1
|
Glocker MO, Lupu LM, Petre BA. Michael Przybylski (1948-2023) Devoted Half a Century to Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1957-1961. [PMID: 37531352 DOI: 10.1021/jasms.3c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Michael Przybylski (1948-2023) was a Polymer Chemist by training and devoted nearly his entire scientific life, almost 50 years, to mass spectrometry and its biomedical applications. After earning his PhD in Chemistry, there followed a Postdoc stay at the National Cancer Institute, Bethesda, MD, USA, and his habilitation at the University of Mainz, Germany. Soon thereafter, Michael Przybylski took the Chair for Analytical Chemistry at the University of Konstanz, Germany, where he served as Director of the Analytical Chemistry and Biopolymer Structure Analysis Laboratory. As Emeritus Michael Przybylski moved the Steinbeis Centre for Biopolymer Analytics and Biomedical Mass Spectrometry to Rüsselsheim, Germany. Michael Przybylski's research was from the beginning interdisciplinary-oriented and in many ways groundbreaking: leading to over 400 scientific papers published in internationally renowned journals and to about 25 patents. Michael Przybylski gave approximately 150 invited lectures and was awarded several scientific prizes. In recognition of his outstanding achievements and fruitful collaboration, he received the Doctorate of honor from the "Alexandru Ioan Cuza" University of Iaşi, Romania. Michael Przybylski was the Director of the by him founded "Biopolymer Analytics and Biomedical Mass Spectrometry" research center until his sudden and unexpected death.
Collapse
Affiliation(s)
- Michael O Glocker
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Loredana M Lupu
- AffyMSLifeChem Center for Biopolymer Analysis and Biomedical Mass Spectrometry, 65428 Rüsselsheim am Main, Germany
| | - Brindusa-Alina Petre
- Faculty of Chemistry, Group of Biochemistry, "Alexandru Ioan Cuza" University of Iaşi, Bldv. Carol I, No.11, 700506 Iaşi, Romania
| |
Collapse
|
2
|
Lupu LM, Wiegand P, Holdschick D, Mihoc D, Maeser S, Rawer S, Völklein F, Malek E, Barka F, Knauer S, Uth C, Hennermann J, Kleinekofort W, Hahn A, Barka G, Przybylski M. Identification and Affinity Determination of Protein-Antibody and Protein-Aptamer Epitopes by Biosensor-Mass Spectrometry Combination. Int J Mol Sci 2021; 22:12832. [PMID: 34884636 PMCID: PMC8657952 DOI: 10.3390/ijms222312832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Analytical methods for molecular characterization of diagnostic or therapeutic targets have recently gained high interest. This review summarizes the combination of mass spectrometry and surface plasmon resonance (SPR) biosensor analysis for identification and affinity determination of protein interactions with antibodies and DNA-aptamers. The binding constant (KD) of a protein-antibody complex is first determined by immobilizing an antibody or DNA-aptamer on an SPR chip. A proteolytic peptide mixture is then applied to the chip, and following removal of unbound material by washing, the epitope(s) peptide(s) are eluted and identified by MALDI-MS. The SPR-MS combination was applied to a wide range of affinity pairs. Distinct epitope peptides were identified for the cardiac biomarker myoglobin (MG) both from monoclonal and polyclonal antibodies, and binding constants determined for equine and human MG provided molecular assessment of cross immunoreactivities. Mass spectrometric epitope identifications were obtained for linear, as well as for assembled ("conformational") antibody epitopes, e.g., for the polypeptide chemokine Interleukin-8. Immobilization using protein G substantially improved surface fixation and antibody stabilities for epitope identification and affinity determination. Moreover, epitopes were successfully determined for polyclonal antibodies from biological material, such as from patient antisera upon enzyme replacement therapy of lysosomal diseases. The SPR-MS combination was also successfully applied to identify linear and assembled epitopes for DNA-aptamer interaction complexes of the tumor diagnostic protein C-Met. In summary, the SPR-MS combination has been established as a powerful molecular tool for identification of protein interaction epitopes.
