1
|
Lanzillotti MB, Brodbelt JS. Progress in Tandem Mass Spectrometry Data Analysis for Nucleic Acids. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39797409 DOI: 10.1002/mas.21923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
Mass spectrometry (MS) has become a critical tool in the characterization of covalently modified nucleic acids. Well-developed bottom-up approaches, where nucleic acids are digested with an endonuclease and the resulting oligonucleotides are separated before MS and MS/MS analysis, provide substantial insight into modified nucleotides in biological and synthetic nucleic. Top-down MS presents an alternative approach where the entire nucleic acid molecule is introduced to the mass spectrometer intact and then fragmented by MS/MS. Current top-down MS workflows have incorporated automated, on-line HPLC workflows to enable rapid desalting of nucleic acid samples for facile mass analysis without complication from adduction. Furthermore, optimization of MS/MS parameters utilizing collision, electron, or photon-based activation methods have enabled effective bond cleavage throughout the phosphodiester backbone while limiting secondary fragmentation, allowing characterization of progressively larger (~100 nt) nucleic acids and localization of covalent modifications. Development of software applications to perform automated identification of fragment ions has accelerated the broader adoption of mass spectrometry for analysis of nucleic acids. This review focuses on progress in tandem mass spectrometry for characterization of nucleic acids with particular emphasis on the software tools that have proven critical for advancing the field.
Collapse
|
2
|
Zuo MQ, Song G, Zhang JS, Dong MQ, Sun RX. Effect of Terminal Phosphate Groups on Collisional Dissociation of RNA Oligonucleotide Anions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2090-2101. [PMID: 39136314 DOI: 10.1021/jasms.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The increasing need for mass spectrometric analysis of RNA molecules calls for a better understanding of their gas-phase fragmentation behaviors. In this study, we investigate the effect of terminal phosphate groups on the fragmentation spectra of RNA oligonucleotides (oligos) using high-resolution mass spectrometry (MS). Negative-ion mode collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) were carried out on RNA oligos containing a terminal phosphate group on either end, both ends, or neither end. We find that terminal phosphate groups affect the fragmentation behavior of RNA oligos in a way that is dependent on the precursor charge state and the oligo length. Specifically, for precursor ions of RNA oligos of the same sequence, those with 5'- or 3'-phosphate, or both, have a higher charge state distribution and lose the phosphate group(s) in the form of a neutral (H3PO4 or HPO3) or an anion ([H2PO4]- or [PO3]-) upon CID or HCD. Such a neutral or charged loss is most conspicuous for precursor ions of an intermediate charge state, e.g., 3- for 4-nt oligos or 4- and 5- for 8-nt oligos. This decreases the intensity of sequencing ions (a-, a-B, b-, c-, d-, w-, x-, y-, z-ions) and hence is unfavorable for sequencing by CID or HCD. Removal of terminal phosphate groups by calf intestinal alkaline phosphatase improved MS analysis of RNA oligos. Additionally, the intensity of a fragment ion at m/z 158.925, which we identified as a dehydrated pyrophosphate anion ([HP2O6]-), is markedly increased by the presence of a terminal phosphate group. These findings expand the knowledge base necessary for software development for MS analysis of RNA.
Collapse
Affiliation(s)
- Mei-Qing Zuo
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Ge Song
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Ji-Shuai Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Rui-Xiang Sun
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Guzmán-Lorite M, Rosu F, Marina ML, García MC, Gabelica V. miRNA and DNA analysis by negative ion electron transfer dissociation and infrared multiple-photon dissociation mass spectrometry. Anal Chim Acta 2024; 1299:342431. [PMID: 38499418 DOI: 10.1016/j.aca.2024.342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The use of simple and hybrid fragmentation techniques for the identification of molecules in tandem mass spectrometry provides different and complementary information on the structure of molecules. Nevertheless, these techniques have not been as widely explored for oligonucleotides as for peptides or proteins. The analysis of microRNAs (miRNAs) warrants special attention, given their regulatory role and their relationship with several diseases. The application of different fragmentation techniques will be very interesting for their identification. RESULTS Four synthetic miRNAs and a DNA sequence were fragmented in an ESI-FT-ICR mass spectrometer using both simple and hybrid fragmentation techniques: CID, nETD followed by CID, IRMPD, and, for the first time, nETD in combination with IRMPD. The main fragmentation channel was base loss. The use of nETD-IRMPD resulted in d/z, a/w, and c/y ions at higher intensities. Moreover, nETD-IRMPD provided high sequence coverage and low internal fragmentation. Native MS analysis revealed that only miR159 and the DNA sequence formed stable dimers under physiological ionic strength. The use of organic co-solvents or additives resulted in a lower sequence coverage due to lesser overall ionization efficiency. NOVELTY This work demonstrates that the combination of nETD and IRMPD for miRNA fragmentation constitutes a suitable alternative to common fragmentation methods. This strategy resulted in efficient fragmentation of [miRNA]5- using low irradiation times and fewer internal fragments while ensuring a high sequence coverage. Moreover, given that such low charge states predominate upon spraying in physiological-like conditions, native MS can be applied for obtaining structural information at the same time.
