified in this study may serve as potential therapeutic targets or biomarkers for treating patients with severe trauma. However, the related biological functions of these dysregulated factors require further investigation to validate their functions.
Collapse
Affiliation(s)
- Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pao-Jen Kuo
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Yuan Shih
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Ping Lin
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chan Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ting-Min Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hang-Tsung Liu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Kelly LS, Darden DB, Fenner BP, Efron PA, Mohr AM. The Hematopoietic Stem/Progenitor Cell Response to Hemorrhage, Injury, and Sepsis: A Review of Pathophysiology. Shock 2021; 56:30-41. [PMID: 33234838 PMCID: PMC8141062 DOI: 10.1097/shk.0000000000001699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT Hematopoietic stem/progenitor cells (HSPC) have both unique and common responses following hemorrhage, injury, and sepsis. HSPCs from different lineages have a distinctive response to these "stress" signals. Inflammation, via the production of inflammatory factors, including cytokines, hormones, and interferons, has been demonstrated to impact the differentiation and function of HSPCs. In response to injury, hemorrhagic shock, and sepsis, cellular phenotypic changes and altered function occur, demonstrating the rapid response and potential adaptability of bone marrow hematopoietic cells. In this review, we summarize the pathophysiology of emergency myelopoiesis and the role of myeloid-derived suppressor cells, impaired erythropoiesis, as well as the mobilization of HSPCs from the bone marrow. Finally, we discuss potential therapeutic options to optimize HSPC function after severe trauma or infection.
Collapse
Affiliation(s)
- Lauren S Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | |
Collapse
|
14
|
Prolonged Chronic Stress and Persistent Iron Dysregulation Prevent Anemia Recovery Following Trauma. J Surg Res 2021; 267:320-327. [PMID: 34186308 DOI: 10.1016/j.jss.2021.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022]
Abstract
Introduction Following major trauma, persistent injury-associated anemia is associated with organ failure, increased length of stay and mortality. We hypothesize that prolonged adrenergic stimulation following trauma is directly responsible for persistent iron dysfunction that impairs anemia recovery. Materials and Methods Naïve rodents, lung contusion and hemorrhagic shock followed by daily handling for 13 d (LCHS), LCHS followed by 6 d of restraint stress and 7 d of daily handling (LCHS/CS-7) and LCHS/CS followed by 13 d of restraint stress with day and/or night disruption (LCHS/CS-14) were sacrificed on day 14. Hemoglobin, plasma, urine, bone marrow/liver inflammatory and erythropoietic markers were analyzed. Results LCHS/CS-14 led to a significant decline in weight gain and persistently elevated plasma and urine inflammatory markers. Liver IL-6, IL-1β and hepcidin expression were significantly increased following LCHS/CS-14. LCHS/CS-14 also had impaired anemia recovery with reduced plasma transferrin and erythropoietin receptor expression. Conclusion Prolonged chronic stress following trauma/hemorrhagic shock led to sustained inflammation with increased expression of IL-1β, IL-6 and hepcidin with decreased iron availability for uptake into erythroid progenitor cells and a lack of anemia recovery.
Collapse
|
15
|
Dingle M, Fernicola SD, de Vasconcellos JF, Zicari S, Daniels C, Dunn JC, Dimtchev A, Nesti LJ. Characterization of traumatized muscle-derived multipotent progenitor cells from low-energy trauma. Stem Cell Res Ther 2021; 12:6. [PMID: 33407850 PMCID: PMC7788846 DOI: 10.1186/s13287-020-02038-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background Multipotent progenitor cells have been harvested from different human tissues, including the bone marrow, adipose tissue, and umbilical cord blood. Previously, we identified a population of mesenchymal progenitor cells (MPCs) isolated from the traumatized muscle of patients undergoing reconstructive surgery following a war-related blast injury. These cells demonstrated the ability to differentiate into multiple mesenchymal lineages. While distal radius fractures from a civilian setting have a much lower injury mechanism (low-energy trauma), we hypothesized that debrided traumatized muscle near the fracture site would contain multipotent progenitor cells with the ability to differentiate and regenerate the injured tissue. Methods The traumatized muscle was debrided from the pronator quadratus in patients undergoing open reduction and internal fixation for a distal radius fracture at the Walter Reed National Military Medical Center. Using a previously described protocol for the isolation of MPCs from war-related extremity injuries, cells were harvested from the low-energy traumatized muscle samples and expanded in culture. Isolated cells were characterized by flow cytometry and q-RT-PCRs and induced to adipogenic, osteogenic, and chondrogenic differentiation. Downstream analyses consisted of lineage-specific staining and q-RT-PCR. Results Cells isolated from low-energy traumatized muscle samples were CD73+, CD90+, and CD105+ that are the characteristic of adult human mesenchymal stem cells. These cells expressed high levels of the stem cell markers OCT4 and NANOG 1-day after isolation, which was dramatically reduced over-time in monolayer culture. Following induction, lineage-specific markers were demonstrated by each specific staining and confirmed by gene expression analysis, demonstrating the ability of these cells to differentiate into adipogenic, osteogenic, and chondrogenic lineages. Conclusions Adult multipotent progenitor cells are an essential component for the success of regenerative medicine efforts. While MPCs have been isolated and characterized from severely traumatized muscle from high-energy injuries, here, we report that cells with similar characteristics and multipotential capacity have been isolated from the tissue that was exposed to low-energy, community trauma.
