1
|
Silva AF, Sousa-Nunes F, Faria-Costa G, Rodrigues I, Guimarães JT, Leite-Moreira A, Henriques-Coelho T, Negrão R, Moreira-Gonçalves D. Effects of chronic moderate alcohol consumption on right ventricle and pulmonary remodelling. Exp Physiol 2021; 106:1359-1372. [PMID: 33605491 DOI: 10.1113/ep088788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/12/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does the consumption of a moderate amount of alcohol differentially impact the heart ventricles and pulmonary vasculature. What is the main finding and its importance? Moderate alcohol consumption for a short period of time impaired pulmonary vascular cellular renewal through an apoptosis resistance pattern that ultimately affected the right ventricular function and structure. These findings support the need for a deeper understanding of effects of moderate alcohol consumption on the overall cardiovascular and pulmonary systems. ABSTRACT Over the past decades, observational studies have supported an association between moderate alcohol consumption and a lower risk of cardiovascular disease and mortality. However, recent and more robust meta-analyses have raised concerns around the robustness of the evidence for the cardioprotective effects of alcohol. Also, studies of the functional, structural and molecular changes promoted by alcohol have focused primarily on the left ventricle, ignoring the fact that the right ventricle could adapt differently. The aim of this study was to evaluate the bi-ventricular impact of daily moderate alcohol intake, during a 4-week period, in a rodent model. Male Wistar rats were allowed to drink water (Control) or a 5.2% ethanol mixture (ETOH) for 4 weeks. At the end of the protocol bi-ventricular haemodynamic recordings were performed and samples collected for further histological and molecular analysis. ETOH ingestion did not impact cardiac function. However, it caused right ventricle hypertrophy, paralleled by an activation of molecular pathways responsible for cell growth (ERK1/2, AKT), proteolysis (MURF-1) and oxidative stress (NOX4, SOD2). Furthermore, ETOH animals also presented remodelling of the pulmonary vasculature with an increase in pulmonary arteries' medial thickness, which was characterized by increased expression of apoptosis-related proteins expression (BCL-XL, BAX and caspases). Moderate alcohol consumption for a short period of time impaired the lungs and the right ventricle early, before any change could be detected on the left ventricle. Right ventricular changes might be secondary to alcohol-induced pulmonary vasculature remodelling.
Collapse
Affiliation(s)
- Ana Filipa Silva
- Unidade de Investigação Cardiovascular, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Fábio Sousa-Nunes
- Unidade de Investigação Cardiovascular, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Gabriel Faria-Costa
- Unidade de Investigação Cardiovascular, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Ilda Rodrigues
- Departamento de Biomedicina - Unidade de Bioquímica, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - João Tiago Guimarães
- Departamento de Biomedicina - Unidade de Bioquímica, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.,Departamento de Patologia Clínica, Centro Hospitalar Universitário São João, Al. Professor Hernâni Monteiro, Porto, Portugal.,Instituto de Saúde Pública da Universidade do Porto, Campo dos Mártires da Pátria, Porto, Portugal
| | - Adelino Leite-Moreira
- Unidade de Investigação Cardiovascular, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Tiago Henriques-Coelho
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Rita Negrão
- Departamento de Biomedicina - Unidade de Bioquímica, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.,I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Al. Professor Hernâni Monteiro, Porto, Portugal.,Centro de Atividade Física, Saúde e Lazer, Faculdade de Desporto da Universidade do Porto, R. Plácido Costa 91, Porto, Portugal
| |
Collapse
|
2
|
Contribution of Red Wine Consumption to Human Health Protection. Molecules 2018; 23:molecules23071684. [PMID: 29997312 PMCID: PMC6099584 DOI: 10.3390/molecules23071684] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023] Open
Abstract
Wine consumption has been popular worldwide for many centuries. Based on in vitro and in vivo studies, a certain amount of everyday wine consumption may prevent various chronic diseases. This is due, in part, to the presence and amount of important antioxidants in red wine, and, therefore, research has focused on them. Wine polyphenols, especially resveratrol, anthocyanins, and catechins, are the most effective wine antioxidants. Resveratrol is active in the prevention of cardiovascular diseases by neutralizing free oxygen radicals and reactive nitrogenous radicals; it penetrates the blood-brain barrier and, thus, protects the brain and nerve cells. It also reduces platelet aggregation and so counteracts the formation of blood clots or thrombi. The main aim of this review is to summarize the current findings about the positive influence of wine consumption on human organ function, chronic diseases, and the reduction of damage to the cardiovascular system.
