1
|
Prathi NB, Durga Rani CV, Prakasam V, Mohan YC, Mahendranath G, Sri Vidya GK, Neeraja CN, Sundaram RM, Mangrauthia SK. Oschib1 gene encoding a GH18 chitinase confers resistance against sheath blight disease of rice caused by Rhizoctonia solani AG1-IA. PLANT MOLECULAR BIOLOGY 2024; 114:41. [PMID: 38625509 DOI: 10.1007/s11103-024-01442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
Sheath blight disease of rice caused by Rhizoctonia solani AG1-IA, is a major fungal disease responsible for huge loss to grain yield and quality. The major limitation of achieving persistent and reliable resistance against R. solani is the governance of disease resistance trait by many genes. Therefore, functional characterization of new genes involved in sheath blight resistance is necessary to understand the mechanism of resistance as well as evolving effective strategies to manage the disease through host-plant resistance. In this study, we performed RNA sequencing of six diverse rice genotypes (TN1, BPT5204, Vandana, N22, Tetep, and Pankaj) from sheath and leaf tissue of control and fungal infected samples. The approach for identification of candidate resistant genes led to identification of 352 differentially expressed genes commonly present in all the six genotypes. 23 genes were analyzed for RT-qPCR expression which helped identification of Oschib1 showing differences in expression level in a time-course manner between susceptible and resistant genotypes. The Oschib1 encoding classIII chitinase was cloned from resistant variety Tetep and over-expressed in susceptible variety Taipei 309. The over-expression lines showed resistance against R. solani, as analyzed by detached leaf and whole plant assays. Interestingly, the resistance response was correlated with the level of transgene expression suggesting that the enzyme functions in a dose dependent manner. We report here the classIIIb chitinase from chromosome10 of rice showing anti-R. solani activity to combat the dreaded sheath blight disease.
Collapse
Affiliation(s)
- Naresh Babu Prathi
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Chagamreddy Venkata Durga Rani
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad, 500030, India.
| | - Vellaisamy Prakasam
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | | | - Gandikota Mahendranath
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | - G K Sri Vidya
- Department of Molecular Biology and Biotechnology, SV Agriculture College, Tirupati, 517502, India
| | - C N Neeraja
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Raman Meenakshi Sundaram
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Satendra K Mangrauthia
- ICAR-Indian Council of Agricultural Research (ICAR)- Indian Institute of Rice Research, Hyderabad, 500030, India.
| |
Collapse
|
2
|
Dunuweera AN, Dunuweera SP, Ranganathan K. A Comprehensive Exploration of Bioluminescence Systems, Mechanisms, and Advanced Assays for Versatile Applications. Biochem Res Int 2024; 2024:8273237. [PMID: 38347947 PMCID: PMC10861286 DOI: 10.1155/2024/8273237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Bioluminescence has been a fascinating natural phenomenon of light emission from living creatures. It happens when the enzyme luciferase facilitates the oxidation of luciferin, resulting in the creation of an excited-state species that emits light. Although there are many bioluminescent systems, few have been identified. D-luciferin-dependent systems, coelenterazine-dependent systems, Cypridina luciferin-based systems, tetrapyrrole-based luciferins, bacterial bioluminescent systems, and fungal bioluminescent systems are natural bioluminescent systems. Since different bioluminescence systems, such as various combinations of luciferin-luciferase pair reactions, have different light emission wavelengths, they benefit industrial applications such as drug discovery, protein-protein interactions, in vivo imaging in small animals, and controlling neurons. Due to the expression of luciferase and easy permeation of luciferin into most cells and tissues, bioluminescence assays are applied nowadays with modern technologies in most cell and tissue types. It is a versatile technique in a variety of biomedical research. Furthermore, there are some investigated blue-sky research projects, such as bioluminescent plants and lamps. This review article is mainly based on the theory of diverse bioluminescence systems and their past, present, and future applications.