Collapse
Affiliation(s)
- Marvin Dingle
- Clinical and Experimental Orthopaedics, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, 4801 Rockville Pike, Bethesda, MD, 20889, USA
| | - Stephen D Fernicola
- Clinical and Experimental Orthopaedics, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, 4801 Rockville Pike, Bethesda, MD, 20889, USA
| | - Jaira F de Vasconcellos
- Clinical and Experimental Orthopaedics, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Sonia Zicari
- Clinical and Experimental Orthopaedics, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Christopher Daniels
- Clinical and Experimental Orthopaedics, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, 4801 Rockville Pike, Bethesda, MD, 20889, USA
| | - John C Dunn
- Clinical and Experimental Orthopaedics, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,William Beaumont Army Medical Center, 5005 N Piedras St, El Paso, TX, 79920, USA
| | - Alexander Dimtchev
- Clinical and Experimental Orthopaedics, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Leon J Nesti
- Clinical and Experimental Orthopaedics, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, 4801 Rockville Pike, Bethesda, MD, 20889, USA.
| |
Collapse
|
16
|
Miller ES, Apple CG, Kannan KB, Funk ZM, Efron PA, Mohr AM. The effects of selective beta-adrenergic blockade on bone marrow dysfunction following severe trauma and chronic stress. Am J Surg 2020; 220:1312-1318. [PMID: 32741547 DOI: 10.1016/j.amjsurg.2020.06.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/19/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Propranolol has been shown to improve erythroid progenitor cell growth and anemia following trauma and this study sought to investigate the mechanisms involved by evaluating the effects of selective beta blockade. METHODS Male Sprague-Dawley rats were subjected to lung contusion, hemorrhagic shock and chronic stress (LCHS/CS) ± daily selective beta-1, beta-2, or beta-3 blockade (B1B, B2B, B3B). Bone marrow cellularity and growth of erythroid progenitor colonies, hemoglobin, plasma granulocyte colony-stimulating factor (G-CSF), hematopoietic progenitor cell mobilization, and daily weight were assessed. RESULTS Selective beta-2 and beta-3 blockade improved bone marrow cellularity, erythroid progenitor colony growth and hemoglobin levels, while decreasing plasma G-CSF, progenitor cell mobilization and weight loss following LCHS/CS. CONCLUSIONS Attenuating the neuroendocrine stress response with the use of selective beta-2 and 3 adrenergic blockade may be an alternative to improve bone marrow erythroid function following trauma.
Collapse
Affiliation(s)
- Elizabeth S Miller
- University of Florida Health, Department of Surgery and Sepsis and Critical Illness Research Center, Gainesville, FL, USA.
| | - Camille G Apple
- University of Florida Health, Department of Surgery and Sepsis and Critical Illness Research Center, Gainesville, FL, USA.
| | - Kolenkode B Kannan
- University of Florida Health, Department of Surgery and Sepsis and Critical Illness Research Center, Gainesville, FL, USA.
| | - Zackary M Funk
- University of Florida, College of Medicine, Gainesville, FL, USA.
| | - Philip A Efron
- University of Florida Health, Department of Surgery and Sepsis and Critical Illness Research Center, Gainesville, FL, USA.
| | - Alicia M Mohr
- University of Florida Health, Department of Surgery and Sepsis and Critical Illness Research Center, Gainesville, FL, USA.
