1
|
Pruška A, Harrison JA, Granzhan A, Marchand A, Zenobi R. Solution and Gas-Phase Stability of DNA Junctions from Temperature-Controlled Electrospray Ionization and Surface-Induced Dissociation. Anal Chem 2023; 95:14384-14391. [PMID: 37699589 DOI: 10.1021/acs.analchem.3c02742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
DNA three-way junction (TWJ) structures transiently form during key cellular processes such as transcription, replication, and DNA repair. Despite their significance, the thermodynamics of TWJs, including the influence of strand length, base pair composition, and ligand binding on TWJ stability and dissociation mechanisms, are poorly understood. To address these questions, we interfaced temperature-controlled nanoelectrospray ionization mass spectrometry (TC-nESI-MS) with a cyclic ion mobility spectrometry (cIMS) instrument that was also equipped with a surface-induced dissociation (SID) stage. This novel combination allowed us to investigate the structural intermediates of three TWJ complexes and examine the effects of GC base pairs on their dissociation pathways. We found that two TWJ-specific ligands, 2,7-tris-naphthalene (2,7-TrisNP) and tris-phenoxybenzene (TrisPOB), lead to TWJ stabilization, revealed by an increase in the melting temperature (Tm) by 13 or 26 °C, respectively. To gain insights into conformational changes in the gas phase, we employed cIMS and SID to analyze TWJs and their complexes with ligands. Analysis of IM arrival distributions suggested a single-step dissociation of TWJs and their intermediates for the three studied TWJ complexes. Upon ligand binding, a higher SID energy by 3 V (2,7-TrisNP) and 5 V (TrisPOB) was required to induce 50% dissociation of TWJ, compared to 38 V in the absence of ligands. Our results demonstrate the power of utilizing TC-nESI-MS in combination with cIMS and SID for thermodynamic characterization of TWJ complexes and investigation of ligand binding. These techniques are essential for the TWJ design and development as drug targets, aptamers, and structural units for functional biomaterials.
Collapse
Affiliation(s)
- Adam Pruška
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Julian A Harrison
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Anton Granzhan
- CNRS UMR9187, Inserm U1196, Institut Curie, Paris Saclay University, F-91405 Orsay, France
| | - Adrien Marchand
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
2
|
Tan X, Ge L, Zhang T, Lu Z. Preservation of DNA for data storage. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The preservation of DNA has attracted significant interest of scientists in diverse research fields from ancient biological remains to the information field. In light of the different DNA safekeeping requirements (e.g., storage time, storage conditions) in these disparate fields, scientists have proposed distinct methods to maintain the DNA integrity. Specifically, DNA data storage is an emerging research, which means that the binary digital information is converted to the sequences of nucleotides leading to dense and durable data storage in the form of synthesized DNA. The intact preservation of DNA plays a significant role because it is closely related to data integrity. This review discusses DNA preservation methods, aiming to confirm an appropriate one for synthetic oligonucleotides in DNA data storage. First, we analyze the impact factors of the DNA long-term storage, including the intrinsic stability of DNA, environmental factors, and storage methods. Then, the benefits and disadvantages of diverse conservation approaches (e.g., encapsulation-free, chemical encapsulation) are discussed. Finally, we provide advice for storing non-genetic information in DNA in vitro. We expect these preservation suggestions to promote further research that may extend the DNA storage time.
The bibliography includes 99 references.
Collapse
|
3
|
Cheung KM, Abendroth JM, Nakatsuka N, Zhu B, Yang Y, Andrews AM, Weiss PS. Detecting DNA and RNA and Differentiating Single-Nucleotide Variations via Field-Effect Transistors. NANO LETTERS 2020; 20:5982-5990. [PMID: 32706969 PMCID: PMC7439785 DOI: 10.1021/acs.nanolett.0c01971] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We detect short oligonucleotides and distinguish between sequences that differ by a single base, using label-free, electronic field-effect transistors (FETs). Our sensing platform utilizes ultrathin-film indium oxide FETs chemically functionalized with single-stranded DNA (ssDNA). The ssDNA-functionalized semiconducting channels in FETs detect fully complementary DNA sequences and differentiate these sequences from those having different types and locations of single base-pair mismatches. Changes in charge associated with surface-bound ssDNA vs double-stranded DNA (dsDNA) alter FET channel conductance to enable detection due to differences in DNA duplex stability. We illustrate the capability of ssDNA-FETs to detect complementary RNA sequences and to distinguish from RNA sequences with single nucleotide variations. The development and implementation of electronic biosensors that rapidly and sensitively detect and differentiate oligonucleotides present new opportunities in the fields of disease diagnostics and precision medicine.
