1
|
Intermolecular interactions in microhydrated ribonucleoside and deoxyribonucleoside: A computational study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Braud I, Zamith S, Cuny J, Zheng L, L’Hermite JM. Size-dependent proton localization in hydrated uracil clusters: A joint experimental and theoretical study. J Chem Phys 2019; 150:014303. [DOI: 10.1063/1.5044481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Isabelle Braud
- Laboratoire Collisions Agrégats Réactivité (LCAR/IRSAMC) UMR5589, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Sébastien Zamith
- Laboratoire Collisions Agrégats Réactivité (LCAR/IRSAMC) UMR5589, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques (LCPQ/IRSAMC) UMR5626, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Linjie Zheng
- Laboratoire de Chimie et Physique Quantiques (LCPQ/IRSAMC) UMR5626, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Jean-Marc L’Hermite
- Laboratoire Collisions Agrégats Réactivité (LCAR/IRSAMC) UMR5589, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
3
|
Wincel H. Microhydration of Deprotonated Nucleobases. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1383-92. [PMID: 27178262 PMCID: PMC4942500 DOI: 10.1007/s13361-016-1411-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Hydration reactions of deprotonated nucleobases (uracil, thymine, 5-fluorouracil,2-thiouracil, cytosine, adenine, and hypoxanthine) produced by electrospray have been experimentally studied in the gas phase at 10 mbar using a pulsed ion-beam high-pressure mass spectrometer. The thermochemical data, ΔH (o) , ΔS (o) , and ΔG (o) , for the monohydrated systems were determined. The hydration enthalpies were found to be similar for all studied systems and varied between 39.4 and 44.8 kJ/mol. A linear correlation was found between water binding energies in the hydrated complexes and the corresponding acidities of the most acidic site of nucleobases. The structural and energetic aspects of the precursors for the hydrated complexes are discussed in conjunction with available literature data. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Henryk Wincel
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224, Warsaw, Poland.
| |
Collapse
|
4
|
Alahmadi YJ, Gholami A, Fridgen TD. The protonated and sodiated dimers of proline studied by IRMPD spectroscopy in the N-H and O-H stretching region and computational methods. Phys Chem Chem Phys 2015; 16:26855-63. [PMID: 25375752 DOI: 10.1039/c4cp03104k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
IRMPD spectroscopy and computational chemistry techniques have been used to determine that the proton- and sodium-bound dimers of proline exist as a mixture of a number of different structures. Simulated annealing computations were found to be helpful in determining the unique structures of the protonated and sodiated dimers, augmenting chemical intuition. The experimental and computational results are consistent with the proton-bound dimer of N-protonated proline bound to zwitterionic proline. There was no spectroscopic evidence in the 3200-3800 cm(-1) region for a canonical structure which is predicted to have a weak N-H stretch at about 3440 cm(-1). A well resolved band at 1733 cm(-1) from a previous spectroscopic study (DOI: 10.1021/ja068715a ) was reassigned from a high energy canonical isomer to the C=O stretch of a lower energy zwitterionic structure. This band is a free carboxylate C=O stretch where protonated proline is hydrogen bonded to the other carboxylate oxygen which is also involved in an intramolecular hydrogen bond. Fifteen structures of the sodium bound proline dimer were computed to be within 10 kJ mol(-1) of Gibbs energy and eight structures were within 5 kJ mol(-1). None of these structures can be ruled out based on the experimental IRMPD spectrum. They all have an N-H stretching band predicted in a position that agrees with the experimental spectrum. However, only structures where one of the proline monomers is in the canonical form and having a free O-H bond can produce the band at ∼3600 cm(-1).
Collapse
|
5
|
Wu RR, Yang B, Frieler CE, Berden G, Oomens J, Rodgers MT. N3 and O2 protonated tautomeric conformations of 2'-deoxycytidine and cytidine coexist in the gas phase. J Phys Chem B 2015; 119:5773-84. [PMID: 25874502 DOI: 10.1021/jp5130316] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Infrared multiple photon dissociation action spectra of the protonated forms of the cytidyl nucleosides, 2'-deoxycytidine, [dCyd+H](+), and cytidine, [Cyd+H](+), are acquired over the IR fingerprint and hydrogen-stretching regions. Electronic structure calculations are performed at the B3LYP/6-311+G(d,p) level to determine the stable low-energy tautomeric conformations of these species generated upon electrospray ionization (ESI) and to generate the linear IR absorption spectra of these protonated nucleosides. Comparison between the experimental and theoretical spectra allows the tautomeric conformations of [dCyd+H](+) and [Cyd+H](+) populated by ESI to be determined. B3LYP predicts N3 as the preferred protonation site for both [dCyd+H](+) and [Cyd+H](+), whereas MP2 suggests that protonation at O2 is more favorable. The 2'-hydroxyl substituent does not significantly alter the structures of the B3LYP N3 and MP2 O2 protonated ground tautomeric conformations of [dCyd+H](+) vs [Cyd+H](+). [dCyd+H](+) and [Cyd+H](+) exhibit very similar spectral signatures in both regions. Nonetheless, the 2'-hydroxyl does affect the relative intensities of the IRMPD bands of [dCyd+H](+) vs [Cyd+H](+). The spectral features observed in the hydrogen-stretching region complement those of the fingerprint region and allow the N3 and O2 protonated tautomeric conformations to be readily distinguished. Comparison between the measured and computed spectra indicates that both N3 and O2 protonated tautomeric conformations coexist in the experiments, and the populations are dominated by the most stable N3 and O2 protonated tautomeric conformations. Least-squares fitting of the IRMPD spectra to the IR spectra for these most stable conformers suggests relative populations of ∼55% N3 vs 45% O2 protonated conformers of [dCyd+H](+), whereas ∼47% N3 vs 53% O2 protonated conformers of [Cyd+H](+). This change in the preferred site of protonation indicates that the 2'-hydroxyl substituent plays an important role in controlling the reactivity of the cytidyl nucleosides.