| |
Collapse
|
17
|
Miller ES, Loftus TJ, Kannan KB, Plazas JM, Efron PA, Mohr AM. Systemic Regulation of Bone Marrow Stromal Cytokines After Severe Trauma. J Surg Res 2019; 243:220-228. [PMID: 31207479 DOI: 10.1016/j.jss.2019.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/03/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic injury generates a prolonged hypercatecholamine state that is associated with reduced growth of bone marrow erythroid progenitors mediated by the bone marrow stroma. The bone marrow stroma is made up of many cells including fibroblasts, which respond to inflammatory stimuli and alter the cytokine profile. We hypothesized that trauma plasma would increase bone marrow stromal fibroblast expression of interleukin-6 (IL-6), granulocyte colony-stimulating factor (G-CSF), erythropoietin (EPO), stem cell factor (SCF), and activation of nuclear factor kappa-light-chain-enhancer of activated B cells and correlate with injury severity and anemia. MATERIALS AND METHODS Plasma from 15 trauma patients was cultured with bone marrow fibroblast cells and compared with that from healthy volunteers. At 6, 24, and 48 h, the expression of IL-6, G-CSF, EPO, SCF, and the activation of nuclear factor kappa-light-chain-enhancer of activated B cells were measured using quantitative polymerase chain reaction. The influence of trauma plasma on cytokine expression was further stratified by injury severity score (ISS). RESULTS The average hemoglobin significantly decreased from admission to discharge (10.7 ± 2.5 to 9.2 ± 1.1 g/dL, P < 0.04). The discharge hemoglobin significantly decreased by 14% from the admission hemoglobin. After 48 h, trauma plasma significantly increased IL-6, G-CSF, and EPO bone marrow fibroblast expression when compared with normal plasma. When stratified by ISS, IL-6, G-CSF, and EPO, bone marrow fibroblast expression was highest in the trauma plasma ISS 27-41 group and was significantly elevated compared with normal plasma. When SCF expression was stratified by ISS, there was a significant increase in expression in ISS 27-41. Higher ISS was also associated with a larger decrease in hemoglobin despite no difference in total blood transfusions. CONCLUSIONS Severe trauma can systemically increase IL-6, G-CSF, and EPO expression in bone marrow stroma. Increased hematopoietic cytokine expression after traumatic injury correlated with a hypercatecholamine state, anemia, and injury severity.
Collapse
Affiliation(s)
- Elizabeth S Miller
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida
| | - Tyler J Loftus
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida
| | - Kolenkode B Kannan
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida
| | - Jessica M Plazas
- College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida
| | - Philip A Efron
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida
| | - Alicia M Mohr
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida.
| |
Collapse
|
18
|
Leitão L, Alves CJ, Sousa DM, Neto E, Conceição F, Lamghari M. The alliance between nerve fibers and stem cell populations in bone marrow: life partners in sickness and health. FASEB J 2019; 33:8697-8710. [PMID: 31017803 DOI: 10.1096/fj.201900454r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The bone marrow (BM) is the central hematopoietic organ in adult mammals, with great potential to be used as a tool to improve the efficacy of the body's response to a number of malignancies and stressful conditions. The nervous system emerges as a critical regulatory player of the BM both under homeostatic and pathologic settings, with essential roles in cellular anchorage and egress, stem cell differentiation, and endothelial cell permeability. This review collects the current knowledge on the interplay between the nervous system and the BM cell populations, with a focus on how the nervous system modulates hematopoietic stem and progenitor cell, mesenchymal stromal cell, and endothelial progenitor cell activity in BM. We have also highlighted the pathologies that have been associated with disturbances in the neuronal signaling in BM and discussed if targeting the nervous system, either by modulating the activity of specific neuronal circuits or by pharmacologically leveling the activity of sympathetic and sensorial signaling-responsive cells in BM, is a promising therapeutic approach to tackling pathologies from BM origin.-Leitão, L., Alves, C. J., Sousa, D. M., Neto, E., Conceição, F., Lamghari, M. The alliance between nerve fibers and stem cell populations in bone marrow: life partners in sickness and health.