Collapse
Affiliation(s)
- Miriam Guzmán-Lorite
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Frédéric Rosu
- Université de Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, F-33600, Pessac, France
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. Del Río", Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - María Concepción García
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. Del Río", Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain.
| | - Valérie Gabelica
- Université de Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, F-33600, Pessac, France; Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600, Pessac, France
| |
Collapse
|
4
|
Zhou S, Qi M, Luo Y, Li W, Liu Y, Guo C, Wei W, Chen G, Tu P, Feng H, Pan Y. Radical-Induced Dissociation for Oligonucleotide Sequencing by TiO 2/ZnAl-Layered Double Oxide-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 2023; 95:16505-16513. [PMID: 37902600 DOI: 10.1021/acs.analchem.3c02166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
De novo sequencing of oligonucleotides remains challenging, especially for oligonucleotides with post-transcriptional or synthetic modifications. Mass spectrometry (MS) sequencing can reliably detect and locate all of the modification sites in oligonucleotides via m/z variance. However, current MS-based sequencing methods exhibit complex spectra and low ion abundance and usually require coupled instrumentation. Herein, we demonstrate a method of oligonucleotide sequencing using TiO2/ZnAl-layered double oxide (LDO)-assisted laser desorption/ionization (LDI)-MS based on radical-induced dissociation (RID). ·CH2OH radicals can be produced on the surface of a TiO2/ZnAl-LDO matrix via ultraviolet light, inducing an attack on the active site of the oligonucleotide phosphate skeleton to create typical "a-, a-B-, c·-, d-, w-, and y"-type fragments. Compared with the spectra obtained via collision-based methods, such as collision-induced dissociation and higher-energy collisional dissociation, the LDI-MS spectra based on RID exhibit single-charged signals, fewer types of fragments, and a lower proportion of unknown noise peaks. We demonstrate full sequence coverage for a 6-mer 2'-O-methyl-modified oligonucleotide and a 21-mer small interfering RNA and show that RID can sequence oligonucleotides with modifications. Importantly, the mechanism responsible for the RID of the oligonucleotide phosphate skeleton was investigated through offline experiments, demonstrating consistent results with density functional theory calculations.
Collapse
Affiliation(s)
- Shiwen Zhou
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Menghui Qi
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Yuanqing Luo
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Wangyu Li
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310009, China
| | - Wei Wei
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Guanru Chen
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Peijun Tu
- Department of Environmental Medicine and Public Health, Mount Sinai Hospital, New York 10029, United States
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou 310027, China
| |
Collapse
|
5
|
Hannauer F, Black R, Ray AD, Stulz E, Langley GJ, Holman SW. Review of fragmentation of synthetic single-stranded oligonucleotides by tandem mass spectrometry from 2014 to 2022. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9596. [PMID: 37580500 PMCID: PMC10909466 DOI: 10.1002/rcm.9596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 08/16/2023]
Abstract
The fragmentation of oligonucleotides by mass spectrometry allows for the determination of their sequences. It is necessary to understand how oligonucleotides dissociate in the gas phase, which allows interpretation of data to obtain sequence information. Since 2014, a range of fragmentation mechanisms, including a novel internal rearrangement, have been proposed using different ion dissociation techniques. The recent publications have focused on the fragmentation of modified oligonucleotides such as locked nucleic acids, modified nucleobases (methylated, spacer, nebularine and aminopurine) and modification to the carbon 2'-position on the sugar ring; these modified oligonucleotides are of great interest as therapeutics. Comparisons of different dissociation techniques have been reported, including novel approaches such as plasma electron detachment dissociation and radical transfer dissociation. This review covers the period 2014-2022 and details the new knowledge gained with respect to oligonucleotide dissociation using tandem mass spectrometry (without priori sample digestion) during that time, with a specific focus on synthetic single-stranded oligonucleotides.
