1
|
Hatvany JB, Olsen ELP, Gallagher ES. Characterizing Theta-Emitter Generation for Use in Microdroplet Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39387805 DOI: 10.1021/jasms.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Theta emitters are useful for generating microdroplets for rapid-mixing reactions. Theta emitters are glass tips containing an internal septum that separates two channels. When used for mixing, the solutions from each channel are sprayed with mixing occurring during electrospray ionization (ESI) with reaction times on the order of microseconds to milliseconds. Theta emitters of increasing size cause the formation of ESI droplets of increasing size, which require longer times for desolvation and increase droplet lifetimes. Droplets with longer lifetimes provide more time for mixing and allow for increased reaction times prior to desolvation. Because theta emitters are typically produced in-house, there is a need to consistently pull tips with a variety of sizes. Herein, we characterize the effect of pull parameters on the generation of distinct-sized theta emitters using a P-1000 tip puller. Of the examined parameters, the velocity value had the largest impact on the channel diameter. This work also compares the effect of pulling parameters between single-channel and theta capillaries to examine how the internal septum in theta capillaries affects tip pulling. We demonstrate the utility of using theta emitters with different sizes for establishing distinct reaction times. Finally, we offer suggestions on producing theta emitters of various sizes while maintaining high repeatability. Through this work, we provide resources to establish a versatile and inexpensive rapid-mixing system for probing biologically relevant systems and performing rapid derivatizations.
Collapse
Affiliation(s)
- Jacob B Hatvany
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Emma-Le P Olsen
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
2
|
Kish M, Smith V, Lethbridge N, Cole L, Bond NJ, Phillips JJ. Online Fully Automated System for Hydrogen/Deuterium-Exchange Mass Spectrometry with Millisecond Time Resolution. Anal Chem 2023; 95:5000-5008. [PMID: 36896500 PMCID: PMC10034745 DOI: 10.1021/acs.analchem.2c05310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Amide hydrogen/deuterium-exchange mass spectrometry (HDX-MS) is a powerful tool for analyzing the conformational dynamics of proteins in a solution. Current conventional methods have a measurement limit starting from several seconds and are solely reliant on the speed of manual pipetting or a liquid handling robot. Weakly protected regions of polypeptides, such as in short peptides, exposed loops and intrinsically disordered the protein exchange on the millisecond timescale. Typical HDX methods often cannot resolve the structural dynamics and stability in these cases. Numerous academic laboratories have demonstrated the considerable utility of acquiring HDX-MS data in the sub-second regimes. Here, we describe the development of a fully automated HDX-MS apparatus to resolve amide exchange on the millisecond timescale. Like conventional systems, this instrument boasts automated sample injection with software selection of labeling times, online flow mixing and quenching, while being fully integrated with a liquid chromatography-MS system for existing standard "bottom-up" workflows. HDX-MS's rapid exchange kinetics of several peptides demonstrate the repeatability, reproducibility, back-exchange, and mixing kinetics achieved with the system. Comparably, peptide coverage of 96.4% with 273 peptides was achieved, supporting the equivalence of the system to standard robotics. Additionally, time windows of 50 ms-300 s allowed full kinetic transitions to be observed for many amide groups; especially important are short time points (50-150 ms) for regions that are likely highly dynamic and solvent- exposed. We demonstrate that information on structural dynamics and stability can be measured for stretches of weakly stable polypeptides in small peptides and in local regions of a large enzyme, glycogen phosphorylase.
Collapse
Affiliation(s)
- Monika Kish
- Living Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, U.K
| | | | | | - Lindsay Cole
- Applied Photophysics Ltd, Leatherhead KT227BA, U.K
| | - Nicholas J Bond
- Analytical Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Milstein Building, Granta Park, Cambridge CB21 6GH, U.K
| | - Jonathan J Phillips
- Living Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, U.K
- Alan Turing Institute, British Library, London NW1 2DB, U.K
| |
Collapse
|
3
|
Cain RL, Webb IK. Online protein unfolding characterized by ion mobility electron capture dissociation mass spectrometry: cytochrome C from neutral and acidic solutions. Anal Bioanal Chem 2023; 415:749-758. [PMID: 36622393 DOI: 10.1007/s00216-022-04501-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) experiments, including ion mobility spectrometry mass spectrometry (ESI-IMS-MS) and electron capture dissociation (ECD) of proteins ionized from aqueous solutions, have been used for the study of solution-like structures of intact proteins. By mixing aqueous proteins with denaturants online before ESI, the amount of protein unfolding can be precisely controlled and rapidly analyzed, permitting the characterization of protein folding intermediates in protein folding pathways. Herein, we mixed various pH solutions online with aqueous cytochrome C for unfolding and characterizing its unfolding intermediates with ESI-MS charge state distribution measurements, IMS, and ECD. The presence of folding intermediates and unfolded cytochrome c structures were detected from changes in charge states, arrival time distributions (ATDs), and ECD. We also compared structures from nondenaturing and denaturing solution mixtures measured under "gentle" (i.e., low energy) ion transmission conditions with structures measured under "harsh" (i.e., higher energy) transmission. This work confirms that when using "gentle" instrument conditions, the gas-phase cytochrome c ions reflect attributes of the various solution-phase structures. However, "harsh" conditions that maximize ion transmission produce extended structures that no longer correlate with changes in solution structure.
Collapse
Affiliation(s)
- Rebecca L Cain
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Ian K Webb
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
4
|
Abstract
Mass spectrometry (MS) is a powerful technique for protein identification, quantification and characterization that is widely applied in biochemical studies, and which can provide data on the quantity, structural integrity and post-translational modifications of proteins. It is therefore a versatile and widely used analytic tool for quality control of biopharmaceuticals, especially in quantifying host-cell protein impurities, identifying post-translation modifications and structural characterization of biopharmaceutical proteins. Here, we summarize recent advances in MS-based analyses of these key quality attributes of the biopharmaceutical development and manufacturing processes.