Collapse
|
5
|
Steiner JL, Lang CH. Alcoholic Cardiomyopathy: Disrupted Protein Balance and Impaired Cardiomyocyte Contractility. Alcohol Clin Exp Res 2017; 41:1392-1401. [PMID: 28425109 DOI: 10.1111/acer.13405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/12/2017] [Indexed: 12/29/2022]
Abstract
Alcoholic cardiomyopathy (ACM) can develop after consumption of relatively large amounts of alcohol over time or from acute binge drinking. Of the many factors implicated in the etiology of ACM, chronic perturbation in protein balance has been strongly implicated. This review focused on recent contributions (since 2010) in the area of protein metabolism and cardiac function related to ACM. Data reviewed include that from in vitro and preclinical in vivo animal studies where alcohol or an oxidative metabolite was studied and outcome measures in either cardiomyocytes or whole heart pertaining to protein synthesis or degradation were reported. Additionally, studies on the contractile properties of cardiomyocytes were also included to link signal transduction with function. Methodological differences including the potential impact of sex, dosing, and duration/timing of alcohol administration are addressed. Acute and chronic alcohol consumption decreases cardiac protein synthesis and/or activation of proteins within the regulatory mammalian/mechanistic target of rapamycin complex pathway. Albeit limited, evidence suggests that myocardial protein degradation via the ubiquitin pathway is not altered, while autophagy may be enhanced in ACM. Alcohol impairs ex vivo cardiomyocyte contractility in relation to its metabolism and expression of proteins within the growth factor pathway. Dysregulation of protein metabolism, including the rate of protein synthesis and autophagy, may contribute to contractile deficits and is a hallmark feature of ACM meriting additional sex-inclusive, methodologically consistent studies.
Collapse
Affiliation(s)
- Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
6
|
Alcoholic Beverage Consumption and Chronic Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060522. [PMID: 27231920 PMCID: PMC4923979 DOI: 10.3390/ijerph13060522] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Abstract
Epidemiological and experimental studies have consistently linked alcoholic beverage consumption with the development of several chronic disorders, such as cancer, cardiovascular diseases, diabetes mellitus and obesity. The impact of drinking is usually dose-dependent, and light to moderate drinking tends to lower risks of certain diseases, while heavy drinking tends to increase the risks. Besides, other factors such as drinking frequency, genetic susceptibility, smoking, diet, and hormone status can modify the association. The amount of ethanol in alcoholic beverages is the determining factor in most cases, and beverage types could also make an influence. This review summarizes recent studies on alcoholic beverage consumption and several chronic diseases, trying to assess the effects of different drinking patterns, beverage types, interaction with other risk factors, and provide mechanistic explanations.
Collapse
|
7
|
Impact of Modifiable Risk Factors on B-type Natriuretic Peptide and Cardiac Troponin T Concentrations. Am J Cardiol 2016; 117:376-81. [PMID: 26739393 DOI: 10.1016/j.amjcard.2015.10.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 01/25/2023]
Abstract
Alcohol use, physical activity, diet, and cigarette smoking are modifiable cardiovascular risk factors that have a substantial impact on the risk of myocardial infarction, stroke, and cardiovascular death. We hypothesized that these behaviors may alter concentrations of cardiac troponin, a marker of myocyte injury, and B-type natriuretic peptide, a marker of myocyte stress. Both markers have shown strong association with adverse cardiovascular outcomes. In 519 women with no evidence of cardiovascular disease, we measured circulating concentrations of cardiac troponin T, using a high-sensitivity assay (hsTnT), and the N-terminal fragment of B-type natriuretic peptide (NT-proBNP). We used logistic regression to determine if these behaviors were associated with hsTnT ≥ 3 ng/l or with NT-proBNP in the highest quartile (≥ 127.3 ng/l). The median (Q1 to Q3) NT-proBNP of the cohort was 68.8 ng/l (40.3 to 127.3 ng/l), and 30.8% (160 of 519) of the cohort had circulating hsTnT ≥ 3 ng/l. In adjusted models, women who drank 1 to 6 drinks/week had lower odds of having a hsTnT ≥ 3 ng/l (odds ratio 0.58, 95% confidence interval 0.34 to 0.96) and lower odds of having an elevated NT-proBNP (odds ratio 0.55, 95% confidence interval 0.32 to 0.96). We were subsequently able to validate the results for B-type natriuretic peptide in a large independent cohort. In conclusion, our results suggest that regular alcohol consumption is associated with lower concentrations of hsTnT and NT-proBNP, 2 cardiovascular biomarkers associated with cardiovascular risk, and raise the hypothesis that the beneficial effects of alcohol consumption may be mediated by direct effects on the myocardium.