Collapse
Affiliation(s)
- Fabien Hannauer
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - Rachelle Black
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, OperationsAstraZenecaMacclesfieldUK
| | - Andrew D. Ray
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, OperationsAstraZenecaMacclesfieldUK
| | - Eugen Stulz
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - G. John Langley
- Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - Stephen W. Holman
- Chemical Development, Pharmaceutical Technology & Development, OperationsAstraZenecaMacclesfieldUK
| |
Collapse
|
6
|
Dias DM, Coombes SR, Benstead D, Whittaker DTE, Ray A, Xu J. Advances in the Specificity of Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy Based Structural Characterisation Methods for Synthetic Oligonucleotides. J Pharm Sci 2023; 112:2524-2531. [PMID: 37105438 DOI: 10.1016/j.xphs.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Identity testing is a critical part in the development of a therapeutic synthetic oligonucleotide. Tandem Mass Spectrometry (MS/MS) is commonly used for the analysis of oligonucleotides to obtain structural and sequence information, however there are challenges resulting from chemical modifications introduced to improve their pharmacokinetics and stability. For these structurally complex oligonucleotides, Nuclear Magnetic Resonance (NMR) Spectroscopy has found limited use for characterisation and identity testing, as only partial NMR resonance assignment for oligonucleotides is achieved without isotopic labelling methodologies. Regardless of the choice of method used for oligonucleotide analysis, the specificity is of critical importance. In this work, in-source dissociation mass spectrometry and proton (1H) and carbon (13C) NMR at high temperature were used to analyse danvatirsen, a 16 nucleotide phosphorothioate antisense oligonucleotide, and its closely related switch sequences. Both approaches have shown specificity to distinguish danvatirsen from these similar sequences.
Collapse
Affiliation(s)
- David M Dias
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Steven R Coombes
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - David Benstead
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - David T E Whittaker
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Andrew Ray
- New Modalities Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| | - Jingshu Xu
- Cellzome, Meyerhofstraße, Heidelberg, Germany
| |
Collapse
|
7
|
Macias LA, Garcia SP, Back KM, Wu Y, Johnson GH, Kathiresan S, Bellinger AM, Rohde E, Freitas MA, Madsen JA. Spacer Fidelity Assessments of Guide RNA by Top-Down Mass Spectrometry. ACS CENTRAL SCIENCE 2023; 9:1437-1452. [PMID: 37521788 PMCID: PMC10375574 DOI: 10.1021/acscentsci.3c00289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 08/01/2023]
Abstract
The advancement of CRISPR-based gene editing tools into biotherapeutics offers the potential for cures to genetic disorders and for new treatment paradigms for even common diseases. Arguably, the most important component of a CRISPR-based medicine is the guide RNA, which is generally large (>100-mer) synthetic RNA composed of a "tracr" and "spacer" region, the latter of which dictates the on-target editing site as well as potential undesired off-target edits. Aiming to advance contemporary capabilities for gRNA characterization to ensure the spacer region is of high fidelity, top-down mass spectrometry was herein implemented to provide direct and quantitative assessments of highly modified gRNA. In addition to sequencing the spacer region and pinpointing modifications, top-down mass spectra were utilized to quantify single-base spacer substitution impurities down to <1% and to decipher highly dissimilar spacers. To accomplish these results in an automated fashion, we devised custom software capable of sequencing and quantifying impurities in gRNA spacers. Notably, we developed automated tools that enabled the quantification of single-base substitutions, including advanced isotopic pattern matching for C > U and U > C substitutions, and created a de novo sequencing strategy to facilitate the identification and quantification of gRNA impurities with highly dissimilar spacer regions.