Collapse
Affiliation(s)
- Luís Leitão
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Cecília J Alves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Daniela M Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Francisco Conceição
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Thermal injury of the skin induces G-CSF-dependent attenuation of EPO-mediated STAT signaling and erythroid differentiation arrest in mice. Exp Hematol 2017; 56:16-30. [PMID: 28867537 DOI: 10.1016/j.exphem.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/13/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022]
Abstract
Inflammation-mediated impairment of erythropoiesis plays a central role in the development of the anemia of critical illness (ACI). ACI develops despite elevation of endogenous erythropoietin (EPO), does not respond to exogenous erythropoietin (EPO) supplementation, and contributes significantly to transfusion requirements in burned patients. We have reported previously that the reduction of red blood cell mass in the bone marrow of a burn-injured ACI mouse model is granulocyte colony-stimulating factor (G-CSF) dependent. Given that elevated G-CSF levels also have been associated with lower hemoglobin levels and increased transfusion requirements in trauma victims, we postulated that G-CSF mediates postburn EPO resistance. In ACI mice, we found that bone marrow erythroid differentiation, viability, and proliferation are impaired after thermal injury of the skin. These changes in the marrow were associated with attenuated phosphorylation of known EPO-responsive signaling nodes, signal transducer and activator of transcription 5 (STAT5) Y694 and STAT3 S727, in bone marrow erythroid cells and developed despite highly elevated levels of endogenous EPO. Severely blunted STAT5 Y694 phosphorylation in bone marrow erythroid cells after exogenous EPO supplementation confirmed that EPO signaling was impaired in ACI mice. Importantly, parenteral administration of anti-G-CSF largely rescued postburn bone marrow erythroid differentiation arrest and EPO signaling in erythroid cells. Together, these data provide strong evidence for a role for G-CSF in the development of ACI after burn injury through suppression of EPO signaling in bone marrow erythroid cells.
Collapse
|
20
|
Thurairajah K, Broadhead ML, Balogh ZJ. Trauma and Stem Cells: Biology and Potential Therapeutic Implications. Int J Mol Sci 2017; 18:ijms18030577. [PMID: 28272352 PMCID: PMC5372593 DOI: 10.3390/ijms18030577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
Trauma may cause irreversible tissue damage and loss of function despite current best practice. Healing is dependent both on the nature of the injury and the intrinsic biological capacity of those tissues for healing. Preclinical research has highlighted stem cell therapy as a potential avenue for improving outcomes for injuries with poor healing capacity. Additionally, trauma activates the immune system and alters stem cell behaviour. This paper reviews the current literature on stem cells and its relevance to trauma care. Emphasis is placed on understanding how stem cells respond to trauma and pertinent mechanisms that can be utilised to promote tissue healing. Research involving notable difficulties in trauma care such as fracture non-union, cartilage damage and trauma induced inflammation is discussed further.
Collapse
Affiliation(s)
- Kabilan Thurairajah
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia.
- Department of Traumatology, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.
| | - Matthew L Broadhead
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia.
- Department of Traumatology, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.
| | - Zsolt J Balogh
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia.
- Department of Traumatology, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
21
|
Alamo IG, Kannan KB, Ramos H, Loftus TJ, Efron PA, Mohr AM. Clonidine reduces norepinephrine and improves bone marrow function in a rodent model of lung contusion, hemorrhagic shock, and chronic stress. Surgery 2016; 161:795-802. [PMID: 27742030 DOI: 10.1016/j.surg.2016.08.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Propranolol has been shown previously to restore bone marrow function and improve anemia after lung contusion/hemorrhagic shock. We hypothesized that daily clonidine administration would inhibit central sympathetic outflow and restore bone marrow function in our rodent model of lung contusion/hemorrhagic shock with chronic stress. METHODS Male Sprague-Dawley rats underwent 6 days of restraint stress after lung contusion/hemorrhagic shock during which the animals received clonidine (75 μg/kg) after the restraint stress. On postinjury day 7, we assessed urine norepinephrine, blood hemoglobin, plasma granulocyte colony stimulating factor, and peripheral blood mobilization of hematopoietic progenitor cells, as well as bone marrow cellularity and erythroid progenitor cell growth. RESULTS The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased urine norepinephrine levels, improved bone marrow cellularity, restored erythroid progenitor colony growth, and improved hemoglobin (14.1 ± 0.6 vs 10.8 ± 0.6 g/dL). The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased hematopoietic progenitor cells mobilization and restored granulocyte colony stimulating factor levels. CONCLUSION After lung contusion/hemorrhagic shock with chronic restraint stress, daily administration of clonidine restored bone marrow function and improved anemia. Alleviating chronic stress and decreasing norepinephrine is a key therapeutic target to improve bone marrow function after severe injury.
Collapse
Affiliation(s)
- Ines G Alamo
- Department of Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL
| | - Kolenkode B Kannan
- Department of Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL
| | - Harry Ramos
- Department of Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL
| | - Tyler J Loftus
- Department of Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL
| | - Philip A Efron
- Department of Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL
| | - Alicia M Mohr
- Department of Surgery and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL.
| |
Collapse
|
22
|
Dekker ABE, Krijnen P, Schipper IB. Predictive value of cytokines for developing complications after polytrauma. World J Crit Care Med 2016; 5:187-200. [PMID: 27652210 PMCID: PMC4986547 DOI: 10.5492/wjccm.v5.i3.187] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/07/2016] [Accepted: 04/22/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate posttraumatic cytokine alterations and their value for predicting complications and mortality in polytraumatized patients.