Collapse
Affiliation(s)
- Loredana-Mirela Lupu
- Centre for Analytical Biochemistry and Biomedical Mass Spectrometry (AffyMSLifeChem), and Steinbeis Transfer Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstrasse 29, 65428 Rüsselsheim am Main, Germany; (L.-M.L.); (P.W.); (D.H.); (D.M.); (S.M.); (S.R.); (E.M.); (W.K.)
| | - Pascal Wiegand
- Centre for Analytical Biochemistry and Biomedical Mass Spectrometry (AffyMSLifeChem), and Steinbeis Transfer Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstrasse 29, 65428 Rüsselsheim am Main, Germany; (L.-M.L.); (P.W.); (D.H.); (D.M.); (S.M.); (S.R.); (E.M.); (W.K.)
| | - Daria Holdschick
- Centre for Analytical Biochemistry and Biomedical Mass Spectrometry (AffyMSLifeChem), and Steinbeis Transfer Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstrasse 29, 65428 Rüsselsheim am Main, Germany; (L.-M.L.); (P.W.); (D.H.); (D.M.); (S.M.); (S.R.); (E.M.); (W.K.)
- Department of Engineering & Institute for Microtechnologies (IMTECH), RheinMain University, 65428 Rüsselsheim am Main, Germany;
| | - Delia Mihoc
- Centre for Analytical Biochemistry and Biomedical Mass Spectrometry (AffyMSLifeChem), and Steinbeis Transfer Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstrasse 29, 65428 Rüsselsheim am Main, Germany; (L.-M.L.); (P.W.); (D.H.); (D.M.); (S.M.); (S.R.); (E.M.); (W.K.)
| | - Stefan Maeser
- Centre for Analytical Biochemistry and Biomedical Mass Spectrometry (AffyMSLifeChem), and Steinbeis Transfer Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstrasse 29, 65428 Rüsselsheim am Main, Germany; (L.-M.L.); (P.W.); (D.H.); (D.M.); (S.M.); (S.R.); (E.M.); (W.K.)
| | - Stephan Rawer
- Centre for Analytical Biochemistry and Biomedical Mass Spectrometry (AffyMSLifeChem), and Steinbeis Transfer Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstrasse 29, 65428 Rüsselsheim am Main, Germany; (L.-M.L.); (P.W.); (D.H.); (D.M.); (S.M.); (S.R.); (E.M.); (W.K.)
| | - Friedemann Völklein
- Department of Engineering & Institute for Microtechnologies (IMTECH), RheinMain University, 65428 Rüsselsheim am Main, Germany;
| | - Ebrahim Malek
- Centre for Analytical Biochemistry and Biomedical Mass Spectrometry (AffyMSLifeChem), and Steinbeis Transfer Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstrasse 29, 65428 Rüsselsheim am Main, Germany; (L.-M.L.); (P.W.); (D.H.); (D.M.); (S.M.); (S.R.); (E.M.); (W.K.)
- Department of Engineering & Institute for Microtechnologies (IMTECH), RheinMain University, 65428 Rüsselsheim am Main, Germany;
| | - Frederik Barka
- Sunchrom GmbH, Industriestr. 18, 61381 Friedrichsdorf, Germany; (F.B.); (G.B.)
| | - Sascha Knauer
- Sulfotools GmbH, Bahnhofsplatz 1, 65428 Rüsselsheim am Main, Germany; (S.K.); (C.U.)
| | - Christina Uth
- Sulfotools GmbH, Bahnhofsplatz 1, 65428 Rüsselsheim am Main, Germany; (S.K.); (C.U.)
| | - Julia Hennermann
- Department of Pediatrics, Universitätsmedizin Mainz, 55130 Mainz, Germany;
| | - Wolfgang Kleinekofort
- Centre for Analytical Biochemistry and Biomedical Mass Spectrometry (AffyMSLifeChem), and Steinbeis Transfer Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstrasse 29, 65428 Rüsselsheim am Main, Germany; (L.-M.L.); (P.W.); (D.H.); (D.M.); (S.M.); (S.R.); (E.M.); (W.K.)