Collapse
Affiliation(s)
- Luis A. Macias
- Verve
Therapeutics, 201 Brookline Avenue, Suite 601, Boston, Massachusetts 02215, United States
| | - Sara P. Garcia
- Verve
Therapeutics, 201 Brookline Avenue, Suite 601, Boston, Massachusetts 02215, United States
| | - Kayla M. Back
- Verve
Therapeutics, 201 Brookline Avenue, Suite 601, Boston, Massachusetts 02215, United States
| | - Yue Wu
- Verve
Therapeutics, 201 Brookline Avenue, Suite 601, Boston, Massachusetts 02215, United States
| | - G. Hall Johnson
- MassMatrix,
Inc., 600 Teteridge Road, Columbus, Ohio 43214, United States
| | - Sekar Kathiresan
- Verve
Therapeutics, 201 Brookline Avenue, Suite 601, Boston, Massachusetts 02215, United States
| | - Andrew M. Bellinger
- Verve
Therapeutics, 201 Brookline Avenue, Suite 601, Boston, Massachusetts 02215, United States
| | - Ellen Rohde
- Verve
Therapeutics, 201 Brookline Avenue, Suite 601, Boston, Massachusetts 02215, United States
| | - Michael A. Freitas
- MassMatrix,
Inc., 600 Teteridge Road, Columbus, Ohio 43214, United States
- The
Ohio State University, 281 West Lane Avenue, Columbus, Ohio 43210, United States
| | - James A. Madsen
- Verve
Therapeutics, 201 Brookline Avenue, Suite 601, Boston, Massachusetts 02215, United States
| |
Collapse
|
8
|
Hannauer F, Black R, Ray AD, Stulz E, Langley GJ, Holman SW. Advancements in the characterisation of oligonucleotides by high performance liquid chromatography-mass spectrometry in 2021: A short review. ANALYTICAL SCIENCE ADVANCES 2022; 3:90-102. [PMID: 38715636 PMCID: PMC10989539 DOI: 10.1002/ansa.202100066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2024]
Abstract
The first oligonucleotide therapeutic was approved by the Food and Drug Administration in 1998, and since then, 12 nucleic acids have been commercialised as medicines. To be approved, the oligonucleotides need to be identified and characterised as well as its related impurities. Different methods exist, but the most commonly used is ion-pairing reversed-phase liquid chromatography with tandem mass spectrometry. The separation obtained depends on the mobile phase and column used. Other methods have been developed, notably by using hydrophilic interaction chromatography and two-dimensional high performance liquid chromatography. Furthermore, ion-pairing reversed-phase high performance liquid chromatography ultra-violet spectroscopy detection and mass spectrometry has been optimised for the analysis of methylated nucleobases due to the utilisation of this modification in the drugs. This review covers the recent advancements in the analysis and characterisation of oligonucleotides in 2021 by high performance liquid chromatography mass spectrometry, notably by hydrophilic interaction chromatography and two-dimensional liquid chromatography but also the different parameters that influence the analysis by ion-pairing reversed-phase high performance liquid chromatography, the characterisation of methylated nucleobases, and the recent software developed for oligonucleotides.
Collapse
Affiliation(s)
- Fabien Hannauer
- Department of Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - Rachelle Black
- New Modalities Product DevelopmentPharmaceutical Technology & Development, Operations, AstraZenecaMacclesfieldUK
| | - Andrew D. Ray
- New Modalities Product DevelopmentPharmaceutical Technology & Development, Operations, AstraZenecaMacclesfieldUK
| | - Eugen Stulz
- Department of Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - G. John Langley
- Department of Chemistry, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| | - Stephen W. Holman
- Chemical DevelopmentPharmaceutical Technology & Development, Operations, AstraZenecaMacclesfieldUK
| |
Collapse
|
9
|
Pourshahian S. THERAPEUTIC OLIGONUCLEOTIDES, IMPURITIES, DEGRADANTS, AND THEIR CHARACTERIZATION BY MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:75-109. [PMID: 31840864 DOI: 10.1002/mas.21615] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oligonucleotides are an emerging class of drugs that are manufactured by solid-phase synthesis. As a chemical class, they have unique product-related impurities and degradants, characterization of which is an essential step in drug development. The synthesis cycle, impurities produced during the synthesis and degradation products are presented and discussed. The use of liquid chromatography combined with mass spectrometry for characterization and quantification of product-related impurities and degradants is reviewed. In addition, sequence determination of oligonucleotides by gas-phase fragmentation and indirect mass spectrometric methods is discussed. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Soheil Pourshahian
- Janssen Pharmaceutical Companies of Johnson & Johnson, South San Francisco, CA, 94080
| |
Collapse
|
10
|