Collapse
Affiliation(s)
- Kevin M Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - John M Abendroth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Nako Nakatsuka
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Bowen Zhu
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yang Yang
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Ickert S, Schwaar T, Springer A, Grabarics M, Riedel J, Beck S, Pagel K, Linscheid MW. Comparison of the fragmentation behavior of DNA and LNA single strands and duplexes. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:402-411. [PMID: 30771235 DOI: 10.1002/jms.4344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
DNA and locked nucleic acid (LNA) were characterized as single strands, as well as double stranded DNA-DNA duplexes and DNA-LNA hybrids using tandem mass spectrometry with collision-induced dissociation. Additionally, ion mobility spectrometry was carried out on selected species. Oligonucleotide duplexes of different sequences-bearing mismatch positions and abasic sites of complementary DNA 15-mers-were investigated to unravel general trends in their stability in the gas phase. Single-stranded LNA oligonucleotides were also investigated with respect to their gas phase behavior and fragmentation upon collision-induced dissociation. In contrast to the collision-induced dissociation of DNA, almost no base loss was observed for LNAs. Here, backbone cleavages were the dominant dissociation pathways. This finding was further underlined by the need for higher activation energies. Base losses from the LNA strand were also absent in fragmentation experiments of the investigated DNA-LNA hybrid duplexes. While DNA-DNA duplexes dissociated easily into single stranded fragments, the high stability of DNA-LNA hybrids resulted in predominant fragmentation of the DNA part rather than the LNA, while base losses were only observed from the DNA single strand of the hybrid.
Collapse
Affiliation(s)
- Stefanie Ickert
- Department of Chemistry, Humboldt-Universitaet zu Berlin, Berlin, Germany
- Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Timm Schwaar
- Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Andreas Springer
- Department of Chemistry and Biochemistry, Freie Universitaet Berlin, Berlin, Germany
| | - Márkó Grabarics
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Jens Riedel
- Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Sebastian Beck
- Department of Chemistry, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Kevin Pagel
- Department of Chemistry and Biochemistry, Freie Universitaet Berlin, Berlin, Germany
- Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | | |
Collapse
|
5
|
Troć A, Gajewy J, Danikiewicz W, Kwit M. Specific Noncovalent Association of Chiral Large-Ring Hexaimines: Ion Mobility Mass Spectrometry and PM7 Study. Chemistry 2016; 22:13258-64. [PMID: 27534731 DOI: 10.1002/chem.201602515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 02/04/2023]
Abstract
Ion mobility mass spectrometry and PM7 semiempirical calculations are effective complementary methods to study gas phase formation of noncovalent complexes from vaselike macrocycles. The specific association of large-ring chiral hexaimines, derived from enantiomerically pure trans-1,2-diaminocyclohexane and various isophthaldehydes, is driven mostly by CH-π and π-π stacking interactions. The isotrianglimine macrocycles are prone to form two types of aggregates: tail-to-tail and head-to-head (capsule) dimers. The stability of the tail-to-tail dimers is affected by the size and electronic properties of the substituents at the C-5 position of the aromatic ring. Electron-withdrawing groups stabilize the aggregate, whereas bulky or electron-donating groups destabilize the complexes.