Collapse
|
5
|
Lento C, Wilson DJ. Subsecond Time-Resolved Mass Spectrometry in Dynamic Structural Biology. Chem Rev 2021; 122:7624-7646. [PMID: 34324314 DOI: 10.1021/acs.chemrev.1c00222] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Life at the molecular level is a dynamic world, where the key players-proteins, oligonucleotides, lipids, and carbohydrates-are in a perpetual state of structural flux, shifting rapidly between local minima on their conformational free energy landscapes. The techniques of classical structural biology, X-ray crystallography, structural NMR, and cryo-electron microscopy (cryo-EM), while capable of extraordinary structural resolution, are innately ill-suited to characterize biomolecules in their dynamically active states. Subsecond time-resolved mass spectrometry (MS) provides a unique window into the dynamic world of biological macromolecules, offering the capacity to directly monitor biochemical processes and conformational shifts with a structural dimension provided by the electrospray charge-state distribution, ion mobility, covalent labeling, or hydrogen-deuterium exchange. Over the past two decades, this suite of techniques has provided important insights into the inherently dynamic processes that drive function and pathogenesis in biological macromolecules, including (mis)folding, complexation, aggregation, ligand binding, and enzyme catalysis, among others. This Review provides a comprehensive account of subsecond time-resolved MS and the advances it has enabled in dynamic structural biology, with an emphasis on insights into the dynamic drivers of protein function.
Collapse
Affiliation(s)
- Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
6
|
Oganesyan I, Lento C, Tandon A, Wilson DJ. Conformational Dynamics of α-Synuclein during the Interaction with Phospholipid Nanodiscs by Millisecond Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1169-1179. [PMID: 33784451 DOI: 10.1021/jasms.0c00463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Both normal and pathological functions of α-synuclein (αSN), an abundant protein in the central and peripheral nervous system, have been linked to its interaction with membrane lipid bilayers. The ability to characterize structural transitions of αSN upon membrane complexation will clarify molecular mechanisms associated with αSN-linked pathologies, including Parkinson's disease (PD), multiple systems atrophy, and other synucleinopathies. In this work, time-resolved electrospray ionization hydrogen/deuterium exchange mass spectrometry (TRESI-HDX-MS) was employed to acquire a detailed picture of αSN's conformational transitions as it undergoes complexation with nanodisc membrane mimics with different headgroup charges (zwitterionic DMPC and negative POPG). Using this approach, αSN interactions with DMPC nanodiscs were shown to be rapid exchanging and to have little impact on the αSN conformational ensemble. Interactions with nanodiscs containing lipids known to promote amyloidogenesis (e.g., POPG), on the other hand, were observed to induce substantial and specific changes in the αSN conformational ensemble. Ultimately, we identify a region corresponding residues 19-28 and 45-57 of the αSN sequence that is uniquely impacted by interactions with "amyloidogenic" lipid membranes, supporting the existing "broken-helix" model for α-synuclein/membrane interactions, but do not detect a "helical extension" that is also thought to play a role in αSN aggregation.
Collapse
Affiliation(s)
- Irina Oganesyan
- Department of Chemistry, York University, Toronto M3J 1P3, Canada
| | - Cristina Lento
- Department of Chemistry, York University, Toronto M3J 1P3, Canada
| | - Anurag Tandon
- Department of Medicine, University of Toronto, Toronto M5S 1A1, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto M3J 1P3, Canada
- Centre for Research in Mass Spectrometry, York University, Toronto M3J 1P3, Canada
| |
Collapse
|
7
|
Li Y, Meng L, Wang G, Zhou X, Ouyang Z, Nie Z. A Gas-Phase Reaction Accelerator Using Vortex Flows. Anal Chem 2020; 92:12049-12054. [PMID: 32867491 DOI: 10.1021/acs.analchem.0c02672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gas-phase microdroplets have been increasingly used for reaction acceleration. Here, we report the development of a vortex tube as a reaction accelerator. Three types of reactions, viz., aromatization, amination isomerization, and acid-induced cytochrome c unfolding were used to characterize the performance of the vortex tube. During ion transfer from a nanoelectrospray ionization (nanoESI) source to the mass spectrometry (MS) inlet, the generated vortex flows helped droplet desolvation and ion confinement and thus improved the MS intensity by 2-3 orders of magnitude compared with that when the vortex tube was not applied. Like the stirring effect in the bulk phase, the reactants were more sufficiently mixed and reacted in vortices. Therefore, with the same reaction distance, a 2-3-fold improvement of conversion ratios was observed by using the vortices. Notably, the vortex tube enabled the use of flow rate to control the reaction time for ∼60 μs, which was useful for precise control of reaction progress. As a demonstration, the intermediates of the amination isomerization were tracked and the equilibrium constant and rate constant of the cytochrome c unfolding were determined.
Collapse
Affiliation(s)
- Yuze Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 10084, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Wang
- National Center for Mass Spectrometry in Beijing, Beijing 100190, China
| | - Xiaoyu Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 10084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 10084, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,National Center for Mass Spectrometry in Beijing, Beijing 100190, China
| |
Collapse
|
8
|
Brown KA, Lento C, Rajendran S, Dowd J, Wilson DJ. Epitope Mapping for a Preclinical Bevacizumab (Avastin) Biosimilar on an Extended Construct of Vascular Endothelial Growth Factor A Using Millisecond Hydrogen–Deuterium Exchange Mass Spectrometry. Biochemistry 2020; 59:2776-2781. [DOI: 10.1021/acs.biochem.0c00308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kerene A. Brown
- Chemistry Department, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- The Centre for Research in Mass Spectrometry, York University, Toronto, ON M3J1P3, Canada
| | - Cristina Lento
- Chemistry Department, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- The Centre for Research in Mass Spectrometry, York University, Toronto, ON M3J1P3, Canada
| | - Shanthi Rajendran
- Apobiologix (division of Apotex Inc.), 4100 Weston Road, Toronto, ON M9L 2Y6, Canada
| | - Jason Dowd
- Centre for Commercialization of Regenerative Medicine, 661 University Avenue, Suite 1002, Toronto, ON M5G 1M1, Canada
| | - Derek J. Wilson
- Chemistry Department, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- The Centre for Research in Mass Spectrometry, York University, Toronto, ON M3J1P3, Canada
| |
Collapse
|
9
|
Huang X, Slavkovic S, Song E, Botta A, Mehrazma B, Lento C, Johnson PE, Sweeney G, Wilson DJ. A Unique Conformational Distortion Mechanism Drives Lipocalin 2 Binding to Bacterial Siderophores. ACS Chem Biol 2020; 15:234-242. [PMID: 31613081 DOI: 10.1021/acschembio.9b00820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Lcn2 is a host defense protein induced via the innate immune response to sequester iron-loaded bacterial siderophores. However, excess or prolonged elevation of Lcn2 levels can induce adverse cellular effects, including oxidative stress and inflammation. In this work, we use Hydrogen-Deuterium eXchange (HDX) and Isothermal Titration Calorimetry (ITC) to characterize the binding interaction between Lcn2 and siderophores enterobactin and 2,3-DHBA, in the presence and absence of iron. Our results indicate a rare "Type II" interaction in which binding of siderophores drives the protein conformational equilibrium toward an unfolded state. Linking our molecular model to cellular assays, we demonstrate that this "distorted binding mode" facilitates a deleterious cellular accumulation of reactive oxygen species that could represent the molecular origin of Lcn2 pathology. These results add important insights into mechanisms of Lcn2 action and have implications in Lcn2-mediated effects including inflammation.