- Department of Engineering & Institute for Microtechnologies (IMTECH), RheinMain University, 65428 Rüsselsheim am Main, Germany;
| | - Andreas Hahn
- Department of Child Neurology, Justus-Liebig-University Giessen, Feulgenstraße 10-12, 35389 Giessen, Germany;
| | - Günes Barka
- Sunchrom GmbH, Industriestr. 18, 61381 Friedrichsdorf, Germany; (F.B.); (G.B.)
| | - Michael Przybylski
- Centre for Analytical Biochemistry and Biomedical Mass Spectrometry (AffyMSLifeChem), and Steinbeis Transfer Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Marktstrasse 29, 65428 Rüsselsheim am Main, Germany; (L.-M.L.); (P.W.); (D.H.); (D.M.); (S.M.); (S.R.); (E.M.); (W.K.)
- Department of Engineering & Institute for Microtechnologies (IMTECH), RheinMain University, 65428 Rüsselsheim am Main, Germany;
| |
Collapse
|
3
|
Bandookwala M, Thakkar D, Sengupta P. Advancements in the Analytical Quantification of Nitroxidative Stress Biomarker 3-Nitrotyrosine in Biological Matrices. Crit Rev Anal Chem 2019; 50:265-289. [DOI: 10.1080/10408347.2019.1623010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Bandookwala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Disha Thakkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Zhang G, Li L, Shi Z, Yang Y, Wu Y, Song H, Long J, Lu X, Zeng S, Qin J, Sun H, Chen Z, Liang H, Peng Y. Mitochondrion-Targeting Identification of a Fluorescent Apoptosis-Triggering Molecule by Mass Spectrometry Elucidates Drug Tracking. Chembiochem 2019; 20:778-784. [PMID: 30499207 DOI: 10.1002/cbic.201800598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Indexed: 11/08/2022]
Abstract
The real-time tracking of localization and dynamics of small molecules in organelles helps to understand their function and identification of their potential targets at subcellular resolution. To identify the mitochondrion-targeting effects of small molecules (NA-17 and NA-2a) in cancer cells, we used mass spectrometry to study their distribution and accumulation in mitochondria and in the surrounding cytoplasm thus enabling tracing of action processes of therapeutic compounds. Colocalization analysis with the aid of imaging agents suggests that both NA-17 and NA-2a display mitochondrion-targeting effects. However, MS analysis reveals that only NA-2a displays both a mitochondrion-targeting effect and an accumulation effect, whereas NA-17 only distributes in the surrounding cytoplasm. A combination of mitochondrion imaging, immunoblotting, and MS analysis in mitochondria indicated that NA-17 neither has the ability to enter mitochondria directly nor displays any mitochondrion-targeting effect. Further studies revealed that NA-17 could not enter into mitochondria even when the mitochondrial permeability in cells changed after NA-17 treatment, as was evident from reactive oxygen species (ROS) generation and cytochrome c release. In the process of cellular metabolism, NA-17 itself is firmly restricted to the cytoplasm during the metabolic process, but its metabolites containing fluorophores could accumulate in mitochondria for cell imaging. Our studies have furnished new insights into the drug metabolism processes.
Collapse
Affiliation(s)
- Guohai Zhang
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Liangping Li
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Zhenhao Shi
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Yang Yang
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Yiming Wu
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Huanhuan Song
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Jingxian Long
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Xing Lu
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Shulan Zeng
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Jiangke Qin
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Hongbin Sun
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Zhenfeng Chen
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Yan Peng
- State Key Laboratory for Chemistry and, Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| |
Collapse
|
5
|
An impedimetric micro-immunosensing assay to detect Alzheimer's disease biomarker: Aβ40. Anal Biochem 2018; 555:12-21. [PMID: 29879415 DOI: 10.1016/j.ab.2018.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023]
Abstract
A miniaturized biosensing platform, based on monoclonal amyloid-beta antibodies (mAβab) that were immobilized on a disc-shaped platinum/iridium (Pt/Ir) microelectrode surface coupled with an impedimetric signal transducer, was developed for the label-free and sensitive detection of amyloid-beta peptide fragment 1-40 (Aβ40); a reliable biomarker for early diagnosis of Alzheimer's disease (AD). A Pt/Ir microelectrode was electropolymerized with poly (ortho-phenylenediamine), a conducting free amine-containing aromatic polymer; followed by crosslinking with glutaraldehyde for subsequent coupling of mAβab on the microelectrode surface. This modification strategy efficiently improved the impedimetric detection performance of Aβ40 in terms of charge transfer resistance (∼400-fold difference) and normalized impedance magnitude percentage change (∼40% increase) compared with a passive adsorption-based immobilization method. The sensitivity of the micro-immunosensing assay was found to be 1056 kΩ/(pg/mL)/cm2 and the limit of detection was found to be 4.81 pg/mL with a dynamic range of 1-104 pg/mL (R2 = 0.9932). The overall precision of the assay, as measured by relative standard deviation, ranged from 0.84 to 5.15%, demonstrating its reliability and accuracy; while in respect to assay durability and stability, the immobilized mAβab were able to maintain 80% of their binding activity to Aβ40 after incubation for 48 h at ambient temperature (25 °C). To validate the practical applicability, the assay was tested using brain tissue lysates prepared from AD-induced rats. Results indicate that the proposed impedimetric micro-immunosensing platform is highly versatile and adaptable for the quantitative detection of other disease-related biomarkers.