Collapse
Affiliation(s)
- Anna Troć
- Intitute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Jadwiga Gajewy
- Department of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61 614, Poznań, Poland.,Wielkopolska Centre for Advanced Technologies (WCAT), Umultowska 89C, 61-614, Poznań, Poland
| | - Witold Danikiewicz
- Intitute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Marcin Kwit
- Department of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61 614, Poznań, Poland. , .,Wielkopolska Centre for Advanced Technologies (WCAT), Umultowska 89C, 61-614, Poznań, Poland. ,
| |
Collapse
|
6
|
Hari Y, Dugovič B, Istrate A, Fignolé A, Leumann CJ, Schürch S. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1186-1196. [PMID: 27080005 DOI: 10.1007/s13361-016-1391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yvonne Hari
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Branislav Dugovič
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Alena Istrate
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Annabel Fignolé
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland.
| |
Collapse
|
7
|
Trujillo C, Gámez JA. Kinetical and thermodynamical analysis of the reactivity of thiourea by association to Ca2+. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2014.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Burmistrova A, Gabelica V, Duwez AS, De Pauw E. Ion mobility spectrometry reveals duplex DNA dissociation intermediates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1777-1786. [PMID: 24009017 DOI: 10.1007/s13361-013-0721-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/28/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
Electrospray ionization (ESI) soft desolvation is widely used to investigate fragile species such as nucleic acids. Tandem mass spectrometry (MS/MS) gives access to the gas phase energetics of the intermolecular interactions in the absence of solvent, by following the dissociation of mass-selected ions. Ion mobility mass spectrometry (IMS) provides indications on the tridimensional oligonucleotide structure by attributing a collision cross section (CCS) to the studied ion. Electrosprayed duplexes longer than eight bases pairs retain their helical structure in a solvent-free environment. However, the question of conformational changes under activation in MS/MS studies remains open. The objective of this study is to probe binding energetics and characterize the unfolding steps occurring prior to oligonucleotide duplex dissociation. Comparing the evolution of CCS with collision energy and breakdown curves, we characterize dissociation pathways involved in CID-activated DNA duplex separation into single strands, and we demonstrate here the existence of stable dissociation intermediates. At fixed duplex length, dissociation pathways were found to depend on the percentage of GC base pairs and on their position in the duplex. Our results show that pure GC sequences undergo a gradual compaction until reaching the dissociation intermediate: A-helix. Mixed AT-GC sequences were found to present at least two conformers: a classic B-helix and an extended structure where the GC tract is a B-helix and the AT tract(s) fray. The dissociation in single strands takes place from both conformers when the AT base pairs are enclosed between two GC tracts or only from the extended conformer when the AT tract is situated at the end(s) of the sequence.
Collapse
Affiliation(s)
- Anastasia Burmistrova
- Chemistry Department and GIGA-R, Mass Spectrometry Laboratory, University of Liege, Liege, Belgium
| | | | | | | |
Collapse
|
9
|
Nielsen LM, Hoffmann SV, Brøndsted Nielsen S. Vacuum-ultraviolet circular dichroism reveals DNA duplex formation between short strands of adenine and thymine. Phys Chem Chem Phys 2012; 14:15054-9. [DOI: 10.1039/c2cp42226c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Beverly MB. Applications of mass spectrometry to the study of siRNA. MASS SPECTROMETRY REVIEWS 2011; 30:979-998. [PMID: 20201110 DOI: 10.1002/mas.20260] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/13/2009] [Accepted: 08/13/2009] [Indexed: 05/28/2023]
Abstract
RNA interference (RNAi) has quickly become a well-established laboratory tool for regulating gene expression and is currently being explored for its therapeutic potential. The design and use of double-stranded RNA oligonucleotides as therapeutics to trigger the RNAi mechanism and a greater effort to understand the RNAi pathway itself is driving the development of analytical techniques that can characterize these oligonucleotides. Electrospray (ESI) and MALDI have been used routinely to analyze oligonucleotides and their ability to provide mass and sequence information has made them ideal for this application. Reviewed here is the work done to date on the use of ESI and MALDI for the study of RNAi oligonucleotides as well as the strategies and issues associated with siRNA analysis by mass spectrometry. While there is not a large body of literature on the specific application of mass spectrometry to RNAi, the work done in this area is a good demonstration of the range of experiments that can be conducted and the value that ESI and MALDI can provide to the RNAi field.