Collapse
|
10
|
Peters I, Metwally H, Konermann L. Mechanism of Electrospray Supercharging for Unfolded Proteins: Solvent-Mediated Stabilization of Protonated Sites During Chain Ejection. Anal Chem 2019; 91:6943-6952. [DOI: 10.1021/acs.analchem.9b01470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Insa Peters
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Haidy Metwally
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
11
|
Konermann L, Metwally H, Duez Q, Peters I. Charging and supercharging of proteins for mass spectrometry: recent insights into the mechanisms of electrospray ionization. Analyst 2019; 144:6157-6171. [DOI: 10.1039/c9an01201j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molecular dynamics simulations have uncovered mechanistic details of the protein ESI process under various experimental conditions.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Haidy Metwally
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Quentin Duez
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Insa Peters
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| |
Collapse
|
12
|
Svejdal RR, Dickinson ER, Sticker D, Kutter JP, Rand KD. Thiol-ene Microfluidic Chip for Performing Hydrogen/Deuterium Exchange of Proteins at Subsecond Time Scales. Anal Chem 2018; 91:1309-1317. [DOI: 10.1021/acs.analchem.8b03050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rasmus R. Svejdal
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Eleanor R. Dickinson
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Drago Sticker
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Microscale Analytical Systems Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jörg P. Kutter
- Microscale Analytical Systems Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kasper D. Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
13
|
van Geenen FAG, Franssen MCR, Zuilhof H, Nielen MWF. Reactive Laser Ablation Electrospray Ionization Time-Resolved Mass Spectrometry of Click Reactions. Anal Chem 2018; 90:10409-10416. [PMID: 30063331 PMCID: PMC6127799 DOI: 10.1021/acs.analchem.8b02290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022]
Abstract
Reactions in confined compartments like charged microdroplets are of increasing interest, notably because of their substantially increased reaction rates. When combined with ambient ionization mass spectrometry (MS), reactions in charged microdroplets can be used to improve the detection of analytes or to study the molecular details of the reactions in real time. Here, we introduce a reactive laser ablation electrospray ionization (reactive LAESI) time-resolved mass spectrometry (TRMS) method to perform and study reactions in charged microdroplets. We demonstrate this approach with a class of reactions new to reactive ambient ionization MS: so-called click chemistry reactions. Click reactions are high-yielding reactions with a high atom efficiency, and are currently drawing significant attention from fields ranging from bioconjugation to polymer modification. Although click reactions are typically at least moderately fast (time scale of minutes to a few hours), in a reactive LAESI approach a substantial increase of reaction time is required for these reactions to occur. This increase was achieved using microdroplet chemistry and followed by MS using the insertion of a reaction tube-up to 1 m in length-between the LAESI source and the MS inlet, leading to near complete conversions due to significantly extended microdroplet lifetime. This novel approach allowed for the collection of kinetic data for a model (strain-promoted) click reaction between a substituted tetrazine and a strained alkyne and showed in addition excellent instrument stability, improved sensitivity, and applicability to other click reactions. Finally, the methodology was also demonstrated in a mass spectrometry imaging setting to show its feasibility in future imaging experiments.
Collapse
Affiliation(s)
- Fred A.
M. G. van Geenen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- TI-COAST, Science Park
904, 1098 XH Amsterdam, The Netherlands
| | - Maurice C. R. Franssen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People’s Republic of China
| | - Michel W. F. Nielen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- RIKILT, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
14
|
Lugo MR, Lyons B, Lento C, Wilson DJ, Merrill AR. Dynamics of Scabin toxin. A proposal for the binding mode of the DNA substrate. PLoS One 2018; 13:e0194425. [PMID: 29543870 PMCID: PMC5854381 DOI: 10.1371/journal.pone.0194425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/04/2018] [Indexed: 12/29/2022] Open
Abstract
Scabin is a mono-ADP-ribosyltransferase enzyme and is a putative virulence factor produced by the plant pathogen, Streptomyces scabies. Previously, crystal structures of Scabin were solved in the presence and absence of substrate analogues and inhibitors. Herein, experimental (hydrogen-deuterium exchange), simulated (molecular dynamics), and theoretical (Gaussian Network Modeling) approaches were systematically applied to study the dynamics of apo-Scabin in the context of a Scabin·NAD+·DNA model. MD simulations revealed that the apo-Scabin solution conformation correlates well with the X-ray crystal structure, beyond the conformation of the exposed, mobile regions. In turn, the MD fluctuations correspond with the crystallographic B-factors, with the fluctuations derived from a Gaussian network model, and with the experimental H/D exchange rates. An Essential Dynamics Analysis identified the dynamic aspects of the toxin as a crab-claw-like mechanism of two topological domains, along with coupled deformations of exposed motifs. The “crab-claw” movement resembles the motion of C3-like toxins and emerges as a property of the central β scaffold of catalytic single domain toxins. The exposure and high mobility of the cis side motifs in the Scabin β-core suggest involvement in DNA substrate binding. A ternary Scabin·NAD+·DNA model was produced via an independent docking methodology, where the intermolecular interactions correspond to the region of high mobility identified by dynamics analyses and agree with binding and kinetic data reported for wild-type and Scabin variants. Based on data for the Pierisin-like toxin group, the sequence motif Rβ1–RLa–NLc–STTβ2–WPN–WARTT–(QxE)ARTT emerges as a catalytic signature involved in the enzymatic activity of these DNA-acting toxins. However, these results also show that Scabin possesses a unique DNA-binding motif within the Pierisin-like toxin group.