METHODS: Studies on the use of specific cytokines to predict the development of complications and mortality were identified in MEDLINE, EMBASE, Web of Science and the Cochrane Library. Of included studies, relevant data were extracted and study quality was scored.
RESULTS: Forty-two studies published between 1988 and 2015 were identified, including 28 cohort studies and 14 “nested” case-control studies. Most studies investigated the cytokines interleukin (IL)-6, IL-8, IL-10 and tumor necrosis factor (TNF-α). IL-6 seems related to muliorgan dysfunction syndrome, multiorgan failure (MOF) and mortality; IL-8 appears altered in acute respiratory distress syndrome, MOF and mortality; IL-10 alterations seem to precede sepsis and MOF; and TNF-α seems related to MOF.
CONCLUSION: Cytokine secretion patterns appear to be different for patients developing complications when compared to patients with uneventful posttraumatic course. More research is needed to strengthen the evidence for clinical relevance of these cytokines.
Collapse
|
23
|
Kumar M, Bhoi S, Subramanian A, Kamal VK, Mohanty S, Rao DN, Galwankar S. Evaluation of circulating haematopoietic progenitor cells in patients with Trauma Haemorrhagic shock and its correlation with outcomes. Int J Crit Illn Inj Sci 2016; 6:56-60. [PMID: 27308251 PMCID: PMC4901827 DOI: 10.4103/2229-5151.183016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background: Haemorrhagic shock accounts up to 50% of early trauma deaths. Hematopoietic failure has been observed in experimental animals and human following shock and injury. One of the facets of bone marrow failure is multiple organ dysfunction syndrome and is commonly seen in patients recovering from severe trauma and hemorrhagic shock. Bone Marrow (BM) dysfunction is associated with mobilization of hematopoietic progenitor cells (HPCs) into peripheral blood. Present study explored the association of peripheral blood hematopoietic progenitor cells (HPCs) with mortality in trauma haemorrhagic shock patients (T/HS). Materials and Methods: Prospective cohort studies of patients presenting within 8 hrs of injury with T/HS to the Department of Emergency Medicine, Jai Prakash Narayan Apex Trauma Center, All India Institute of Medical Sciences were recruited. Peripheral blood samples were collected in each patient for measurement of peripheral blood HPCs. Peripheral blood progenitor cell (PBPC) quantification was performed by measuring HPCs counts using the haematology analyzer (Sysmex XE-2100). Clinical and laboratory data were prospectively collected after consent. Ethical approval was taken and data was analysed by Stata 11.2. Results: 39 patients with trauma hemorrhagic shock and 30 normal healthy controls were recruited. HPCs were significantly higher (P < 0.001) in the T/HS as compared to control. Among study group, 14 patients died within 24 h. at the hospital admission, and found HPCs concentrations were highly significant (<0.001) in non-survivors (n = 14) when compared with survivors (n = 25) among T/HS patients. Conclusions: Our studies suggest the peripheral blood HPCs may be early prognostic marker for mortality among patients who presented with trauma hemorrhagic shock on admission. But the exact molecular mechanism and signalling pathway involved in the change of the behaviour of bone marrow microenvironment is still unclear.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Emergency Medicine, Jai Prakash Narayan Apex Trauma Centre, New Delhi, India
| | - Sanjeev Bhoi
- Department of Emergency Medicine, Jai Prakash Narayan Apex Trauma Centre, New Delhi, India
| | - Arulselvi Subramanian
- Department of Lab Medicine, Jai Prakash Narayan Apex Trauma Centre, New Delhi, India
| | - Vineet Kumar Kamal
- Department of Bio Statistics, All India Institutes of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Department of Stem Cell Facility, All India Institutes of Medical Sciences, New Delhi, India
| | - D N Rao
- Department of Biochemistry, All India Institutes of Medical Sciences, New Delhi, India
| | - Sagar Galwankar
- Department of Emergency Medicine, University of Florida, Florida, USA
| |
Collapse
|
24
|
Mesenchymal Stem Cells after Polytrauma: Actor and Target. Stem Cells Int 2016; 2016:6289825. [PMID: 27340408 PMCID: PMC4909902 DOI: 10.1155/2016/6289825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are considered indispensable in regeneration processes after tissue trauma. MSCs are recruited to damaged areas via several chemoattractant pathways where they function as “actors” in the healing process by the secretion of manifold pro- and anti-inflammatory, antimicrobial, pro- and anticoagulatory, and trophic/angiogenic factors, but also by proliferation and differentiation into the required cells. On the other hand, MSCs represent “targets” during the pathophysiological conditions after severe trauma, when excessively generated inflammatory mediators, complement activation factors, and damage- and pathogen-associated molecular patterns challenge MSCs and alter their functionality. This in turn leads to complement opsonization, lysis, clearance by macrophages, and reduced migratory and regenerative abilities which culminate in impaired tissue repair. We summarize relevant cellular and signaling mechanisms and provide an up-to-date overview about promising future therapeutic MSC strategies in the context of severe tissue trauma.
