1
|
Giugliano R, Della Sala G, Buonocore C, Zannella C, Tedesco P, Palma Esposito F, Ragozzino C, Chianese A, Morone MV, Mazzella V, Núñez-Pons L, Folliero V, Franci G, De Filippis A, Galdiero M, de Pascale D. New Imidazolium Alkaloids with Broad Spectrum of Action from the Marine Bacterium Shewanella aquimarina. Pharmaceutics 2023; 15:2139. [PMID: 37631353 PMCID: PMC10458398 DOI: 10.3390/pharmaceutics15082139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The continuous outbreak of drug-resistant bacterial and viral infections imposes the need to search for new drug candidates. Natural products from marine bacteria still inspire the design of pharmaceuticals. Indeed, marine bacteria have unique metabolic flexibility to inhabit each ecological niche, thus expanding their biosynthetic ability to assemble unprecedented molecules. The One-Strain-Many-Compounds approach and tandem mass spectrometry allowed the discovery of a Shewanella aquimarina strain as a source of novel imidazolium alkaloids via molecular networking. The alkaloid mixture was shown to exert bioactivities such as: (a) antibacterial activity against antibiotic-resistant Staphylococcus aureus clinical isolates at 100 µg/mL, (b) synergistic effects with tigecycline and linezolid, (c) restoration of MRSA sensitivity to fosfomycin, and (d) interference with the biofilm formation of S. aureus 6538 and MRSA. Moreover, the mixture showed antiviral activity against viruses with and without envelopes. Indeed, it inhibited the entry of coronavirus HcoV-229E and herpes simplex viruses into human cells and inactivated poliovirus PV-1 in post-infection assay at 200 µg/mL. Finally, at the same concentration, the fraction showed anthelminthic activity against Caenorhabditis elegans, causing 99% mortality after 48 h. The broad-spectrum activities of these compounds are partially due to their biosurfactant behavior and make them promising candidates for breaking down drug-resistant infectious diseases.
Collapse
Affiliation(s)
- Rosa Giugliano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Gerardo Della Sala
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Costanza Ragozzino
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Valerio Mazzella
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Ischia, 80077 Naples, Italy;
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy;
| | - Laura Núñez-Pons
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy;
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (G.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (G.F.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| |
Collapse
|
2
|
Calle B, Bineva-Todd G, Marchesi A, Flynn H, Ghirardello M, Tastan OY, Roustan C, Choi J, Galan MC, Schumann B, Malaker SA. Benefits of Chemical Sugar Modifications Introduced by Click Chemistry for Glycoproteomic Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2366-2375. [PMID: 33871988 PMCID: PMC7611619 DOI: 10.1021/jasms.1c00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Mucin-type O-glycosylation is among the most complex post-translational modifications. Despite mediating many physiological processes, O-glycosylation remains understudied compared to other modifications, simply because the right analytical tools are lacking. In particular, analysis of intact O-glycopeptides by mass spectrometry is challenging for several reasons; O-glycosylation lacks a consensus motif, glycopeptides have low charge density which impairs ETD fragmentation, and the glycan structures modifying the peptides are unpredictable. Recently, we introduced chemically modified monosaccharide analogues that allowed selective tracking and characterization of mucin-type O-glycans after bioorthogonal derivatization with biotin-based enrichment handles. In doing so, we realized that the chemical modifications used in these studies have additional benefits that allow for improved analysis by tandem mass spectrometry. In this work, we built on this discovery by generating a series of new GalNAc analogue glycopeptides. We characterized the mass spectrometric signatures of these modified glycopeptides and their signature residues left by bioorthogonal reporter reagents. Our data indicate that chemical methods for glycopeptide profiling offer opportunities to optimize attributes such as increased charge state, higher charge density, and predictable fragmentation behavior.
Collapse
Affiliation(s)
- Beatriz Calle
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Ganka Bineva-Todd
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
| | - Andrea Marchesi
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Helen Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Mattia Ghirardello
- School of Chemistry, Cantock’s Close, University of Bristol, BS8 1TS, United Kingdom
| | - Omur Y. Tastan
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Junwon Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - M. Carmen Galan
- School of Chemistry, Cantock’s Close, University of Bristol, BS8 1TS, United Kingdom
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
- Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT 06511, United States
| |
Collapse
|
3
|
De Silva M, Brown AC, Patrick AL. Thermal- and collision-induced dissociation studies of functionalized imidazolium-based ionic liquid cations. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4518. [PMID: 32578308 DOI: 10.1002/jms.4518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Ionic liquids are now used in applications ranging from chemical synthesis to spacecraft propulsion. With this comes the need to characterize new syntheses, identify environmental contamination, and determine eventual fate in terrestrial and space environments. This work investigates the effects of source conditions, particularly capillary temperature, on the observed mass spectrum and determines the collision-induced dissociation (CID) patterns of imidazolium-based ionic liquid cations as a function of their substituent types. Experiments were carried out on a Thermo LTQ-XL ion-trap mass spectrometer and a Bruker microTOF-Q II mass spectrometer. Dissociation of the imidazolium cations occurred predominantly via substituent losses, except in benzyl-substituted systems, for which the neutral loss of the imidazole was exclusively observed. Several of these dissociation pathways were studied in greater depth using complementary quantum chemical calculations. The nature of the neutral losses from the substituents was found to be highly dependent upon the nature of the substituent, as would be expected, establishing bases for characterization.