Goto R, Miyakawa S, Inomata E, Takami T, Yamaura J, Nakamura Y. De novo sequencing of highly modified therapeutic oligonucleotides by hydrophobic tag sequencing coupled with LC-MS. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:78-93. [PMID: 27935159 DOI: 10.1002/jms.3902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Correct sequences are prerequisite for quality control of therapeutic oligonucleotides. However, there is no definitive method available for determining sequences of highly modified therapeutic RNAs, and thereby, most of the oligonucleotides have been used clinically without direct sequence determination. In this study, we developed a novel sequencing method called 'hydrophobic tag sequencing'. Highly modified oligonucleotides are sequenced by partially digesting oligonucleotides conjugated with a 5'-hydrophobic tag, followed by liquid chromatography-mass spectrometry analysis. 5'-Hydrophobic tag-printed fragments (5'-tag degradates) can be separated in order of their molecular masses from tag-free oligonucleotides by reversed-phase liquid chromatography. As models for the sequencing, the anti-VEGF aptamer (Macugen) and the highly modified 38-mer RNA sequences were analyzed under blind conditions. Most nucleotides were identified from the molecular weight of hydrophobic 5'-tag degradates calculated from monoisotopic mass in simple full mass data. When monoisotopic mass could not be assigned, the nucleotide was estimated using the molecular weight of the most abundant mass. The sequences of Macugen and 38-mer RNA perfectly matched the theoretical sequences. The hydrophobic tag sequencing worked well to obtain simple full mass data, resulting in accurate and clear sequencing. The present study provides for the first time a de novo sequencing technology for highly modified RNAs and contributes to quality control of therapeutic oligonucleotides. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- R Goto
- Bioanalysis Business Department, CMIC Pharma Science Co., Ltd., 17-18, Nakahata-cho, Nishiwaki-shi, Hyogo, 677-0032, Japan
| | - S Miyakawa
- Exploratory Research Laboratory, RIBOMIC Inc., 3-16-13, Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| | - E Inomata
- Exploratory Research Laboratory, RIBOMIC Inc., 3-16-13, Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| | - T Takami
- Bioanalysis Department, CMIC, Inc., Hoffman Estates, Illinois, 60192-3702, USA
| | - J Yamaura
- Exploratory Research Laboratory, RIBOMIC Inc., 3-16-13, Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| | - Y Nakamura
- Exploratory Research Laboratory, RIBOMIC Inc., 3-16-13, Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
- Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| |
Collapse
|
11
|
Schürch S. Characterization of nucleic acids by tandem mass spectrometry - The second decade (2004-2013): From DNA to RNA and modified sequences. MASS SPECTROMETRY REVIEWS 2016; 35:483-523. [PMID: 25288464 DOI: 10.1002/mas.21442] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 05/04/2014] [Accepted: 05/04/2014] [Indexed: 06/03/2023]
Abstract
Nucleic acids play key roles in the storage and processing of genetic information, as well as in the regulation of cellular processes. Consequently, they represent attractive targets for drugs against gene-related diseases. On the other hand, synthetic oligonucleotide analogues have found application as chemotherapeutic agents targeting cellular DNA and RNA. The development of effective nucleic acid-based chemotherapeutic strategies requires adequate analytical techniques capable of providing detailed information about the nucleotide sequences, the presence of structural modifications, the formation of higher-order structures, as well as the interaction of nucleic acids with other cellular components and chemotherapeutic agents. Due to the impressive technical and methodological developments of the past years, tandem mass spectrometry has evolved to one of the most powerful tools supporting research related to nucleic acids. This review covers the literature of the past decade devoted to the tandem mass spectrometric investigation of nucleic acids, with the main focus on the fundamental mechanistic aspects governing the gas-phase dissociation of DNA, RNA, modified oligonucleotide analogues, and their adducts with metal ions. Additionally, recent findings on the elucidation of nucleic acid higher-order structures by tandem mass spectrometry are reviewed. © 2014 Wiley Periodicals, Inc., Mass Spec Rev 35:483-523, 2016.
Collapse
Affiliation(s)
- Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| |
Collapse
|
12
|
Roussis SG. A Novel and Intuitive Method of Displaying and Interacting with Mass Difference Information: Application to Oligonucleotide Drug Impurities. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1150-1164. [PMID: 25836378 DOI: 10.1007/s13361-015-1115-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/26/2015] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
A new method is presented for determining relationships between components in complex analytical systems. The method uses the mass differences between peaks in high resolution electrospray ionization (ESI) mass spectra. It relates peaks that share common mass differences. The method is based on the fundamental assumption that peaks in the spectra having the same exact mass difference are related by the same chemical moiety/substructure. Moreover, the presence (or absence/loss) of the same chemical moiety from a series of molecules may reflect similarities in the mechanisms of formation of each molecule. The determined mass differences in the spectra are used to automatically differentiate the types of components in the samples. Contour plots and summary plots of the summed total ion signal as a function of the mass difference are generated, which form powerful tools for the rapid and automated determination of the components in the samples and for comparisons with other samples. For the first time, in this work a unique profile contour plot has been developed that permits the interactive interrogation of the mass range by mass difference data matrix to obtain valuable information about components that share a common mechanism of formation, and all possible mechanisms of formation linked to a selected precursor molecule. The method can be used as an additional and complementary method to the existing analytical methods to determine relationships between components in complex chemical systems.