Collapse
Affiliation(s)
- Miguel R Lugo
- Department of Molecular and Cell Biology, University of Guelph, Guelph, Ontario, Canada
| | - Bronwyn Lyons
- Department of Molecular and Cell Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cristina Lento
- Chemistry Department, York University, Toronto, Ontario, Canada.,The Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada
| | - Derek J Wilson
- Chemistry Department, York University, Toronto, Ontario, Canada.,The Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada
| | - A Rod Merrill
- Department of Molecular and Cell Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
15
|
Lento C, Zhu S, Brown KA, Knox R, Liuni P, Wilson DJ. Time-resolved ElectroSpray Ionization Hydrogen-deuterium Exchange Mass Spectrometry for Studying Protein Structure and Dynamics. J Vis Exp 2017. [PMID: 28448048 DOI: 10.3791/55464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) have long been a challenge to structural biologists due to their lack of stable secondary structure elements. Hydrogen-Deuterium Exchange (HDX) measured at rapid time scales is uniquely suited to detect structures and hydrogen bonding networks that are briefly populated, allowing for the characterization of transient conformers in native ensembles. Coupling of HDX to mass spectrometry offers several key advantages, including high sensitivity, low sample consumption and no restriction on protein size. This technique has advanced greatly in the last several decades, including the ability to monitor HDX labeling times on the millisecond time scale. In addition, by incorporating the HDX workflow onto a microfluidic platform housing an acidic protease microreactor, we are able to localize dynamic properties at the peptide level. In this study, Time-Resolved ElectroSpray Ionization Mass Spectrometry (TRESI-MS) coupled to HDX was used to provide a detailed picture of residual structure in the tau protein, as well as the conformational shifts induced upon hyperphosphorylation.
Collapse
Affiliation(s)
| | | | | | - Ruth Knox
- Department of Chemistry, York University
| | | | - Derek J Wilson
- Department of Chemistry, York University; The Centre for Research in Mass Spectrometry, York University; The Centre for Research on Biomolecular Interactions, York University;
| |
Collapse
|
16
|
Lento C, Wilson DJ. Unravelling the mysteries of sub-second biochemical processes using time-resolved mass spectrometry. Analyst 2017; 142:1640-1653. [DOI: 10.1039/c7an00338b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many important chemical and biochemical phenomena proceed on sub-second time scales.
Collapse
Affiliation(s)
| | - Derek J. Wilson
- Department of Chemistry
- York University
- Toronto
- Canada
- Centre for Research of Biomolecular Interactions
| |
Collapse
|
17
|
Brown KA, Sharifi S, Hussain R, Donaldson L, Bayfield MA, Wilson DJ. Distinct Dynamic Modes Enable the Engagement of Dissimilar Ligands in a Promiscuous Atypical RNA Recognition Motif. Biochemistry 2016; 55:7141-7150. [PMID: 27959512 DOI: 10.1021/acs.biochem.6b00995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conformational dynamics play a critical role in ligand binding, often conferring divergent activities and specificities even in species with highly similar ground-state structures. Here, we employ time-resolved electrospray ionization hydrogen-deuterium exchange (TRESI-HDX) to characterize the changes in dynamics that accompany oligonucleotide binding in the atypical RNA recognition motif (RRM2) in the C-terminal domain (CTD) of human La protein. Using this approach, which is uniquely capable of probing changes in the structure and dynamics of weakly ordered regions of proteins, we reveal that binding of RRM2 to a model 23-mer single-stranded RNA and binding of RRM2 to structured IRES domain IV of the hepatitis C viral (HCV) RNA are driven by fundamentally different dynamic processes. In particular, binding of the single-stranded RNA induces helical "unwinding" in a region of the CTD previously hypothesized to play an important role in La and La-related protein-associated RNA remodeling, while the same region becomes less dynamic upon engagement with the double-stranded HCV RNA. Binding of double-stranded RNA also involves less penetration into the RRM2 binding pocket and more engagement with the unstructured C-terminus of the La CTD. The complementarity between TRESI-HDX and Δδ nuclear magnetic resonance measurements for ligand binding analysis is also explored.
Collapse
Affiliation(s)
- Kerene A Brown
- Department of Chemistry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Mass Spectrometry, York University , Toronto, ON M3J 1P3, Canada
| | - Samel Sharifi
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Rawaa Hussain
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Logan Donaldson
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Mark A Bayfield
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions, York University , Toronto, ON M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Mass Spectrometry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions, York University , Toronto, ON M3J 1P3, Canada
| |
Collapse
|
18
|
Cong Y, Katipamula S, Trader CD, Orton DJ, Geng T, Baker ES, Kelly RT. Mass spectrometry-based monitoring of millisecond protein-ligand binding dynamics using an automated microfluidic platform. LAB ON A CHIP 2016; 16:1544-8. [PMID: 27009517 PMCID: PMC4846533 DOI: 10.1039/c6lc00183a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Characterizing protein-ligand binding dynamics is crucial for understanding protein function and for developing new therapeutic agents. We present a novel microfluidic platform that features rapid mixing of protein and ligand solutions, variable incubation times, and an integrated electrospray ionization source for mass spectrometry-based monitoring of protein-ligand binding dynamics. This platform offers many advantages, including solution-based binding, label-free detection, automated operation, rapid mixing, and low sample consumption.
Collapse
Affiliation(s)
- Yongzheng Cong
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | - Shanta Katipamula
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | - Cameron D Trader
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Tao Geng
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| |
Collapse
|
19
|
Donovan KA, Zhu S, Liuni P, Peng F, Kessans SA, Wilson DJ, Dobson RCJ. Conformational Dynamics and Allostery in Pyruvate Kinase. J Biol Chem 2016; 291:9244-56. [PMID: 26879751 DOI: 10.1074/jbc.m115.676270] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/17/2022] Open
Abstract
Pyruvate kinase catalyzes the final step in glycolysis and is allosterically regulated to control flux through the pathway. Two models are proposed to explain how Escherichia coli pyruvate kinase type 1 is allosterically regulated: the "domain rotation model" suggests that both the domains within the monomer and the monomers within the tetramer reorient with respect to one another; the "rigid body reorientation model" proposes only a reorientation of the monomers within the tetramer causing rigidification of the active site. To test these hypotheses and elucidate the conformational and dynamic changes that drive allostery, we performed time-resolved electrospray ionization mass spectrometry coupled to hydrogen-deuterium exchange studies followed by mutagenic analysis to test the activation mechanism. Global exchange experiments, supported by thermostability studies, demonstrate that fructose 1,6-bisphosphate binding to the allosteric domain causes a shift toward a globally more dynamic ensemble of conformations. Mapping deuterium exchange to peptides within the enzyme highlight site-specific regions with altered conformational dynamics, many of which increase in conformational flexibility. Based upon these and mutagenic studies, we propose an allosteric mechanism whereby the binding of fructose 1,6-bisphosphate destabilizes an α-helix that bridges the allosteric and active site domains within the monomeric unit. This destabilizes the β-strands within the (β/α)8-barrel domain and the linked active site loops that are responsible for substrate binding. Our data are consistent with the domain rotation model but inconsistent with the rigid body reorientation model given the increased flexibility at the interdomain interface, and we can for the first time explain how fructose 1,6-bisphosphate affects the active site.