Collapse
Affiliation(s)
| | | | - K. Ranganathan
- Department of Botany, University of Jaffna, Jaffna 40000, Sri Lanka
| |
Collapse
|
3
|
Sun AZ, Chen JH, Jin XQ, Li H, Guo FQ. Supplementing the Nuclear-Encoded PSII Subunit D1 Induces Dramatic Metabolic Reprogramming in Flag Leaves during Grain Filling in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3009. [PMID: 37631220 PMCID: PMC10458752 DOI: 10.3390/plants12163009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Our previous study has demonstrated that the nuclear-origin supplementation of the PSII core subunit D1 protein stimulates growth and increases grain yields in transgenic rice plants by enhancing photosynthetic efficiency. In this study, the underlying mechanisms have been explored regarding how the enhanced photosynthetic capacity affects metabolic activities in the transgenic plants of rice harboring the integrated transgene RbcSPTP-OspsbA cDNA, cloned from rice, under control of the AtHsfA2 promoter and N-terminal fused with the plastid-transit peptide sequence (PTP) cloned from the AtRbcS. Here, a comparative metabolomic analysis was performed using LC-MS in flag leaves of the transgenic rice plants during the grain-filling stage. Critically, the dramatic reduction in the quantities of nucleotides and certain free amino acids was detected, suggesting that the increased photosynthetic assimilation and grain yield in the transgenic plants correlates with the reduced contents of free nucleotides and the amino acids such as glutamine and glutamic acid, which are cellular nitrogen sources. These results suggest that enhanced photosynthesis needs consuming more free nucleotides and nitrogen sources to support the increase in biomass and yields, as exhibited in transgenic rice plants. Unexpectedly, dramatic changes were measured in the contents of flavonoids in the flag leaves, suggesting that a tight and coordinated relationship exists between increasing photosynthetic assimilation and flavonoid biosynthesis. Consistent with the enhanced photosynthetic efficiency, the substantial increase was measured in the content of starch, which is the primary product of the Calvin-Benson cycle, in the transgenic rice plants under field growth conditions.
Collapse
Affiliation(s)
- Ai-Zhen Sun
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
| | - Juan-Hua Chen
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
| | - Xue-Qi Jin
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Li
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
| |
Collapse
|
4
|
Zhong Z, Wu Y, Zhang P, Hu G, Fu D, Yu G, Tong H. Transcriptomic Analysis Reveals Panicle Heterosis in an Elite Hybrid Rice ZZY10 and Its Parental Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:1309. [PMID: 36987003 PMCID: PMC10059593 DOI: 10.3390/plants12061309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Heterosis is the phenomenon in which some hybrid traits are superior to those of their parents. Most studies have analyzed the heterosis of agronomic traits of crops; however, heterosis of the panicles can improve yield and is important for crop breeding. Therefore, a systematic study of panicle heterosis is needed, especially during the reproductive stage. RNA sequencing (RNA Seq) and transcriptome analysis are suitable for further study of heterosis. Using the Illumina Nova Seq platform, the transcriptome of ZhongZheYou 10 (ZZY10), an elite rice hybrid, the maintainer line ZhongZhe B (ZZB), and the restorer line Z7-10 were analyzed at the heading date in Hangzhou, 2022. 581 million high-quality short reads were obtained by sequencing and were aligned against the Nipponbare reference genome. A total of 9000 differential expression genes were found between the hybrids and their parents (DGHP). Of the DGHP, 60.71% were up-regulated and 39.29% were down-regulated in the hybrid. Comparative transcriptome analysis revealed that 5235 and 3765 DGHP were between ZZY10 and ZhongZhe B and between ZZY10 and Z7-10, respectively. This result is consistent with the transcriptome profile of ZZY10 and was similar to Z7-10. The expression patterns of DGHP mainly exhibited over-dominance, under-dominance, and additivity. Among the DGHP-involved GO terms, pathways such as photosynthesis, DNA integration, cell wall modification, thylakoid, and photosystem were significant. 21 DGHP, which were involved in photosynthesis, and 17 random DGHP were selected for qRT-PCR validation. The up-regulated PsbQ and down-regulated subunits of PSI and PSII and photosynthetic electron transport in the photosynthesis pathway were observed in our study. Extensive transcriptome data were obtained by RNA-Seq, providing a comprehensive overview of panicle transcriptomes at the heading stage in a heterotic hybrid.