Collapse
Affiliation(s)
- Michael B Beverly
- RNA Therapeutics Department, Merck and Co., Inc., Boulder, CO 80301, USA.
| |
Collapse
|
11
|
Zheng B, Yuan G. Investigation of matched and mismatched duplex DNA by electrospray ionization-mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:65-72. [PMID: 21625025 DOI: 10.1255/ejms.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this research, the gas-phase stabilities of matched and mismatched duplex DNA were investigated by electrospray ionization-mass spectrometry (ESI-MS). The wild-type p53 duplex DNA [ds1, perfectly-matched (PM) DNA] was successfully distinguished from its three mutated DNAs [double-base mismatched DNA (DM)]. Moreover, the three DM DNAs were also well discriminated from each other using ESI-MS. Results show that the gas-phase thermodynamic stability of the DM DNAs decreased as the two mismatch spots moved closer. This implies that the dissociation of DM duplexes into two single strands prefers the mode "from middle to terminals".
Collapse
Affiliation(s)
- Bo Zheng
- Department of Chemical Biology, Peking University, China
| | | |
Collapse
|
12
|
Anichina J, Dobrusin Z, Bohme DK. Detection of T-T mismatches using mass spectrometry: specific interactions of Hg(II) with oligonucleotides rich in thymine (T). J Phys Chem B 2010; 114:15106-12. [PMID: 21028876 DOI: 10.1021/jp1022373] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was employed in a detailed study of the interactions of mercury dications with selected oligodeoxynucleotides rich and poor in thymine (T): d(5'-TT-3'), d(5'-TTT-3'), d(5'-TTTT-3'), d(5'-GG-3'), d(5'-CC-3'), d(5'-AA-3'), d(5'-GCTTGC-3'), d(5'-GTGCTC-3'), d(5'-GCATGC-3'), and d(5'-GCGCGC-3'). Specific interactions are observed for Hg(2+) with pure and mixed thymine sequences in which simultaneous bonding between two thymine units is indicated, and this is consistent with a model proposed in the literature in which Hg(2+) covalently coordinates to two thymines by replacing two N3 imino protons of the bases. The ESI-MS/MS measurements, combined with data on the thermal stability of mixed sequence hexadeoxynucleotides, indicate that mercury prefers thymines over the other binding sites in oligonucleotides both in solution and in the gas phase. These results point toward the effective use of Hg(2+) in the fast detection of mismatch base pairs incorporated in oligonucleotide duplexes and longer mixed DNA sequences using ESI-MS/MS.
Collapse
Affiliation(s)
- Janna Anichina
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | | | | |
Collapse
|
13
|
Sun X, Lee JK. Stability of DNA Duplexes Containing Hypoxanthine (Inosine): Gas versus Solution Phase and Biological Implications. J Org Chem 2010; 75:1848-54. [DOI: 10.1021/jo9023683] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuejun Sun
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - Jeehiun K. Lee
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| |
Collapse
|
14
|
Bonnet J, Colotte M, Coudy D, Couallier V, Portier J, Morin B, Tuffet S. Chain and conformation stability of solid-state DNA: implications for room temperature storage. Nucleic Acids Res 2009; 38:1531-46. [PMID: 19969539 PMCID: PMC2836546 DOI: 10.1093/nar/gkp1060] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is currently wide interest in room temperature storage of dehydrated DNA. However, there is insufficient knowledge about its chemical and structural stability. Here, we show that solid-state DNA degradation is greatly affected by atmospheric water and oxygen at room temperature. In these conditions DNA can even be lost by aggregation. These are major concerns since laboratory plastic ware is not airtight. Chain-breaking rates measured between 70 degrees C and 140 degrees C seemed to follow Arrhenius' law. Extrapolation to 25 degrees C gave a degradation rate of about 1-40 cuts/10(5) nucleotides/century. However, these figures are to be taken as very tentative since they depend on the validity of the extrapolation and the positive or negative effect of contaminants, buffers or additives. Regarding the secondary structure, denaturation experiments showed that DNA secondary structure could be preserved or fully restored upon rehydration, except possibly for small fragments. Indeed, below about 500 bp, DNA fragments underwent a very slow evolution (almost suppressed in the presence of trehalose) which could end in an irreversible denaturation. Thus, this work validates using room temperature for storage of DNA if completely protected from water and oxygen.