Collapse
|
13
|
Riml C, Glasner H, Rodgers MT, Micura R, Breuker K. On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent. Nucleic Acids Res 2015; 43:5171-81. [PMID: 25904631 PMCID: PMC4446422 DOI: 10.1093/nar/gkv288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/14/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022] Open
Abstract
Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in 'top-down' strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)(n+) and (M-nH)(n-) ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into C: and Y: ions from phosphodiester bond cleavage.
Collapse
Affiliation(s)
- Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Heidelinde Glasner
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202-3489, United States
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Nakayama H, Yamauchi Y, Taoka M, Isobe T. Direct Identification of Human Cellular MicroRNAs by Nanoflow Liquid Chromatography–High-Resolution Tandem Mass Spectrometry and Database Searching. Anal Chem 2015; 87:2884-91. [DOI: 10.1021/ac504378s] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hiroshi Nakayama
- Biomolecular
Characterization Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Core
Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yoshio Yamauchi
- Core
Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Masato Taoka
- Core
Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Toshiaki Isobe
- Core
Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| |
Collapse
|
15
|
Brodbelt JS. Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem Soc Rev 2014; 43:2757-83. [PMID: 24481009 PMCID: PMC3966968 DOI: 10.1039/c3cs60444f] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodissociation mass spectrometry combines the ability to activate and fragment ions using photons with the sensitive detection of the resulting product ions by mass spectrometry. This combination affords a versatile tool for characterization of biological molecules. The scope and breadth of photodissociation mass spectrometry have increased substantially over the past decade as new research groups have entered the field and developed a number of innovative applications that illustrate the ability of photodissociation to produce rich fragmentation patterns, to cleave bonds selectively, and to target specific molecules based on incorporation of chromophores. This review focuses on many of the key developments in photodissociation mass spectrometry over the past decade with a particular emphasis on its applications to biological molecules.
Collapse
|
16
|
Fragmentation Reactions of Nucleic Acid Ions in the Gas Phase. PHYSICAL CHEMISTRY IN ACTION 2014. [DOI: 10.1007/978-3-642-54842-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Fisher HC, Smith M, Ashcroft AE. De novo sequencing of short interfering ribonucleic acids facilitated by use of tandem mass spectrometry with ion mobility spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2247-2254. [PMID: 24019190 DOI: 10.1002/rcm.6685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/03/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE The use of RNAi for new therapeutics is becoming more widespread. To improve the development and quality control of such materials there is a need for rapid, accurate and meaningful analyses. Here, the use of negative ion nano-electrospray ionisation tandem mass spectrometry with ion mobility spectrometry (nESI-MS/MS-IMS-MS) is shown to simplify data interpretation and lead to higher sequence coverage. METHODS A set of 20-nucleotide RNA molecules was analysed using nESI-MS/MS and their sequences determined manually with the aid of the Simple Oligonucleotide Sequencer (SOS) program. The RNAs were also analysed using nESI-MS/MS-IMS-MS. This incorporates an extra step involving travelling-wave IMS separation of the product ions into groups according to the number of charges that the ions carry. Following this, the RNA sequences were determined from the separated groups of ions. RESULTS nESI-MS/MS collision-induced dissociation of the RNA sequences produced w, y, a-(Base) and c product ions. Sequence determination resulted in incomplete coverage with bases in the centre of the sequences being unidentifiable because of the plethora of overlapping ions. Sequencing carried out from the nESI-MS/MS-IMS-MS data, whereby individual product ion spectra arising only from ions carrying the same charge were generated, gave full sequence coverage for each nucleotide (except y1 ) with assignment confirmation from a minimum of four different product ions. CONCLUSIONS Using nESI-MS/MS-IMS-MS to analyse a number of 20-nucleotide RNA molecules produced full sequence coverage with 100% accuracy, in addition to molecular mass confirmation. This method has the potential for automation for higher sample throughput and thus constitutes a robust approach for the quality control of RNAs in therapeutics.
