1
|
Al Amaz S, Mishra B. Embryonic thermal manipulation: a potential strategy to mitigate heat stress in broiler chickens for sustainable poultry production. J Anim Sci Biotechnol 2024; 15:75. [PMID: 38831417 PMCID: PMC11149204 DOI: 10.1186/s40104-024-01028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Abstract
Due to high environmental temperatures and climate change, heat stress is a severe concern for poultry health and production, increasing the propensity for food insecurity. With climate change causing higher temperatures and erratic weather patterns in recent years, poultry are increasingly vulnerable to this environmental stressor. To mitigate heat stress, nutritional, genetic, and managerial strategies have been implemented with some success. However, these strategies did not adequately and sustainably reduce the heat stress. Therefore, it is crucial to take proactive measures to mitigate the effects of heat stress on poultry, ensuring optimal production and promoting poultry well-being. Embryonic thermal manipulation (TM) involves manipulating the embryonic environment's temperature to enhance broilers' thermotolerance and growth performance. One of the most significant benefits of this approach is its cost-effectiveness and saving time associated with traditional management practices. Given its numerous advantages, embryonic TM is a promising strategy for enhancing broiler production and profitability in the poultry industry. TM increases the standard incubation temperature in the mid or late embryonic stage to induce epigenetic thermal adaption and embryonic metabolism. Therefore, this review aims to summarize the available literature and scientific evidence of the beneficial effect of pre-hatch thermal manipulation on broiler health and performance.
Collapse
Affiliation(s)
- Sadid Al Amaz
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA.
| |
Collapse
|
2
|
Karakelle H, Özçalişan G, Şahin F, Narinç D. The effects of exposure to cold during incubation on developmental stability, fear, growth, and carcass traits in Japanese quails. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023:10.1007/s00484-023-02497-1. [PMID: 37225917 DOI: 10.1007/s00484-023-02497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/13/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
The aim of this study was to determine the effects of 6 h/day cold (35.0 °C) acclimatization between the 9th and 15th days of incubation of Japanese quail embryos on hatchability, livability, chick quality, developmental stability, fear response, live weight, and slaughter-carcass characteristics. Two homologous incubators and a total of 500 hatching eggs were used in the study. Randomly selected half of the eggs were exposed to cold according to the eggshell temperature. The cold acclimation of Japanese quail embryos had no adverse effects on all mentioned traits, except for chick quality. Chicks in the control group had higher Tona scores (99.46) than those exposed to cold (99.00) (P < 0.05). In addition, there were differences among the treatment groups in terms of the parameters of mature weight (β0), instantaneous growth rate (β2), and inflection point coordinates of the Gompertz growth model (P < 0.05 for all). It was found that exposing embryos to cold during the incubation changed the shape of the growth curve. As the development of embryos exposed to cold slows down, a compensatory growth occurs in the early posthatch period. Thus, the growth rate increased in the period before the inflection point of the growth curve.
Collapse
Affiliation(s)
- Hasan Karakelle
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Gülşah Özçalişan
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Fatih Şahin
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Doğan Narinç
- Department of Animal Science, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey.
| |
Collapse
|
3
|
Madkour M, Salman FM, El-Wardany I, Abdel-Fattah SA, Alagawany M, Hashem NM, Abdelnour SA, El-Kholy MS, Dhama K. Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation. J Therm Biol 2022; 103:103169. [PMID: 35027188 DOI: 10.1016/j.jtherbio.2021.103169] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
The poultry industry faces several obstacles and challenges, including the changes in global temperature, increase in the per capita demand for meat and eggs, and the emergence and spread of various diseases. Among these, environmental challenges are one of the most severe hurdles impacting the growth and productivity of poultry. In particular, the increasing frequency and severity of heat waves over the past few years represent a major challenge, and this is expected to worsen in the coming decades. Chickens are highly susceptible to high ambient temperatures (thermal stress), which negatively affect their growth and productivity, leading to enormous economic losses. In the light of global warming, these losses are expected to increase in the near future. Specifically, the worsening of climate change and the rise in global temperatures have augmented the adverse effects of heat on poultry production worldwide. At present, the world population is approximately 7.9 billion, and it has been predicted to reach 9.3 billion by 2050 and approximately 11 billion by 2100, implying a great demand for protein supply; therefore, strategies to mitigate future poultry challenges must be urgently devised. To date, several mitigation measures have been adopted to minimize the negative effects of heat stress in poultry. Of these, thermal acclimation at the postnatal stage or throughout the embryonic stages has been explored as a promising approach; however, for large-scale application, this approach warrants further investigation to determine the suitable temperature and poultry age. Moreover, molecular mechanisms governing thermal conditioning are poorly understood. To this end, we sought to expand our knowledge of thermal conditioning in poultry, which may serve as a valuable reference to improve the thermotolerance of chickens via nutritional management and vitagene regulation. Vitagenes regulate the responses of poultry to diverse stresses. In recent years, nutritionists have paid close attention to bioactive compounds such as resveratrol, curcumin, and quercetin administered alone or in combination. These compounds activate vitagenes and other regulators of the antioxidant defense system, such as nuclear factor-erythroid 2-related factor 2. Overall, thermal conditioning may be an effective strategy to mitigate the negative effects of heat stress. In this context, the present review synthesizes information on the adverse impacts of thermal stress, elucidating the molecular mechanisms underlying thermal conditioning and its effects on the acquisition of tolerance to acute heat stress in later life. Finally, the role of some polyphenolic compounds, such as resveratrol, curcumin, and quercetin, in attenuating heat stress through the activation of the antioxidant defense system in poultry are discussed.
Collapse
Affiliation(s)
- Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, 12622, Giza, Egypt.
| | - Fatma M Salman
- Animal Production Department, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Ibrahim El-Wardany
- Poultry Production Department, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, 11241, Cairo, Egypt
| | - Sayed A Abdel-Fattah
- Poultry Production Department, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, 11241, Cairo, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed S El-Kholy
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| |
Collapse
|