Collapse
|
6
|
Bernevic B, El-Khatib AH, Jakubowski N, Weller MG. Online immunocapture ICP-MS for the determination of the metalloprotein ceruloplasmin in human serum. BMC Res Notes 2018; 11:213. [PMID: 29609633 PMCID: PMC5879926 DOI: 10.1186/s13104-018-3324-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/23/2018] [Indexed: 01/28/2023] Open
Abstract
Objective The human copper-protein ceruloplasmin (Cp) is the major copper-containing protein in the human body. The accurate determination of Cp is mandatory for the reliable diagnosis of several diseases. However, the analysis of Cp has proven to be difficult. The aim of our work was a proof of concept for the determination of a metalloprotein-based on online immunocapture ICP-MS. The immuno-affinity step is responsible for the enrichment and isolation of the analyte from serum, whereas the compound-independent quantitation with ICP-MS delivers the sensitivity, precision, and large dynamic range. Off-line ELISA (enzyme-linked immunosorbent assay) was used in parallel to confirm the elution profile of the analyte with a structure-selective method. The total protein elution was observed with the 32S mass trace. The ICP-MS signals were normalized on a 59Co signal. Results The human copper-protein Cp could be selectively determined. This was shown with pure Cp and with a sample of human serum. The good correlation with off-line ELISA shows that Cp could be captured and eluted selectively from the anti-Cp affinity column and subsequently determined by the copper signal of ICP-MS. Electronic supplementary material The online version of this article (10.1186/s13104-018-3324-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bogdan Bernevic
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489, Berlin, Germany
| | - Ahmed H El-Khatib
- Division 1.1 Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489, Berlin, Germany.,Faculty of Pharmacy, Department of Analytical Chemistry, Ain Shams University, Organization of African Unity Street, Abassia, Cairo, 11566, Egypt
| | - Norbert Jakubowski
- Division 1.1 Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489, Berlin, Germany
| | - Michael G Weller
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489, Berlin, Germany.
| |
Collapse
|
7
|
Rivera Del Alamo MM, Díaz-Lobo M, Busquets S, Rodríguez-Gil JE, Fernández-Novell JM. Specific expression pattern of tissue cytokines analyzed through the Surface Acoustic Wave technique is associated with age-related spontaneous benign prostatic hyperplasia in rats. Biochem Biophys Rep 2018; 14:26-34. [PMID: 29872731 PMCID: PMC5986627 DOI: 10.1016/j.bbrep.2018.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/06/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022] Open
Abstract
The aim of the study reported herein was to evaluate the suitability of the Surface Acoustic Wave (SAW) technique as a possible diagnostic tool in benign prostatic hyperplasia (BPH). Moreover, for the first time, the BPH model was a totally physiological using naturally aged rats with spontaneous, age-related BPH instead of the pharmacologically induced models usually used. Eighteen male Wistar rats were distributed according to their age: 6 weeks (young), 12 weeks (adult) and 12 months (old) old. Prostate gland was removed and analyzed by mini-arrays, Western blotting (WB) and SAW techniques. Mini-arrays indicated that there were significant differences in the expression of 29/34 inflammation-related cytokines. WB was carried out to confirm the results after selection of 4 cytokines from which one showed no changes, namely PDGF-AA, and the other three, which significantly increase in older animals, were CD86, β-NGF and VEGF. Notwithstanding, WB of old rats yielded confusing results due to an anomalous migration of proteins, dismissing this technique as an useful tool in these animals. Accurate results in old rats were uniquely obtained by using the SAW technique. Thus, SAW analysis showed that there were not differences among groups in the amount of PDGF-AA. On the contrary, SAW analysis showed that amounts of CD86, β-NGF and VEGF in old rats were 2.0, 1.9 and 5.7-fold higher than that from young ones, respectively. These results indicate that SAW is a highly accurate technique for determining changes in the cytokines expression in BPH. Diagnosis of prostate alterations can be improved by using the SAW technique. Study of prostate alterations can be optimized by using an age-related animal model. VEGF is a sensitive marker of bening prostatic hyperplasia.