Collapse
|
8
|
Steiner JL, Crowell KT, Lang CH. Impact of Alcohol on Glycemic Control and Insulin Action. Biomolecules 2015; 5:2223-46. [PMID: 26426068 PMCID: PMC4693236 DOI: 10.3390/biom5042223] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/24/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023] Open
Abstract
Alcohol has profound effects on tissue and whole-body fuel metabolism which contribute to the increased morbidity and mortality in individuals with alcohol use disorder. This review focuses on the glucose metabolic effects of alcohol, primarily in the muscle, liver and adipose tissue, under basal postabsorptive conditions and in response to insulin stimulation. While there is a relatively extensive literature in this area, results are often discordant and extrapolating between models and tissues is fraught with uncertainty. Comparisons between data generated in experimental cell and animals systems will be contrasted with that obtained from human subjects as often times results differ. Further, the nutritional status is also an important component of the sometimes divergent findings pertaining to the effects of alcohol on the regulation of insulin and glucose metabolism. This work is relevant as the contribution of alcohol intake to the development or exacerbation of type 2 diabetes remains ill-defined and a multi-systems approach is likely needed as both alcohol and diabetes affect multiple targets within the body.
Collapse
Affiliation(s)
- Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Kristen T Crowell
- Department of Surgery, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
- Department of Surgery, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
9
|
Alcohol and the Heart: A Proteomics Analysis of Pericardium and Myocardium in a Swine Model of Myocardial Ischemia. Ann Thorac Surg 2015; 100:1627-35; discussion 1635. [PMID: 26242211 DOI: 10.1016/j.athoracsur.2015.05.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies have demonstrated that moderate alcohol consumption is cardioprotective and reduces postoperative pericardial adhesions; however, the mechanism is not fully understood. Using proteomic analysis, we sought to objectively investigate the effects of daily moderate alcohol consumption in the pericardium and myocardium in a swine model of chronic myocardial ischemia. METHODS Fourteen swine underwent placement of an ameroid constrictor to induce chronic myocardial ischemia. Animals were supplemented with 90 mL of ethanol daily (ETOH) or 80 g of sucrose of equal caloric value (SUC). After 7 weeks, the ischemic myocardium and pericardium were harvested for proteomics analysis. RESULTS Pericardial proteomics analysis yielded 397 proteins, of which 23 were unique to SUC and 52 were unique to ETOH. Of the 322 common proteins, 71 were statistically significant and 23 were characterized (p < 0.05). Alcohol supplementation increased structural proteins, and decreased immune protease inhibitors and coagulation proteins in the pericardium (p < 0.01). Myocardial proteomics analysis yielded 576 proteins, of which 32 were unique to SUC and 21 were unique to ETOH. Of the 523 common proteins, 85 were significant, and 32 were characterized (p < 0.05). Alcohol supplementation decreased cardiac remodeling proteins, cell death proteins and motor proteins, and increased metabolic proteins (p < 0.05). CONCLUSIONS The results suggest that daily moderate alcohol consumption affects numerous pathways that contribute to cardioprotection, including cardiac remodeling, metabolism, and cell death. Our findings reveal the biosignature of myocardial and pericardial protein expression in the setting of chronic myocardial ischemia and daily moderate alcohol consumption.
Collapse
|