Collapse
|
25
|
Impaired hematopoietic progenitor cells in trauma hemorrhagic shock. J Clin Orthop Trauma 2016; 7:282-285. [PMID: 27857504 PMCID: PMC5106469 DOI: 10.1016/j.jcot.2016.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/30/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
Hemorrhagic shock (HS) is the major cause of death during trauma. Mortality due to HS is about 50%. Dysfunction of hematopoietic progenitor cells (HPCs) has been observed during severe trauma and HS. HS induces the elevation of cytokines, granulocyte-colony stimulating factor (G-CSF), peripheral blood HPCs, and circulating catecholamines, and decreases the expression of erythropoietin receptor connected with suppression of HPCs. Impaired HPCs may lead to persistent anemia and risk of susceptibility to infection, sepsis, and MOF. There is a need to reactivate impaired HPCs during trauma hemorrhagic shock.
Collapse
|
26
|
Bible LE, Pasupuleti LV, Gore AV, Sifri ZC, Kannan KB, Mohr AM. Daily propranolol prevents prolonged mobilization of hematopoietic progenitor cells in a rat model of lung contusion, hemorrhagic shock, and chronic stress. Surgery 2015. [PMID: 26209570 DOI: 10.1016/j.surg.2015.06.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Propranolol has been shown previously to decrease the mobilization of hematopoietic progenitor cells (HPCs) after acute injury in rodent models; however, this acute injury model does not reflect the prolonged period of critical illness after severe trauma. Using our novel lung contusion/hemorrhagic shock/chronic restraint stress model, we hypothesize that daily administration of propranolol will decrease prolonged mobilization of HPCs without worsening lung healing. METHODS Male Sprague-Dawley rats underwent 6 days of restraint stress after undergoing lung contusion or lung contusion/hemorrhagic shock. Restraint stress consisted of a daily 2-hour period of restraint interrupted every 30 minutes by alarms and repositioning. Each day after the period of restraint stress, the rats received intraperitoneal propranolol (10 mg/kg). On day 7, peripheral blood was analyzed for granulocyte-colony stimulating factor (G-CSF) and stromal cell-derived factor 1 via enzyme-linked immunosorbent assay and for mobilization of HPCs using c-kit and CD71 flow cytometry. The lungs were examined histologically to grade injury. RESULTS Seven days after lung contusion and lung contusion/hemorrhagic shock, the addition of chronic restraint stress significantly increased the mobilization of HPC, which was associated with persistently increased levels of G-CSF and increased lung injury scores. The addition of propranolol to lung contusion/chronic restraint stress and lung contusion/hemorrhagic shock/chronic restraint stress models greatly decreased HPC mobilization and restored G-CSF levels to that of naïve animals without worsening lung injury scores. CONCLUSION The daily administration of propranolol after both lung contusion and lung contusion/hemorrhagic shock subjected to chronic restraint stress decreased the prolonged mobilization of HPC from the bone marrow and decreased plasma G-CSF levels. Despite the decrease in mobilization of HPC, lung healing did not worsen. Alleviating chronic stress with propranolol may be a future therapeutic target to improve healing after severe injury.
Collapse
Affiliation(s)
- Letitia E Bible
- Department of Surgery, Division of Trauma, Rutgers-New Jersey Medical School, Newark, NJ
| | - Latha V Pasupuleti
- Department of Surgery, Division of Trauma, Rutgers-New Jersey Medical School, Newark, NJ
| | - Amy V Gore
- Department of Surgery, Division of Trauma, Rutgers-New Jersey Medical School, Newark, NJ
| | - Ziad C Sifri
- Department of Surgery, Division of Trauma, Rutgers-New Jersey Medical School, Newark, NJ
| | - Kolenkode B Kannan
- Department of Surgery, Division of Acute Care Surgery, University of Florida, Gainesville, FL
| | - Alicia M Mohr
- Department of Surgery, Division of Acute Care Surgery, University of Florida, Gainesville, FL.