Collapse
Affiliation(s)
- Henry C Fisher
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
18
|
Yang J, Leopold P, Helmy R, Parish C, Arvary B, Mao B, Meng F. Design and application of an easy to use oligonucleotide mass calculation program. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1315-1318. [PMID: 23740032 DOI: 10.1007/s13361-013-0643-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 06/02/2023]
Abstract
With the development of new synthesis procedures, an ever increasing number of chemical modifications can now be incorporated into synthetic oligonucleotides, representing new challenges for analytical chemists to efficiently identify and characterize such molecules. While conventional mass spectrometry (MS) has proven to be a powerful tool to study nucleic acids, new and improved methods and software are now needed to address this emerging challenge. In this report, we describe a simple yet powerful program that affords great flexibility in the calculation of theoretical masses for conventional as well as modified oligonucleotide molecules. This easy to use program can accept input oligonucleotide sequences and then calculate the theoretical mass values for full length products, process impurities, potential metabolites, and gas phase fragments. We intentionally designed this software so that modified nucleotide residues can be incorporated into oligonucleotide sequences, and corresponding mass values can be rapidly calculated. To test the utility of this program, two oligonucleotides that contain a large number of chemical modifications were synthesized. We have analyzed these samples using a Q-TOF mass spectrometer and compared the calculated masses to the observed ones. We found that all of the data matched very well with less than 30 ppm mass errors, well within the expectation for our instrument operated in its current mode. These data confirmed the validity of calculations performed with this new software.
Collapse
Affiliation(s)
- Jiong Yang
- Analytical Chemistry, Merck Research Labs, Merck and Co., Inc., Rahway, NJ 07065, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Taucher M, Breuker K. Characterization of modified RNA by top-down mass spectrometry. Angew Chem Int Ed Engl 2012; 51:11289-92. [PMID: 23042528 PMCID: PMC3532624 DOI: 10.1002/anie.201206232] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Indexed: 11/11/2022]
Abstract
Characteristic mass differences between fragment ions from backbone cleavage of RNA by electron detachment (d, w) and fragment ions from collisionally activated dissociation (c, y) provide extensive sequence information. Structure analysis by this approach should be especially useful for the detailed characterization of synthetic or post-transcriptionally modified RNA.
Collapse
Affiliation(s)
- Monika Taucher
- Institut für Organische Chemie and Center for Molecular Biosciences Innsbruck (CMBI), Universität InnsbruckInnrain 80–82, 6020 Innsbruck (Austria)
| | - Kathrin Breuker
- Institut für Organische Chemie and Center for Molecular Biosciences Innsbruck (CMBI), Universität InnsbruckInnrain 80–82, 6020 Innsbruck (Austria)
| |
Collapse
|
20
|
Taucher M, Breuker K. Characterization of Modified RNA by Top-Down Mass Spectrometry. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Martens SM, Marta RA, Martens JK, McMahon TB. Consecutive fragmentation mechanisms of protonated ferulic acid probed by infrared multiple photon dissociation spectroscopy and electronic structure calculations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1697-1706. [PMID: 22864827 DOI: 10.1007/s13361-012-0438-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/21/2012] [Accepted: 06/23/2012] [Indexed: 06/01/2023]
Abstract
Protonated ferulic acid and its principle fragment ion have been characterized using infrared multiple photon dissociation spectroscopy and electronic structure calculations at the B3LYP/6-311 + G(d,p) level of theory. Due to its extensively conjugated structure, protonated ferulic acid is observed to yield three stable fragment ions in IRMPD experiments. It is proposed that two parallel fragmentation pathways of protonated ferulic acid are being observed. The first pathway involves proton transfer, resulting in the loss of water and subsequently carbon monoxide, producing fragment ions m/z 177 and 149, respectively. Optimization of m/z 177 yields a species containing an acylium group, which is supported by a diagnostic peak in the IRMPD spectrum at 2168 cm(-1). The second pathway involves an alternate proton transfer leading to loss of methanol and rearrangement to a five-membered ring.