Collapse
Affiliation(s)
- Katherine A Donovan
- From the Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Shaolong Zhu
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Peter Liuni
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Fen Peng
- Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Sarah A Kessans
- From the Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada, Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada, and
| | - Renwick C J Dobson
- From the Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
20
|
Feng X, Liu BF, Li J, Liu X. Advances in coupling microfluidic chips to mass spectrometry. MASS SPECTROMETRY REVIEWS 2015; 34:535-57. [PMID: 24399782 DOI: 10.1002/mas.21417] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 05/26/2023]
Abstract
Microfluidic technology has shown advantages of low sample consumption, reduced analysis time, high throughput, and potential for integration and automation. Coupling microfluidic chips to mass spectrometry (Chip-MS) can greatly improve the overall analytical performance of MS-based approaches and expand their potential applications. In this article, we review the advances of Chip-MS in the past decade, covering innovations in microchip fabrication, microchips coupled to electrospray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-MS. Development of integrated microfluidic systems for automated MS analysis will be further documented, as well as recent applications of Chip-MS in proteomics, metabolomics, cell analysis, and clinical diagnosis.
Collapse
MESH Headings
- Animals
- Chromatography, Liquid/instrumentation
- Chromatography, Liquid/methods
- Electrophoresis, Microchip/instrumentation
- Electrophoresis, Microchip/methods
- Equipment Design
- Humans
- Lab-On-A-Chip Devices
- Lipids/analysis
- Metabolomics/instrumentation
- Metabolomics/methods
- Polysaccharides/analysis
- Proteins/analysis
- Proteomics/instrumentation
- Proteomics/methods
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianjun Li
- Human Health Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada K1A 0R6
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
21
|
Abstract
We investigated the fusion of high-speed liquid droplets as a way to record the kinetics of liquid-phase chemical reactions on the order of microseconds. Two streams of micrometer-size droplets collide with one another. The droplets that fused (13 μm in diameter) at the intersection of the two streams entered the heated capillary inlet of a mass spectrometer. The mass spectrum was recorded as a function of the distance x between the mass spectrometer inlet and the droplet fusion center. Fused droplet trajectories were imaged with a high-speed camera, revealing that the droplet fusion occurred approximately within a 500-μm radius from the droplet fusion center and both the size and the speed of the fused droplets remained relatively constant as they traveled from the droplet fusion center to the mass spectrometer inlet. Evidence is presented that the reaction effectively stops upon entering the heated inlet of the mass spectrometer. Thus, the reaction time was proportional to x and could be measured and manipulated by controlling the distance x. Kinetic studies were carried out in fused water droplets for acid-induced unfolding of cytochrome c and hydrogen-deuterium exchange in bradykinin. The kinetics of the former revealed the slowing of the unfolding rates at the early stage of the reaction within 50 μs. The hydrogen-deuterium exchange revealed the existence of two distinct populations with fast and slow exchange rates. These studies demonstrated the power of this technique to detect reaction intermediates in fused liquid droplets with microsecond temporal resolution.
Collapse
|
22
|
Zhu S, Shala A, Bezginov A, Sljoka A, Audette G, Wilson DJ. Hyperphosphorylation of intrinsically disordered tau protein induces an amyloidogenic shift in its conformational ensemble. PLoS One 2015; 10:e0120416. [PMID: 25767879 PMCID: PMC4359001 DOI: 10.1371/journal.pone.0120416] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
Tau is an intrinsically disordered protein (IDP) whose primary physiological role is to stabilize microtubules in neuronal axons at all stages of development. In Alzheimer's and other tauopathies, tau forms intracellular insoluble amyloid aggregates known as neurofibrillary tangles, a process that appears in many cases to be preceded by hyperphosphorylation of tau monomers. Understanding the shift in conformational bias induced by hyperphosphorylation is key to elucidating the structural factors that drive tau pathology, however, as an IDP, tau is not amenable to conventional structural characterization. In this work, we employ a straightforward technique based on Time-Resolved ElectroSpray Ionization Mass Spectrometry (TRESI-MS) and Hydrogen/Deuterium Exchange (HDX) to provide a detailed picture of residual structure in tau, and the shifts in conformational bias induced by hyperphosphorylation. By comparing the native and hyperphosphorylated ensembles, we are able to define specific conformational biases that can easily be rationalized as enhancing amyloidogenic propensity. Representative structures for the native and hyperphosphorylated tau ensembles were generated by refinement of a broad sample of conformations generated by low-computational complexity modeling, based on agreement with the TRESI-HDX profiles.
Collapse
Affiliation(s)
- Shaolong Zhu
- Chemistry Department, York University, Toronto, ON, Canada
| | - Agnesa Shala
- Chemistry Department, York University, Toronto, ON, Canada
| | - Alexandr Bezginov
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Adnan Sljoka
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | - Gerald Audette
- Chemistry Department, York University, Toronto, ON, Canada
| | - Derek J. Wilson
- Chemistry Department, York University, Toronto, ON, Canada
- Center for Research in Mass Spectrometry, Faculty of Science, York University, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
23
|
Dressler OJ, Yang T, Chang SI, Choo J, Wootton RCR, deMello AJ. Continuous and low error-rate passive synchronization of pre-formed droplets. RSC Adv 2015. [DOI: 10.1039/c5ra08044d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A microfluidic droplet-handling architecture for the synchronization of asynchronous, mis-matched, pre-formed droplet streams is demonstrated.
Collapse
Affiliation(s)
- O. J. Dressler
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - T. Yang
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - S.-I. Chang
- Department of Biochemistry
- Chungbuk National University
- Cheongju
- South Korea
| | - J. Choo
- Department of BionanoTechnology
- Hanyang University
- Ansan 426-791
- South Korea
| | - R. C. R. Wootton
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| | - A. J. deMello
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- 8093 Zürich
- Switzerland
| |
Collapse
|
24
|
Liuni P, Deng B, Wilson DJ. Comparing equilibrium and kinetic protein unfolding using time-resolved electrospray-coupled ion mobility mass spectrometry. Analyst 2015; 140:6973-9. [DOI: 10.1039/c5an00843c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We apply a new hyphenated method, TRESI-IMS-MS, to compare equilibrium and kinetic unfolding intermediates of cytochrome c.