Collapse
Affiliation(s)
- Jacques Bonnet
- Université de Bordeaux-plateforme Génomique Fonctionnelle, Institut Bergonié-INSERM U916 VINCO, Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhachkina A, Liu M, Sun X, Amegayibor FS, Lee JK. Gas-Phase Thermochemical Properties of the Damaged Base O6-Methylguanine versus Adenine and Guanine. J Org Chem 2009; 74:7429-40. [DOI: 10.1021/jo901479m] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anna Zhachkina
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - Min Liu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - Xuejun Sun
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - F. Sedinam Amegayibor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - Jeehiun K. Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| |
Collapse
|
16
|
Anichina J, Bohme DK. Mass-spectrometric studies of the interactions of selected metalloantibiotics and drugs with deprotonated hexadeoxynucleotide GCATGC. J Phys Chem B 2009; 113:328-35. [PMID: 19072169 DOI: 10.1021/jp807034v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ESI tandem mass spectrometry is employed in a detailed study of the interactions of a hexameric duplex d(5'GCATGC) with three types of ligated first-row transition metal dications M(2+): metallated bleomycins, singly, doubly, and triply ligated metallophenanthrolines and [M(triethylenetetramine)](2+). The singly, doubly, and triply metallated species were found to dissociate by noncovalent separation into two strands with metal ions attached either to one or to both. Relative gas-phase stabilities of the double-stranded oligodeoxynucleotide (ODN)-M(2+) complexes were found to follow the order Mn(II) > Fe(II) > Co(II) > Ni(II) > Zn(II) > Cu(II). Overall, the presence of metal dications is found to increase the gas-phase stability of the duplex against noncovalent dissociation with the exception of one and three copper dications. An analysis of the dissociation pathways and relative gas-phase stabilities of the species that were investigated provided a basis for the assessment of the possible binding modes between duplex oligonucleotides and metallocomplexes.
Collapse
Affiliation(s)
- Janna Anichina
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | | |
Collapse
|
17
|
Liu M, Li T, Amegayibor FS, Cardoso DS, Fu Y, Lee JK. Gas-Phase Thermochemical Properties of Pyrimidine Nucleobases. J Org Chem 2008; 73:9283-91. [DOI: 10.1021/jo801822s] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Min Liu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Tingting Li
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - F. Sedinam Amegayibor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Daisy S. Cardoso
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Yunlin Fu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Jeehiun K. Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
18
|
Trujillo C, Mó O, Yáñez M. Why Are Selenouracils as Basic as but Stronger Acids than Uracil in the Gas Phase? Chemphyschem 2008; 9:1715-20. [DOI: 10.1002/cphc.200800215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Anichina J, Feil S, Uggerud E, Bohme DK. Structures, fragmentation, and protonation of trideoxynucleotide CCC mono- and dianions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:987-996. [PMID: 18440240 DOI: 10.1016/j.jasms.2008.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/26/2008] [Accepted: 03/20/2008] [Indexed: 05/26/2023]
Abstract
Both quantum chemical calculations and ESI mass spectrometry are used here to explore the gas-phase structures, energies, and stabilities against collision-induced dissociation of a relatively small model DNA molecule--a trideoxynucleotide with the sequence CCC, in its singly and doubly deprotonated forms, (CCC-H)(-) and (CCC-2H)(2-), respectively. Also, the gas-phase reactivity of these two anions was measured with HBr, a potential proton donor, using an ESI/SIFT/QqQ instrument. The computational results provide insight into the gas-phase structures of the electrosprayed (CCC-2H)(2-) and (CCC-H)(-) anions and the neutral CCC, as well as the proton affinities of the di- and monoanions. The dianion (CCC-2H)(2-) was found to dissociate upon CID by charge separation via two competing channels: separation into deprotonated cytosine (C-H)(-) and (CCC-(C-H)-2H)(-), and by w(1)(-)/a(2)(-) cleavage of the backbone. The monoanion (CCC-H)(-) loses a neutral cytosine upon CID, and an H/D-exchangeable proton, presumably residing on one of the phosphate groups, is transferred to the partially liberated (C-H)(-) before dissociation. This was confirmed by MS/MS experiments with the deuterated analog. The reaction of (CCC-2H)(2-) with HBr was observed to be rapid, k=(1.4+/-0.4) x 10(-9) cm(3) molecule(-1) s(-1), and to proceed both by addition (78%) and by proton transfer (22%) while (CCC-H)(-) reacts only by HBr addition, k=(7.1+/-2.1) x 10(-10) cm(3) molecule(-1) s(-1). This is in accord with the computed proton affinities of (CCC-2H)(2-) and (CCC-H)(-) anions that bracket the known proton affinity of Br(-).