Collapse
Affiliation(s)
- Zhengzheng Zhong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yawen Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Peng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Guocheng Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Dong Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Guoping Yu
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Hanhua Tong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| |
Collapse
|
5
|
Dubey PK, Chaurasia R, Pandey KK, Bundela AK, Singh A, Singh GS, Mall RK, Abhilash PC. Double transplantation as a climate resilient and sustainable resource management strategy for rice production in eastern Uttar Pradesh, north India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117082. [PMID: 36577302 DOI: 10.1016/j.jenvman.2022.117082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
-Enhancing the productivity of rainfed crops, especially rice, while coping with climate adversities and saving critical natural resources is essential for ensuring the food and nutrition security of a growing population. With this context, the present study was undertaken to validate promising farm innovation and adaptation practices used by small-medium landholding farmers for rice cultivation in eastern Uttar Pradesh (UP), north India, as well as to examine the sustainability of innovative practices for large-scale adoption. For this, a 3-year study comprising extensive field surveys and experiments was undertaken to compare single transplantation (ST) and double transplantation (DT) in rice along with organic addition (farm-yard manure, FYM) on crop growth, yield, climate resilience, soil quality, and overall sustainability i.e., social (women involvements and labour productivity), environmental (water productivity and nutrient use efficiency), and economic (benefit:cost ratio) dimensions of sustainability. Field experiments were conducted in triplicate using two local rice varieties (MotiNP-360 and Sampurna Kaveri) in two agroclimatic zones, namely the middle Gangetic plains and the Vindhyan zone, in the Mirzapur district of eastern Uttar Pradesh. The DT practices of rice with and without farm yard manure (FYM) (replacing at a dose of 25% NPK) were evaluated over conventional methods of rice cultivation (i.e., ST, as control) and analysis was done periodically. The DT practice improved growth (p < 0.05), percent fertile tiller and grain (p < 0.05), and rice yield (15-20% higher than ST), while also improving soil quality, yield indices, water and labour productivity, and the benefit-cost ratio. The DT practice also resulted in early maturity (10-15 days earlier than ST), created more labour days for women, decreased lodging and pest/disease incidence, as well as a subsequent reduction in the use of synthetic chemical pesticides and associated environmental costs. Importantly, the residual effects of FYM application significantly improved (p < 0.05) the grain yield in subsequent years of cropping. Optimizing DT cultivation practices, preferably with FYM input for various agro-climatic regions, is essential for large-scale sustainable rice production under changing climatic conditions.
Collapse
Affiliation(s)
- Pradeep Kumar Dubey
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Rajan Chaurasia
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Krishna Kumar Pandey
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India; DST-Mahamana Centre of Excellence in Climate Change Research (DST-MCECCR), Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Amit Kumar Bundela
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Ajeet Singh
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gopal Shankar Singh
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India; DST-Mahamana Centre of Excellence in Climate Change Research (DST-MCECCR), Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Rajesh Kumar Mall
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India; DST-Mahamana Centre of Excellence in Climate Change Research (DST-MCECCR), Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Purushothaman Chirakkuzhyil Abhilash
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India; DST-Mahamana Centre of Excellence in Climate Change Research (DST-MCECCR), Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
6
|
Kumar N, Chhokar RS, Meena RP, Kharub AS, Gill SC, Tripathi SC, Gupta OP, Mangrauthia SK, Sundaram RM, Sawant CP, Gupta A, Naorem A, Kumar M, Singh GP. Challenges and opportunities in productivity and sustainability of rice cultivation system: a critical review in Indian perspective. CEREAL RESEARCH COMMUNICATIONS 2021; 50:573-601. [PMID: 34642509 PMCID: PMC8498983 DOI: 10.1007/s42976-021-00214-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/22/2021] [Indexed: 06/12/2023]
Abstract
Abstract Rice-wheat cropping system, intensively followed in Indo-Gangetic plains (IGP), played a prominent role in fulfilling the food grains demand of the increasing population of South Asia. In northern Indian plains, some practices such as intensive rice cultivation with traditional method for long-term have been associated with severe deterioration of natural resources, declining factor productivity, multiple nutrients deficiencies, depleting groundwater, labour scarcity and higher cost of cultivation, putting the agricultural sustainability in question. Varietal development, soil and water management, and adoption of resource conservation technologies in rice cultivation are the key interventions areas to address these challenges. The cultivation of lesser water requiring crops, replacing rice in light-textured soil and rainfed condition, should be encouraged through policy interventions. Direct seeding of short duration, high-yielding and stress tolerant rice varieties with water conservation technologies can be a successful approach to improve the input use efficiency in rice cultivation under medium-heavy-textured soils. Moreover, integrated approach of suitable cultivars for conservation agriculture, mechanized transplanting on zero-tilled/unpuddled field and need-based application of water, fertilizer and chemicals might be a successful approach for sustainable rice production system in the current scenario. In this review study, various challenges in productivity and sustainability of rice cultivation system and possible alternatives and solutions to overcome such challenges are discussed in details. Graphic abstract
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - R. S. Chhokar
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - R. P. Meena
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - A. S. Kharub
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - S. C. Gill
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - S. C. Tripathi
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - O. P. Gupta
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - S. K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - R. M. Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - C. P. Sawant
- ICAR- Central Institute of Agricultural Engineering, Bhopal, Madhya Pradesh 462038 India
| | - Ajita Gupta
- ICAR- Central Institute of Agricultural Engineering, Bhopal, Madhya Pradesh 462038 India
| | - Anandkumar Naorem
- ICAR- Central Arid Zone Research Institute, Regional Research Station-Kukma, Bhuj, Gujarat 370105 India
| | - Manoj Kumar
-
Indian Institute of Soil and Water Conservation, Regional Centre, Chandigarh, 160019 India
| | - G. P. Singh
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| |
Collapse
|