Collapse
Affiliation(s)
- Peter Liuni
- Department of Chemistry and Centre for Research in Mass Spectrometry
- York University
- Toronto
- Canada
| | - Bin Deng
- Department of Chemistry and Centre for Research in Mass Spectrometry
- York University
- Toronto
- Canada
| | - Derek J. Wilson
- Department of Chemistry and Centre for Research in Mass Spectrometry
- York University
- Toronto
- Canada
| |
Collapse
|
25
|
Lento C, Audette GF, Wilson DJ. Time-resolved electrospray mass spectrometry — a brief history. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes the evolution of time-resolved electrospray ionization mass spectrometry (TRESI-MS), a technology that was developed in large part at Western University. TRESI-MS was initially designed to characterize rapid chemical and biochemical reactions occurring on the millisecond time scale without need for a chromophore. Early TRESI-MS setups usually consisted of continuous-flow rapid mixers with a fixed tee for analysis of a single time point, and later adjustable reaction chamber devices allowing for automatic tracking of the reaction over time. Advances in instrumentation design over the years have resulted in improved time resolution, with microfluidic device implementation allowing for coupling to hydrogen−deuterium exchange (HDX) experiments. Areas of application that will be discussed include the investigation of protein folding intermediates, identification of enzyme−substrate intermediates in the pre-steady state, and the use of time-resolved HDX to study the dynamics of weakly structured protein regions. While some limitations still persist with the method, the continued development of TRESI-MS and related approaches paves the way to a promising future and the study of unexplored application areas.
Collapse
Affiliation(s)
- Cristina Lento
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Gerald F. Audette
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
- Center for Research on Biomolecular Interactions, Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Derek J. Wilson
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
- Center for Research on Biomolecular Interactions, Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
- Center for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
26
|
Liuni P, Zhu S, Wilson DJ. Oxidative protein labeling with analysis by mass spectrometry for the study of structure, folding, and dynamics. Antioxid Redox Signal 2014; 21:497-510. [PMID: 24512178 DOI: 10.1089/ars.2014.5850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Analytical approaches that can provide insights into the mechanistic processes underlying protein folding and dynamics are few since the target analytes-high-energy structural intermediates-are short lived and often difficult to distinguish from coexisting structures. Folding "intermediates" can be populated at equilibrium using weakly denaturing solvents, but it is not clear that these species are identical to those that are transiently populated during folding under "native" conditions. Oxidative labeling with mass spectrometric analysis is a powerful alternative for structural characterization of proteins and transient protein species based on solvent exposure at specific sites. RECENT ADVANCES Oxidative labeling is increasingly used with exceedingly short (μs) labeling pulses, both to minimize the occurrence of artifactual structural changes due to the incorporation of label and to detect short-lived species. The recent introduction of facile photolytic approaches for producing reactive oxygen species is an important technological advance that will enable more widespread adoption of the technique. CRITICAL ISSUES The most common critique of oxidative labeling data is that even with brief labeling pulses, covalent modification of the protein may cause significant artifactual structural changes. FUTURE DIRECTIONS While the oxidative labeling with the analysis by mass spectrometry is mature enough that most basic methodological issues have been addressed, a complete systematic understanding of side chain reactivity in the context of intact proteins is an avenue for future work. Specifically, there remain issues around the impact of primary sequence and side chain interactions on the reactivity of "solvent-exposed" residues. Due to its analytical power, wide range of applications, and relative ease of implementation, oxidative labeling is an increasingly important technique in the bioanalytical toolbox.
Collapse
Affiliation(s)
- Peter Liuni
- 1 Department of Chemistry, York University , Toronto, Canada
| | | | | |
Collapse
|
27
|
Zinck N, Stark AK, Wilson DJ, Sharon M. An improved rapid mixing device for time-resolved electrospray mass spectrometry measurements. ChemistryOpen 2014; 3:109-14. [PMID: 25050229 PMCID: PMC4101726 DOI: 10.1002/open.201402002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 12/12/2022] Open
Abstract
Time series data can provide valuable insight into the complexity of biological reactions. Such information can be obtained by mass-spectrometry-based approaches that measure pre-steady-state kinetics. These methods are based on a mixing device that rapidly mixes the reactants prior to the on-line mass measurement of the transient intermediate steps. Here, we describe an improved continuous-flow mixing apparatus for real-time electrospray mass spectrometry measurements. Our setup was designed to minimize metal–solution interfaces and provide a sheath flow of nitrogen gas for generating stable and continuous spray that consequently enhances the signal-to-noise ratio. Moreover, the device was planned to enable easy mounting onto a mass spectrometer replacing the commercial electrospray ionization source. We demonstrate the performance of our apparatus by monitoring the unfolding reaction of cytochrome C, yielding improved signal-to-noise ratio and reduced experimental repeat errors.
Collapse
Affiliation(s)
- Nicholas Zinck
- Department of Chemistry, York University Toronto, ON M3J 1P3 (Canada)
| | - Ann-Kathrin Stark
- Department of Biological Chemistry, Weizmann Institute of Science 76100 Rehovot (Israel) E-mail:
| | - Derek J Wilson
- Department of Chemistry, York University Toronto, ON M3J 1P3 (Canada)
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of Science 76100 Rehovot (Israel) E-mail:
| |
Collapse
|
28
|
Lee TD, Moore RE, Keen D. Introducing samples directly into electrospray ionization mass spectrometers by direct infusion using a nanoelectrospray interface. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2013; 74:16.8.1-16.8.7. [PMID: 24510644 DOI: 10.1002/0471140864.ps1608s74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Procedures are described for constructing and using a microscale electrospray interface for direct infusion of samples into mass spectrometers. The sensitivity of the nanospray interface is a result of greatly reducing the flow of sample solution while preserving the analyte signal intensity. The described methodology provides a simple and robust way to analyze individual purified peptide and protein samples, i.e., samples that do not require liquid chromatography separation.