Collapse
Affiliation(s)
- Janna Anichina
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
20
|
Wan C, Guo X, Liu Z, Liu S. Studies of the intermolecular DNA triplexes of C+.GC and T.AT triplets by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:164-72. [PMID: 17828803 DOI: 10.1002/jms.1277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Formation and stabilities of four 14-mer intermolecular DNA triplexes, consisting of third strands with repeating sequence CTCT, CCTT, CTT, or TTT, were studied by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the gas phase. The gas-phase stabilities of the triplexes were compared with their CD spectra and melting behaviors in solution, and parallel correlation between two phases were obtained. In the presence of 20 mM NH(4) (+) (pH 5.5), the formation of the TTT triplex was not detected in both solution and the gas phase. Other triplexes showed the same order, CTCT > CCTT > CTT, of ion abundances in mass spectra and T(m) values in solution. The more stable triplexes are those that contained higher percentage of C(+).GC triplets and an alternating CT sequence. However, the CCTT with the same C(+).GC triplets as the CTCT showed a higher stability than the latter during the gas-phase dissociation. Furthermore, a biphasic triplex-to-duplex-to-single transition was detected in the gas phase, while a monophasic triplex-to-single dissociation was observed in solution. The present results reveal that hydrogen bonds and electrostatic interactions dominate in the gas phase, while base stacking and hydrophobic interactions dominate in solution to stabilize the triplexes. Moreover, weak acidic conditions (pH 5-6) promote the formation of the parallel triplexes.
Collapse
Affiliation(s)
- Cuihong Wan
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | | | | | | |
Collapse
|
21
|
Alves S, Woods A, Tabet JC. Charge state effect on the zwitterion influence on stability of non-covalent interaction of single-stranded DNA with peptides. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:1613-1622. [PMID: 18085569 DOI: 10.1002/jms.1359] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Negative ion ESI mass spectrometry was used to study the gas-phase stability and dissociation pathways of peptide-DNA complexes. We show that bradykinin and three modified peptides containing the basic residue arginine or lysine form stable interactions with single-stranded oligonucleotides. ESI-MS/MS of complexes of T(8) with PPGFSPFRR resulted in a major dissociation pathway through cleavage of the peptide covalent bond. The stability of the complex is due to electrostatic interaction between the negatively charged phosphate group and the basic side chain of the arginine and lysine residues as demonstrated by Vertes et al. and Woods et al. In fact, the present work establishes the role played by zwitterions on complex stabilisation. The presence of protons in nucleobase and/or amino acid contributes in reinforcing the strength of the salt bridge (SB) interaction. The zwitterionic form of the most basic of amino acid residues, arginine, is assumed to form a strong SB interaction to the negatively charged phosphate groups of DNA. This non-covalent complex is stable enough to withstand disruption of the non-covalent interaction and to first break the covalent bond. Moreover, the dependence of fragmentation patterns upon the complex charge state is explained by the fact that the net number of negative charges modulates the number of zwitterionic sites, which stabilise the complexes. Finally, the weak influence of the nucleobase is assumed by the existence of competition for proton addition between the nucleobase and the R/K side chain leading to a decrease in the stabilisation of the SB interaction.
Collapse
Affiliation(s)
- Sandra Alves
- Laboratoire de Chimie Structurale Organique et Biologique, UMR 7613/BP45, Université Pierre et Marie Curie, 4 Place Jussieu, Paris 75252, France
| | | | | |
Collapse
|