| |
Collapse
|
27
|
Gore AV, Bible LE, Livingston DH, Mohr AM, Sifri ZC. Mesenchymal stem cells reverse trauma and hemorrhagic shock-induced bone marrow dysfunction. J Surg Res 2015; 199:615-21. [PMID: 26193832 DOI: 10.1016/j.jss.2015.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/22/2015] [Accepted: 06/10/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Lung contusion (LC) followed by hemorrhagic shock (HS) causes persistent bone marrow (BM) dysfunction lasting up to 7 d after injury. Mesenchymal stem cells (MSCs) are multipotent cells that can hasten healing and exert protective immunomodulatory effects. We hypothesize that MSCs can attenuate BM dysfunction after combined LCHS. MATERIALS AND METHODS Male Sprague-Dawley rats (n = 5-6 per group) underwent LC plus 45 min of HS (mean arterial pressure of 30-35). Allogeneic MSCs (5 × 10(6) cells) were injected intravenously after resuscitation. At 7 d, BM was analyzed for cellularity and growth of hematopoietic progenitor cell (HPC) colonies (colony-forming unit-erythroid; burst-forming unit-erythroid; and colony-forming unit-granulocyte, erythrocyte, monocyte, megakaryocyte). Flow cytometry measured %HPCs in peripheral blood; plasma granulocyte colony-stimulating factor (G-CSF) levels were measured via enzyme-linked immunosorbent assay. Data were analyzed by one-way analysis of variance followed by the Tukey multiple comparison test. RESULTS As previously shown, at 7 d, LCHS resulted in 22%, 30%, and 24% decreases in colony-forming unit-granulocyte, erythrocyte, monocyte, megakaryocyte, burst-forming unit-erythroid, and colony-forming unit-erythroid colony growth, respectively, versus naive. Treatment with MSCs returned all BM parameters to naive levels. There was no difference in %HPCs in peripheral blood between groups; however, G-CSF remained increased up to 7 d after LCHS. MSCs returned G-CSF to naive levels. Plasma from animals receiving MSCs was not suppressive to the BM. CONCLUSIONS One week after injury, the persistent BM dysfunction observed in animals undergoing LCHS is reversed by treatment with MSCs with an associated return of plasma G-CSF levels to normal. Plasma from animals undergoing LCHS plus MSCs was not suppressive to BM cells in vitro. Treatment with MSCs after injury and shock reverses BM suppression and returns plasma G-CSF levels to normal.
Collapse
Affiliation(s)
- Amy V Gore
- Division of Trauma, Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Letitia E Bible
- Division of Trauma, Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - David H Livingston
- Division of Trauma, Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Alicia M Mohr
- Division of Trauma, Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Ziad C Sifri
- Division of Trauma, Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey.
| |
Collapse
|
28
|
Bible LE, Pasupuleti LV, Alzate WD, Gore AV, Song KJ, Sifri ZC, Livingston DH, Mohr AM. Early propranolol administration to severely injured patients can improve bone marrow dysfunction. J Trauma Acute Care Surg 2014; 77:54-60; discussion 59-60. [PMID: 24977755 DOI: 10.1097/ta.0000000000000264] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Bone marrow (BM) dysfunction is common in severely injured trauma patients, resulting from elevated catecholamines and plasma granulocyte colony-stimulating factor (G-CSF) as well as prolonged mobilization of hematopoietic progenitor cells (HPCs). We have previously shown that propranolol (β-blocker [BB]) reduces HPC mobilization in a rodent model of injury and hemorrhagic shock. We hypothesize that BB would prevent BM dysfunction in humans following severe injury. METHODS Forty-five severely injured trauma patients were studied in a prospective, randomized pilot trial. Twenty-five patients received BB, and 20 served as untreated controls. The dose of propranolol was adjusted to decrease the heart rate by 10% to 20% from baseline. Blood was analyzed for the presence of HPC (blast-forming unit erythroid cells [BFU-E] and colony-forming unit erythroid cells) and G-CSF. Demographic data, Injury Severity Score (ISS), hemoglobin, reticulocyte number, and outcome data were obtained. RESULTS The mean age of the study population was 33 years; 87% were male, with a mean ISS of 29. There is a significant increase in BFU-E in peripheral blood immediately following traumatic injury, and this mobilization persists for 30 days. The use of BB significantly decreases BFU-E and colony-forming unit erythroid cells at all time points. G-CSF is significantly elevated in both groups on admission; the use of BB decreases G-CSF levels by 51% as compared with 37% for controls. The average hemoglobin is nearly 1 g higher on the day of discharge with propranolol treatment (BB, 9.9 ± 0.4 g/dL vs. no BB, 9.1 ± 0.6 g/dL). CONCLUSION Following severe trauma, early treatment with propranolol following resuscitation is safe. The use of propranolol blunts early tachycardia, reduces HPC mobilization, and results in a faster return to baseline of the G-CSF peak seen after injury. There is also a trend toward faster recovery and resolution of anemia. Propranolol may be the first therapeutic agent to show improved BM function after severe injury. LEVEL OF EVIDENCE Therapeutic study, level III.