Collapse
Affiliation(s)
- Maleesha De Silva
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Andrew C Brown
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Amanda L Patrick
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
4
|
Patrick AL. Electrospray ionization enters the final frontier: Mass spectrometry's role in understanding electrospray thrusters and their plumes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8587. [PMID: 31509305 DOI: 10.1002/rcm.8587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Electrospray thrusters using ionic liquid (IL)-based propellants are quickly gaining popularity in spacecraft design. Mass spectrometry is especially well-suited to provide important knowledge on the fundamentals of how these systems work and on evaluating their efficiencies and impacts, given that the operating principles of electrospray thrusters closely mimics the mass spectrometry experiment - in both ions are generated by electrospray and then enter a vacuum. Here, electrospray thruster technology and IL-based propellants are briefly introduced. This introduction is then followed by a discussion of mass spectrometry's current contribution to the study of IL-based electrospray thrusters - with a focus on electrospray, dissociation, and spectroscopy studies - and a brief discussion of areas ripe for immediate contributions from the mass spectrometry community.
Collapse
Affiliation(s)
- Amanda L Patrick
- Department of Chemistry, Mississippi State University, Mississippi State, MI, 39762, USA
| |
Collapse
|
5
|
Žilionis A. Nitrogen-containing cyclic compounds as iminium ion sources for selected reaction monitoring detection of derivatized analytes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:25-35. [PMID: 31426672 DOI: 10.1177/1469066719869817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid chromatography-tandem mass spectrometry is one of the most sensitive tools for determination of trace amounts of analytes in metabolomics and proteomics. The highest sensitivity is achieved in selected reaction monitoring detection, which involves fragmentation of the molecular ion between two levels of mass selection. However, fragmentation of some compounds is complicated. Detection sensitivity of such analytes may be increased by derivatizing them with a specific moiety fragmentation of which results in product ion of high abundance. In this work, we reveal the influence of iminium ions' structures on their stability by comparing six nitrogen-containing cyclic compounds as derivatization reagents for tandem mass spectrometric analysis of amino group-containing analyte. Commercially available starting materials (piperidine, 2,6-dimethylpiperidine, 1-methylpiperazine, morpholine, pyrrolidine and 1-cyanomethyl-3-methylimidazolium ionic liquid) were used for the synthesis of corresponding carboxylic acids which were further used for derivatization of the model analyte tryptamine. Liquid chromatographic-mass spectrometric analysis of differently derivatized tryptamine was performed for the evaluation of release and stability of corresponding iminium ions under collision-induced dissociation conditions. As a result, morpholine moiety was shown being the most promising iminium ion source among tested compounds. Possible sub-fragmentation pathways of investigated iminium ions were discussed, and the structures of secondary product ions were proposed.
Collapse
Affiliation(s)
- Andrius Žilionis
- Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
6
|
Annibal A, Tam H, Latza C, Antebi A. Comparison of ESI-MS/MS and APCI-MS methods for the quantification of folic acid analogs in C. elegans. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:316-327. [PMID: 30675959 DOI: 10.1002/jms.4337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Folic acid (FA) plays a vital role in central metabolism, including the one carbon cycle, nucleotide, and amino acid biosynthesis. The development of sensitive, accurate analytical methods to measure FA intermediates in tissues is critical to understand their biological roles in diverse physiological and pathological contexts. Here, we developed a highly sensitive method for the simultaneous quantification of FA intermediates in the nematode Caenorhabditis elegans as a model to dissect metabolic networks. The method was further validated by analyzing the worm folate pool upon RNAi knockdown of the dihydrofolate reductase gene dhfr-1. Comparative mass spectrometry behavior of the FA analogs using two different ion sources, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), revealed ESI-MS/MS to be more sensitive, but APCI-MS provided more detailed structure inferences, which can elucidate chemical investigation and synthesis of FA analogs. Finally, we report on the use of in vitro oxidation coupled with high-resolution mass spectrometry as a tool to discover new endogenous FA derivatives in the nematode.
Collapse
Affiliation(s)
- Andrea Annibal
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Hannah Tam
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christian Latza
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Mazzotta MG, Pace RB, Wallgren BN, Morton SA, Miller KM, Smith DL. Direct analysis in real time mass spectrometry (DART-MS) of ionic liquids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1616-1619. [PMID: 23934547 DOI: 10.1007/s13361-013-0696-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 05/22/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
Direct analysis in real time mass spectrometry (DART-MS) was used to analyze ionic liquids (ILs) containing either imidazolium or phosphonium cations combined with different types of inorganic and organic anions. Ionic liquids were directly inserted into the ionization source using a glass probe without dissolution into organic solvents. Mass spectra of the ILs were collected in both positive and negative mode with a linear ion-trap instrument. The intact cation of the compound was typically the dominant peak in positive mass spectra and cluster ion formation was present. Some individual anions were not readily observed in the negative mass spectra (based on the type of anion); however, the mass difference of adjacent cluster ions equal the mass of a complete IL and the anion mass could be verified by subtracting the known cation mass. The degree and intensity of the cluster ion formations was found to be dependent on the nature of the specific ILs as well as the DART temperature gas stream.