Collapse
Affiliation(s)
- Terry D Lee
- Beckman Research Institute of the City of Hope, Duarte, California
| | - Roger E Moore
- Beckman Research Institute of the City of Hope, Duarte, California
| | - Denise Keen
- Beckman Research Institute of the City of Hope, Duarte, California
| |
Collapse
|
29
|
Rob T, Gill PK, Golemi-Kotra D, Wilson DJ. An electrospray ms-coupled microfluidic device for sub-second hydrogen/deuterium exchange pulse-labelling reveals allosteric effects in enzyme inhibition. LAB ON A CHIP 2013; 13:2528-2532. [PMID: 23426018 DOI: 10.1039/c3lc00007a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, we introduce an integrated, electrospray mass spectrometry-coupled microfluidic chip that supports the complete workflow for 'bottom up' hydrogen/deuterium exchange (HDX) pulse labelling experiments. HDX pulse labelling is used to measure structural changes in proteins that occur after the initiation of a reaction, most commonly folding. In the present case, we demonstrate the device on the β-lactamase enzyme TEM-1, identifying active site changes that occur upon acylation by a covalent inhibitor and subtle changes in conformational dynamics that occur away from the active site over a period of several second after the inhibitor is bound. Our results demonstrate the power of microfluidics-enabled sub-second HDX pulse labelling as a tool for studying allostery and show some intriguing correlations with mutagenesis studies.
Collapse
Affiliation(s)
- Tamanna Rob
- Chemistry Department, York University, Toronto, Canada M3J 1P3
| | | | | | | |
Collapse
|
30
|
Resetca D, Wilson DJ. Characterizing rapid, activity-linked conformational transitions in proteins via sub-second hydrogen deuterium exchange mass spectrometry. FEBS J 2013; 280:5616-25. [DOI: 10.1111/febs.12332] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Diana Resetca
- Department of Chemistry; York University; Toronto Ontario Canada
| | - Derek J. Wilson
- Department of Chemistry; York University; Toronto Ontario Canada
- Center for Research in Mass Spectrometry; Department of Chemistry; York University; Toronto Ontario Canada
| |
Collapse
|
31
|
Zhu W, Yuan Y, Zhou P, Zeng L, Wang H, Tang L, Guo B, Chen B. The expanding role of electrospray ionization mass spectrometry for probing reactive intermediates in solution. Molecules 2012; 17:11507-37. [PMID: 23018925 PMCID: PMC6268401 DOI: 10.3390/molecules171011507] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/29/2012] [Accepted: 09/05/2012] [Indexed: 12/31/2022] Open
Abstract
Within the past decade, electrospray ionization mass spectrometry (ESI-MS) has rapidly occupied a prominent position for liquid-phase mechanistic studies due to its intrinsic advantages allowing for efficient "fishing" (rapid, sensitive, specific and simultaneous detection/identification) of multiple intermediates and products directly from a "real-world" solution. In this review we attempt to offer a comprehensive overview of the ESI-MS-based methodologies and strategies developed up to date to study reactive species in reaction solutions. A full description of general issues involved with probing reacting species from complex (bio)chemical reaction systems is briefly covered, including the potential sources of reactive intermediate (metabolite) generation, analytical aspects and challenges, basic rudiments of ESI-MS and the state-of-the-art technology. The main purpose of the present review is to highlight the utility of ESI-MS and its expanding role in probing reactive intermediates from various reactions in solution, with special focus on current progress in ESI-MS-based approaches for improving throughput, testing reality and real-time detection by using newly developed MS instruments and emerging ionization sources (such as ambient ESI techniques). In addition, the limitations of modern ESI-MS in detecting intermediates in organic reactions is also discussed.
Collapse
Affiliation(s)
- Weitao Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Yu Yuan
- School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha 410013, China;
| | - Peng Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Le Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Hua Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Ling Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Bin Guo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| |
Collapse
|
32
|
|
33
|
Rob T, Liuni P, Gill PK, Zhu S, Balachandran N, Berti PJ, Wilson DJ. Measuring dynamics in weakly structured regions of proteins using microfluidics-enabled subsecond H/D exchange mass spectrometry. Anal Chem 2012; 84:3771-9. [PMID: 22458633 DOI: 10.1021/ac300365u] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This work introduces an integrated microfluidic device for measuring rapid H/D exchange (HDX) in proteins. By monitoring backbone amide HDX on the millisecond to low second time scale, we are able to characterize conformational dynamics in weakly structured regions, such as loops and molten globule-like domains that are inaccessible in conventional HDX experiments. The device accommodates the entire MS-based HDX workflow on a single chip with residence times sufficiently small (ca. 8 s) that back-exchange is negligible (≤5%), even without cooling. Components include an adjustable position capillary mixer providing a variable-time labeling pulse, a static mixer for HDX quenching, a proteolytic microreactor for rapid protein digestion, and on-chip electrospray ionization (ESI). In the present work, we characterize device performance using three model systems, each illustrating a different application of 'time-resolved' HDX. Ubiquitin is used to illustrate a crude, high throughput structural analysis based on a single subsecond HDX time-point. In experiments using cytochrome c, we distinguish dynamic behavior in loops, establishing a link between flexibility and interactions with the heme prosthetic group. Finally, we localize an unusually high 'burst-phase' of HDX in the large tetrameric enzyme DAHP synthase to a 'molten globule-like' region surrounding the active site.
Collapse
Affiliation(s)
- Tamanna Rob
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Rob T, Wilson DJ. Time-resolved mass spectrometry for monitoring millisecond time-scale solution-phase processes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2012; 18:205-214. [PMID: 22641726 DOI: 10.1255/ejms.1176] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Many chemical and biochemical reactions equilibrate within a few seconds of initiation under "native" conditions. To understand the microscopic processes underlying these reactions, the most direct approach is to monitor the reaction as equilibrium is established (i.e. the reaction kinetics). However, this requires the ability to characterize the reaction mixture on the millisecond time-scale. In this review, we survey the contributions of time-resolved mass spectrometry (TR-MS) to the characterization of millisecond time-scale (bio)chemical processes, with a focus on biochemical applications. Compared to conventional time-resolved techniques, which use optical detection, the primary advantage of TR-MS is the ability to detect virtually all reactive species simultaneously. This provides a singularly high detail account of the reaction without the need for a chromophoric change on turnover or artificial chromophoric probes. To provide millisecond time-resolution, TR-MS set-ups usually employ continuous-flow rapid mixers, corresponding either to a fixed "tee" that provides a single reaction time-point or an adjustable position mixer that allows continuous reaction monitoring. TR-MS has been used to monitor processes with rates up to 500 s(-1) and to provide a detailed account of complex reactions involving 10 co- populated species. This corresponds to significantly lower time-resolution than optical methods, which can measure rates in excess of 900 s(-1) under ideal conditions, but substantially more detail (optical studies are typically limited to one or two analytes). TR-MS has been implemented on a number of platforms, including capillary and microfluidic set-ups. Capillary-based implementations are straightforward to fabricate and provide the most efficient rapid mixing. Microfluidic implementations have also been devised to enable multi-step experimental workflows that incorporate TR-MS. As a general method for time-resolved measurements, the applications for TR-MS are wide ranging. TR-MS has been used to identify intermediates in organic reactions, reveal protein (un)folding mechanisms, monitor enzyme catalysis in the pre-steady-state and, in conjunction with hydrogen-deuterium exchange, characterize protein conformational dynamics. While not without limitations, TR-MS represents a powerful alternative for measuring solution phase processes on the millisecond time-scale and a new, promising approach for revealing mechanistic details in (bio)chemical reactions.