Collapse
|
22
|
Izumi Y, Takimura S, Yamaguchi S, Iida J, Bamba T, Fukusaki E. Application of electrospray ionization ion trap/time-of-flight mass spectrometry for chemically-synthesized small RNAs. J Biosci Bioeng 2012; 113:412-9. [DOI: 10.1016/j.jbiosc.2011.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/06/2011] [Accepted: 11/08/2011] [Indexed: 12/13/2022]
|
23
|
Giessing AMB, Kirpekar F. Mass spectrometry in the biology of RNA and its modifications. J Proteomics 2012; 75:3434-49. [PMID: 22348820 DOI: 10.1016/j.jprot.2012.01.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 01/31/2023]
Abstract
Many powerful analytical techniques for investigation of nucleic acids exist in the average modern molecular biology lab. The current review will focus on questions in RNA biology that have been answered by the use of mass spectrometry, which means that new biological information is the purpose and outcome of most of the studies we refer to. The review begins with a brief account of the subject "MS in the biology of RNA" and an overview of the prevalent RNA modifications identified to date. Fundamental considerations about mass spectrometric analysis of RNA are presented with the aim of detailing the analytical possibilities and challenges relating to the unique chemical nature of nucleic acids. The main biological topics covered are RNA modifications and the enzymes that perform the modifications. Modifications of RNA are essential in biology, and it is a field where mass spectrometry clearly adds knowledge of biological importance compared to traditional methods used in nucleic acid research. The biological applications are divided into analyses exclusively performed at the building block (mainly nucleoside) level and investigations involving mass spectrometry at the oligonucleotide level. We conclude the review discussing aspects of RNA identification and quantifications, which are upcoming fields for MS in RNA research. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Anders M B Giessing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | |
Collapse
|
24
|
Smith M. Characterisation of a modified oligonucleotide together with its synthetic impurities using accurate mass measurements. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:511-525. [PMID: 21259360 DOI: 10.1002/rcm.4886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oligonucleotide-based drugs are beginning to establish themselves within the pharmaceutical industry as important agents in the treatment of various disease states with the potential of exhibiting high specificity with gene targeted therapies. Recent studies regarding RNA interference has stimulated interest in this field. There are now an increasing number of oligonucleotide-based pharmaceutical products in various stages of clinical development for the treatment of life-threatening diseases. As a result, the production of synthetic oligonucleotides has become increasingly important, with both antisense and RNAi-related oligonucleotides under development as therapeutic agents. One potential drug candidate currently under development at GlaxoSmithKline, is a 2'-O-methyl phosphorothioate in which the non-bridging oxygens of the phosphate diester are replaced with sulphur. Oligonucleotides are polymeric sequences made from an array of nucleotides (RNA, DNA and their respective analogs) usually ranging from 20-100 nucleotides. The polar nature, low thermal stability, complexity and large molecular weights of oligonucleotides have posed a challenge for the analysis of oligonucleotides by mass spectrometry. This paper demonstrates the use of negative ion electrospray with a combination of high resolution and high mass accuracy for the characterisation of oligonucleotides with the intention of supporting an evidence of structure document for a regulatory submission. This is a new area within the mass spectrometry field and as such there is limited software amongst the instrument companies for the data processing for the analysis of these compounds. Therefore, many of the examples in the literature only use mass spectrometry to generate average molecular weights by deconvoluting the multiple charged states observed to give an average molecular weight; under-utilizing the capability of high-resolution instruments.
Collapse
Affiliation(s)
- Marco Smith
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, UK.
| |
Collapse
|
25
|
Brodbelt JS. Shedding light on the frontier of photodissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:197-206. [PMID: 21472579 DOI: 10.1007/s13361-010-0023-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/11/2010] [Accepted: 10/13/2010] [Indexed: 05/30/2023]
Abstract
The development of new ion activation/dissociation methods is motivated by the need for more versatile ways to characterize structures of ions, especially in the growing arena of biological mass spectrometry in which better tools for determining sequences, modifications, interactions, and conformations of biopolymers are essential. Although most agree that collision-induced dissociation (CID) remains the gold standard for ion activation/dissociation, recent inroads in electron- and photon-based activation methods have cemented their role as outstanding alternatives. This article will focus on the impact of photodissociation, including its strengths and drawbacks as an analytical tool, and its potential for further development in the next decade. Moreover, the discussion will emphasize photodissociation in quadrupole ion traps, because that platform has been used for one of the greatest arrays of new applications over the past decade.
Collapse
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
26
|
Ganisl B, Taucher M, Riml C, Breuker K. Charge as you like! Efficient manipulation of negative ion net charge in electrospray ionization of proteins and nucleic acids. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:333-343. [PMID: 22006635 DOI: 10.1255/ejms.1140] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Acidic proteins and nucleic acids such as RNA are most readily ionized in electrospray ionization (ESI) operated in negative-ion mode. The multiply deprotonated protein or RNA ions can be used as precursors in top- down mass spectrometry. Because the performance of the dissociation method used critically depends on precursor ion negative net charge, it is important that the extent of charging in ESI can be manipulated efficiently. We show here that (M - nH)(n-) ion net charge of proteins and RNA can be controlled efficiently by the addition of organic bases to the electrosprayed solution. Our study also highlights the fact that ion formation in ESI in negative mode is only poorly understood.
Collapse
|