Collapse
Affiliation(s)
- Michael G Mazzotta
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, 40475, USA
| | | | | | | | | | | |
Collapse
|
8
|
Nousiainen M, Tolstogouzov A, Holopainen S, Jänis J, Sillanpää M. Study of imidazolium and pyrrolidinium ionic liquids by ion mobility spectrometry and electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2565-2569. [PMID: 21910290 DOI: 10.1002/rcm.5143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
9
|
Shkrob IA, Marin TW, Chemerisov SD, Hatcher JL, Wishart JF. Radiation Induced Redox Reactions and Fragmentation of Constituent Ions in Ionic Liquids. 2. Imidazolium Cations. J Phys Chem B 2011; 115:3889-902. [DOI: 10.1021/jp200305b] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ilya A. Shkrob
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, Illinois 60439, United States
| | - Timothy W. Marin
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, Illinois 60439, United States
- Chemistry Department, Benedictine University, 5700 College Road, Lisle, Illinois 60532, United States
| | - Sergey D. Chemerisov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, Illinois 60439, United States
| | - Jasmine L. Hatcher
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - James F. Wishart
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
10
|
Podjava A, Mekss P, Zicmanis A. Positive and negative electrospray ionization-collision-induced dissociation of sulfur- containing zwitterionic liquids. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:377-383. [PMID: 22006630 DOI: 10.1255/ejms.1144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The mass spectrometric properties of several (1,2-dimethyl-1H-imidazol-3-ium-3-yl)-alkane-1-sulfonates (alkane=ethyl, propyl and butyl) are investigated in this study. These substances, named zwitterionic liquids (ZILs), were synthesized using classical transformations and analyzed in positive and negative electrospray ionization mode using collision-induced dissociation (0-50 eV). We have also performed regioselective deuterium labeling of the alkyl chain of 3-(1,2-dimethyl-1H-imidazol-3-ium-3-yl)-propane-1-sulfonates. Thus, the mass spectra of isotopically-labeled compounds were used for the confirmation of fragmentation pathways of ZILs. Briefly, the data obtained in this study show that the fragmentation of ZILs is dependent on the alkyl chain length between the imidazolium ring and the sulfonate group. In positive electrospray mode, the main fragments are the imidazolium ring containing even electron ions. On the other hand, in negative electrospray mode, sulfur-containing radical-anions are dominant.
Collapse
Affiliation(s)
- Anton Podjava
- Department of Chemistry, University of Latvia, Riga, Latvia.
| | | | | |
Collapse
|
11
|
Nakurte I, Mekss P, Klavins K, Zicmanis A, Vavilina G, Dubrovina S. Collision-induced dissociation of imidazolium-based zwitterionic liquids. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2009; 15:471-478. [PMID: 19661555 DOI: 10.1255/ejms.997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fragmentation pathways of some imidazolium based zwitterionic liquids-3-(3-alkyl-1-imidazolio)- propane sulfonates and 3-(2-methyl-3-alkyl-1-imidazolio)-propane sulfonates -- have been studied by tandem electrospray mass spectrometry and collision-induced dissociation. The relative abundances of the lowest energy fragment ions depend on the length of the alkyl chain at the (II)N of the imidazolium ring and the cone voltage. The first fragment ions originate from the scission of C(non aromatic)-N bond of compounds investigated, but with increasing collision energy, scission of C-C bonds occurs. Aggregates of the general formula [(M + H)(x) + (M)(y)](+) (x;y = 1-2) formed. Methyl substituted zwitterionic liquids show higher molecular stability than 3-(3-alkyl-1-imidazolio)-propane sulfonates.
Collapse
Affiliation(s)
- Ilva Nakurte
- Faculty of Chemistry, University of Latvia, Riga, Latvia.
| | | | | | | | | | | |
Collapse
|
12
|
Lesimple A, He X, Chan TH, Mamer O. Collision-induced dissociation of sulfur-containing imidazolium ionic liquids. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:35-41. [PMID: 17618529 DOI: 10.1002/jms.1264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A number of 1,2-dimethylimidazole ionic liquids substituted on N(II) with alkyl chains of varying lengths terminated with sulfur-containing groups were investigated by electrospray high-resolution tandem Fourier-transform mass spectrometry. Fragmentation pathways are strongly dependent on the oxidation state of the sulfur and the alkyl chain length. The dissociations detected are rationalized by deuterium labeling, comparisons between homologous compounds and accurate mass data. Several homolytic processes are reported, leading to distonic ions and loss of hydrogen, methyl and other free radicals.
Collapse
Affiliation(s)
- Alain Lesimple
- The Mass Spectrometry Unit, McGill University, 740 Dr Penfield, Montreal, QC, H3A 1A4, Canada
| | | | | | | |
Collapse
|