Collapse
Affiliation(s)
- Maria M Rivera Del Alamo
- Dept. de Medicina i Cirurgia Animals, Facultat de veterinària, Universitat Autònoma de Barcelona, E-08193 Bellaterra Spain
| | - Mireia Díaz-Lobo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Parc Científic, E-08028 Barcelona, Spain
| | - Silvia Busquets
- Dept. Bioquímica i Biomedicina Molecular. Facultat de Biologia. Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Joan E Rodríguez-Gil
- Dept. de Medicina i Cirurgia Animals, Facultat de veterinària, Universitat Autònoma de Barcelona, E-08193 Bellaterra Spain
| | - Josep M Fernández-Novell
- Dept. Bioquímica i Biomedicina Molecular. Facultat de Biologia. Universitat de Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
8
|
Opuni KFM, Al-Majdoub M, Yefremova Y, El-Kased RF, Koy C, Glocker MO. Mass spectrometric epitope mapping. MASS SPECTROMETRY REVIEWS 2018; 37:229-241. [PMID: 27403762 DOI: 10.1002/mas.21516] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Mass spectrometric epitope mapping has become a versatile method to precisely determine a soluble antigen's partial structure that directly interacts with an antibody in solution. Typical lengths of investigated antigens have increased up to several 100 amino acids while experimentally determined epitope peptides have decreased in length to on average 10-15 amino acids. Since the early 1990s more and more sophisticated methods have been developed and have forwarded a bouquet of suitable approaches for epitope mapping with immobilized, temporarily immobilized, and free-floating antibodies. While up to now monoclonal antibodies have been mostly used in epitope mapping experiments, the applicability of polyclonal antibodies has been proven. The antibody's resistance towards enzymatic proteolysis has been of key importance for the two mostly applied methods: epitope excision and epitope extraction. Sample consumption has dropped to low pmol amounts on both, the antigen and the antibody. While adequate in-solution sample handling has been most important for successful epitope mapping, mass spectrometric analysis has been found the most suitable read-out method from early on. The rapidity by which mass spectrometric epitope mapping nowadays is executed outperforms all alternative methods. Thus, it can be asserted that mass spectrometric epitope mapping has reached a state of maturity, which allows it to be used in any mass spectrometry laboratory. After 25 years of constant and steady improvements, its application to clinical samples, for example, for patient characterization and stratification, is anticipated in the near future. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:229-241, 2018.