Collapse
Affiliation(s)
- Letitia E Bible
- From the Division of Trauma, Department of Surgery, Rutgers-New Jersey Medical School, Newark, New Jersey
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Do all β-blockers attenuate the excess hematopoietic progenitor cell mobilization from the bone marrow following trauma/hemorrhagic shock? J Trauma Acute Care Surg 2014; 76:970-5. [PMID: 24662859 DOI: 10.1097/ta.0000000000000181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Severe injury results in increased mobilization of hematopoietic progenitor cells (HPC) from the bone marrow (BM) to sites of injury, which may contribute to persistent BM dysfunction after trauma. Norepinephrine is a known inducer of HPC mobilization, and nonselective β-blockade with propranolol has been shown to decrease mobilization after trauma and hemorrhagic shock (HS). This study will determine the role of selective β-adrenergic receptor blockade in HPC mobilization in a combined model of lung contusion (LC) and HS. METHODS Male Sprague-Dawley rats were subjected to LC, followed by 45 minutes of HS. Animals were then randomized to receive atenolol (LCHS + β1B), butoxamine (LCHS + β2B), or SR59230A (LCHS + β3B) immediately after resuscitation and daily for 6 days. Control groups were composed of naive animals. BM cellularity, %HPCs in peripheral blood, and plasma granulocyte-colony stimulating factor levels were assessed at 3 hours and 7 days. Systemic plasma-mediated effects were evaluated in vitro by assessment of BM HPC growth. Injured lung tissue was graded histologically by a blinded reader. RESULTS The use of β2B or β3B following LCHS restored BM cellularity and significantly decreased HPC mobilization. In contrast, β1B had no effect on HPC mobilization. Only β3B significantly reduced plasma G-CSF levels. When evaluating the plasma systemic effects, both β2B and β3B significantly improved BM HPC growth as compared with LCHS alone. The use of β2 and β3 blockade did not affect lung injury scores. CONCLUSION Both β2 and β3 blockade can prevent excess HPC mobilization and BM dysfunction when given after trauma and HS, and the effects seem to be mediated systemically, without adverse effects on subsequent healing. Only treatment with β3 blockade reduced plasma G-CSF levels, suggesting different mechanisms for adrenergic-induced G-CSF release and mobilization of HPCs. This study adds to the evidence that therapeutic strategies that reduce the exaggerated sympathetic stimulation after severe injury are beneficial and reduce BM dysfunction.
Collapse
|
30
|
Gardner JC, Noel JG, Nikolaidis NM, Karns R, Aronow BJ, Ogle CK, McCormack FX. G-CSF drives a posttraumatic immune program that protects the host from infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:2405-17. [PMID: 24470495 DOI: 10.4049/jimmunol.1302752] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traumatic injury is generally considered to have a suppressive effect on the immune system, resulting in increased susceptibility to infection. Paradoxically, we found that thermal injury to the skin induced a robust time-dependent protection of mice from a lethal Klebsiella pneumoniae pulmonary challenge. The protective response was neutrophil dependent and temporally associated with a systemic increase in neutrophils resulting from a reprioritization of hematopoiesis toward myeloid lineages. A prominent and specific activation of STAT3 in the bone marrow preceded the myeloid shift in that compartment, in association with durable increases in STAT3 activating serum cytokines G-CSF and IL-6. Neutralization of the postburn increase in serum G-CSF largely blocked STAT3 activation in marrow cells, reversing the hematopoietic changes and systemic neutrophilia. Daily administration of rG-CSF was sufficient to recapitulate the changes induced by injury including hematopoietic reprioritization and protection from pulmonary challenge with K. pneumoniae. Analysis of posttraumatic gene expression patterns in humans reveals that they are also consistent with a role for G-CSF as a switch that activates innate immune responses and suppresses adaptive immune responses. Our findings suggest that the G-CSF STAT3 axis constitutes a key protective mechanism induced by injury to reduce the risk for posttraumatic infection.
Collapse
Affiliation(s)
- Jason C Gardner
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | | | | | | | | | | | | |
Collapse
|