Collapse
Affiliation(s)
- R R Wu
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Bo Yang
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - C E Frieler
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - G Berden
- ‡Institute for Molecules and Materials, FELIX Facility, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- ‡Institute for Molecules and Materials, FELIX Facility, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.,§van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - M T Rodgers
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
6
|
Bacchus-Montabonel MC, Calvo F. Nanohydration of uracil: emergence of three-dimensional structures and proton-induced charge transfer. Phys Chem Chem Phys 2015; 17:9629-33. [DOI: 10.1039/c5cp00611b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stepwise hydration of uracil proceeds three dimensionally above three molecules and qualitatively changes the response to proton damage.
Collapse
Affiliation(s)
| | - Florent Calvo
- Laboratoire Interdisciplinaire de Physique
- Rue de La Piscine
- Campus Saint Martin d'Hères
- 38000 Grenoble
- France
| |
Collapse
|
7
|
Wincel H. Hydration energies of protonated and sodiated thiouracils. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:2134-2142. [PMID: 25270881 PMCID: PMC4221615 DOI: 10.1007/s13361-014-0987-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
Hydration reactions of protonated and sodiated thiouracils (2-thiouracil, 6-methyl-2-thiouracil, and 4-thiouracil) generated by electrospray ionization have been studied in a gas phase at 10 mbar using a pulsed ion-beam high-pressure mass spectrometer. The thermochemical data, ΔH(o)n, ΔS(o)n, and ΔG(o)n, for the hydrated systems were obtained by equilibrium measurements. The water binding energies of protonated thiouracils, [2SU]H(+) and [6Me2SU]H(+), were found to be of the order of 51 kJ/mol for the first, and 46 kJ/mol for the second water molecule. For [4SU]H(+), these values are 3-4 kJ/mol lower. For sodiated complexes, these energies are similar for all studied systems, and varied between 62 and 68 kJ/mol for the first and between 48 and 51 kJ/mol for the second water molecule. The structural aspects of the precursors for hydrated complexes are discussed in conjunction with available literature data.
Collapse
Affiliation(s)
- Henryk Wincel
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224, Warsaw, Poland,
| |
Collapse
|
8
|
Pedersen SØ, Støchkel K, Byskov CS, Baggesen LM, Nielsen SB. Gas-phase spectroscopy of protonated adenine, adenosine 5'-monophosphate and monohydrated ions. Phys Chem Chem Phys 2013; 15:19748-52. [PMID: 24141603 DOI: 10.1039/c3cp53742k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microsolvation of chromophore ions commonly has large effects on their electronic structure and as a result on their optical absorption spectra. Here spectroscopy of protonated adenine (AdeH(+)) and its complex with one water molecule isolated in vacuo was done using a home-built mass spectrometer in combination with a tuneable pulsed laser system. Experiments also included the protonated adenosine 5'-monophosphate nucleotide (AMPH(+)). In the case of bare AdeH(+) ions, one-photon absorption leads to four dominant fragment ions corresponding to ammonium and ions formed after loss of either NH3, HCN, or NH2CN. The yields of these were measured as a function of the wavelength of the light from 210 nm to 300 nm, and they were combined to obtain the total photoinduced dissociation at each wavelength (i.e., action spectrum). A broad band between 230 nm and 290 nm and the tail of a band with maximum below 210 nm (high-energy band) are seen. In the case of AdeH(+)(H2O), the dominant dissociation channel after photoexcitation in the low-energy band was simply loss of H2O while photodissociation of protonated AMP revealed two dominant dissociation channels associated with the formation of either AdeH(+) or loss of H3PO4. The action spectra of AdeH(+), AdeH(+)(H2O), and AMPH(+) are almost identical in the 230-290 nm region, and they resemble the absorption spectrum of protonated adenine in aqueous solution recorded at low pH. Hence from our work it is firmly established that the lowest-energy transitions are independent of the surroundings.
Collapse
Affiliation(s)
- Sara Øvad Pedersen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Furmanchuk A, Isayev O, Shishkin OV, Gorb L, Leszczynski J. Hydration of nucleic acid bases: a Car–Parrinello molecular dynamics approach. Phys Chem Chem Phys 2010; 12:3363-75. [DOI: 10.1039/b923930h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|