Collapse
Affiliation(s)
- Tamanna Rob
- Department of Chemistry, York University, 4700 Keele St, Toronto, Ontario, M3J 1P3 Canada
| | | |
Collapse
|
35
|
Mark LP, Gill MC, Mahut M, Derrick PJ. Dual nano-electrospray for probing solution interactions and fast reactions of complex biomolecules. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2012; 18:439-46. [PMID: 23221113 DOI: 10.1255/ejms.1198] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A novel nano-electrospray emitter has been developed containing two separated channels running throughout the length of the emitter. The emitters have been fabricated from "theta-shaped" borosilicate capillaries. Loading of different solutions into the two different channels opens up the possibility to study short timescale interactions within a Taylor cone common to both channels. The common Taylor cone constitutes an extremely small "mixing volume" of the order of femtolitres. The products of electrospray from the dual-channel emitters have been analysed by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Results are presented for interactions of vancomycin with diacetyl-L-lysyl-D-alanyl- D-alanine and interactions of vancomycin with deuterated vancomycin. On the basis of these results, it is concluded that, during electrospray, specific non-covalent adducts have been formed and that there have been exchange reactions involving making and breaking of covalent bonds.
Collapse
Affiliation(s)
- Lewis P Mark
- Department of Chemistry, University of Warwick, Coventry, UK
| | | | | | | |
Collapse
|
36
|
Mozharov S, Nordon A, Littlejohn D, Wiles C, Watts P, Dallin P, Girkin JM. Improved method for kinetic studies in microreactors using flow manipulation and noninvasive Raman spectrometry. J Am Chem Soc 2011; 133:3601-8. [PMID: 21341771 DOI: 10.1021/ja1102234] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A novel method has been devised to derive kinetic information about reactions in microfluidic systems. Advantages have been demonstrated over conventional procedures for a Knoevenagel condensation reaction in terms of the time required to obtain the data (fivefold reduction) and the efficient use of reagents (tenfold reduction). The procedure is based on a step change from a low (e.g., 0.6 μL min(-1)) to a high (e.g., 14 μL min(-1)) flow rate and real-time noninvasive Raman measurements at the end of the flow line, which allows location-specific information to be obtained without the need to move the measurement probe along the microreactor channel. To validate the method, values of the effective reaction order n were obtained employing two different experimental methodologies. Using these values of n, rate constants k were calculated and compared. The values of k derived from the proposed method at 10 and 40 °C were 0.0356 ± 0.0008 mol(-0.3) dm(0.9) s(-1) (n = 1.3) and 0.24 ± 0.018 mol(-0.1) dm(0.3) s(-1) (n = 1.1), respectively, whereas the values obtained using a more laborious conventional methodology were 0.0335 ± 0.0032 mol(-0.4) dm(1.2) s(-1) (n = 1.4) at 10 °C and 0.244 ± 0.032 mol(-0.3) dm(0.9) s(-1) (n = 1.3) at 40 °C. The new approach is not limited to analysis by Raman spectrometry and can be used with different techniques that can be incorporated into the end of the flow path to provide rapid measurements.
Collapse
Affiliation(s)
- Sergey Mozharov
- WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Ben-Nissan G, Sharon M. Capturing protein structural kinetics by mass spectrometry. Chem Soc Rev 2011; 40:3627-37. [DOI: 10.1039/c1cs15052a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Robbins MD, Yoon OK, Barbula GK, Zare RN. Stopped-flow kinetic analysis using Hadamard transform time-of-flight mass spectrometry. Anal Chem 2010; 82:8650-7. [PMID: 20843011 DOI: 10.1021/ac101899n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A home-built stopped-flow apparatus is interfaced to a Hadamard transform time-of-flight mass spectrometer, which permits study of reaction kinetics with a time between reaction initiation and observation as short as about 100 ms and a sampling rate of chemical change that can approach 1 ms. This technique is applied to the trypsin-catalyzed hydrolysis of several peptides and is validated by comparing the results with literature values as well as to optical data obtained with the present stopped-flow apparatus. In addition, we report a kinetic study of the action of trypsin on a peptide having more than one cleavage site.
Collapse
Affiliation(s)
- Matthew D Robbins
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | |
Collapse
|
39
|
Konermann L, Stocks BB, Czarny T. Laminar Flow Effects During Laser-Induced Oxidative Labeling for Protein Structural Studies by Mass Spectrometry. Anal Chem 2010; 82:6667-74. [DOI: 10.1021/ac101326f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lars Konermann
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Bradley B. Stocks
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Tomasz Czarny
- Departments of Chemistry and Biochemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
40
|
Liuni P, Rob T, Wilson DJ. A microfluidic reactor for rapid, low-pressure proteolysis with on-chip electrospray ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:315-320. [PMID: 20049884 DOI: 10.1002/rcm.4391] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A microfluidic reactor that enables rapid digestion of proteins prior to on-line analysis by electrospray ionization mass spectrometry (ESI-MS) is introduced. The device incorporates a wide (1.5 cm), shallow (10 microm) reactor 'well' that is functionalized with pepsin-agarose, a design that facilitates low-pressure operation and high clogging resistance. Electrospray ionization is carried out directly from a short metal capillary integrated into the chip outlet. Fabrication, involving laser ablation of polymethyl methacrylate (PMMA), is exceedingly straightforward and inexpensive. High sequence coverage spectra of myoglobin (Mb), ubiquitin (Ub) and bovine serum albumin (BSA) digests were obtained after <4 s of residence time in the reactor. Stress testing showed little loss of performance over approximately 2 h continuous use at high flow rates (30 microL/min). The device provides a convenient platform for a range of applications in proteomics and structural biology, i.e. to enable high-throughput workflows or to limit back-exchange in spatially resolved hydrogen/deuterium exchange (HDX) experiments.
Collapse
Affiliation(s)
- Peter Liuni
- York University Chemistry Department, Toronto, ON, M3J 1P3, Canada
| | | | | |
Collapse
|
41
|
|