Collapse
Affiliation(s)
- Kwabena F M Opuni
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Mahmoud Al-Majdoub
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Yelena Yefremova
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Reham F El-Kased
- Microbiology and Immunology Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Cornelia Koy
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
9
|
Yefremova Y, Melder FTI, Danquah BD, Opuni KFM, Koy C, Ehrens A, Frommholz D, Illges H, Koelbel K, Sobott F, Glocker MO. Apparent activation energies of protein-protein complex dissociation in the gas-phase determined by electrospray mass spectrometry. Anal Bioanal Chem 2017; 409:6549-6558. [PMID: 28900708 DOI: 10.1007/s00216-017-0603-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/09/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022]
Abstract
We have developed a method to determine apparent activation energies of dissociation for ionized protein-protein complexes in the gas phase using electrospray ionization mass spectrometry following the Rice-Ramsperger-Kassel-Marcus quasi-equilibrium theory. Protein-protein complexes were formed in solution, transferred into the gas phase, and separated from excess free protein by ion mobility filtering. Afterwards, complex disassembly was initiated by collision-induced dissociation with step-wise increasing energies. Relative intensities of ion signals were used to calculate apparent activation energies of dissociation in the gas phase by applying linear free energy relations. The method was developed using streptavidin tetramers. Experimentally determined apparent gas-phase activation energies for dissociation ([Formula: see text]) of complexes consisting of Fc parts from immunoglobulins (IgG-Fc) and three closely related protein G' variants (IgG-Fc•protein G'e, IgG-Fc•protein G'f, and IgG-Fc•protein G'g) show the same order of stabilities as can be inferred from their in-solution binding constants. Differences in stabilities between the protein-protein complexes correspond to single amino acid residue exchanges in the IgG-binding regions of the protein G' variants. Graphical abstract Electrospray mass spectrometry and collision-induced dissociation delivers apparent activation energies and supramolecular bond force constants of protein-protein complexes in the gas phase.
Collapse
Affiliation(s)
- Yelena Yefremova
- Proteome Center Rostock, University Rostock Medical Center, Schillingallee 69, 18059, Rostock, Germany
| | - F Teresa I Melder
- Proteome Center Rostock, University Rostock Medical Center, Schillingallee 69, 18059, Rostock, Germany
| | - Bright D Danquah
- Proteome Center Rostock, University Rostock Medical Center, Schillingallee 69, 18059, Rostock, Germany
| | - Kwabena F M Opuni
- Proteome Center Rostock, University Rostock Medical Center, Schillingallee 69, 18059, Rostock, Germany.,School of Pharmacy, University of Ghana, P.O. Box LG43, Legon Accra, Ghana
| | - Cornelia Koy
- Proteome Center Rostock, University Rostock Medical Center, Schillingallee 69, 18059, Rostock, Germany
| | - Alexandra Ehrens
- University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359, Rheinbach, Germany.,University Hospital of Bonn, Sigmung-Freud-Str. 25, 53105, Bonn, Germany
| | - David Frommholz
- University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Harald Illges
- University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Knut Koelbel
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Frank Sobott
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael O Glocker
- Proteome Center Rostock, University Rostock Medical Center, Schillingallee 69, 18059, Rostock, Germany.
| |
Collapse
|
10
|
Guardiola S, Díaz-Lobo M, Seco J, García J, Nevola L, Giralt E. Peptides Targeting EGF Block the EGF-EGFR Interaction. Chembiochem 2016; 17:702-11. [DOI: 10.1002/cbic.201500525] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Salvador Guardiola
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Mireia Díaz-Lobo
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Jesús Seco
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Laura Nevola
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Baldiri Reixac 10 08028 Barcelona Spain
- Department of Organic Chemistry; University of Barcelona; 08028 Barcelona Spain
| |
Collapse
|
11
|
Slamnoiu S, Vlad C, Stumbaum M, Moise A, Lindner K, Engel N, Vilanova M, Diaz M, Karreman C, Leist M, Ciossek T, Hengerer B, Vilaseca M, Przybylski M. Identification and affinity-quantification of ß-amyloid and α-synuclein polypeptides using on-line SAW-biosensor-mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1472-1481. [PMID: 24845351 DOI: 10.1007/s13361-014-0904-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
Bioaffinity analysis using a variety of biosensors has become an established tool for detection and quantification of biomolecular interactions. Biosensors, however, are generally limited by the lack of chemical structure information of affinity-bound ligands. On-line bioaffinity-mass spectrometry using a surface-acoustic wave biosensor (SAW-MS) is a new combination providing the simultaneous affinity detection, quantification, and mass spectrometric structural characterization of ligands. We describe here an on-line SAW-MS combination for direct identification and affinity determination, using a new interface for MS of the affinity-isolated ligand eluate. Key element of the SAW-MS combination is a microfluidic interface that integrates affinity-isolation on a gold chip, in-situ sample concentration, and desalting with a microcolumn for MS of the ligand eluate from the biosensor. Suitable MS-acquisition software has been developed that provides coupling of the SAW-MS interface to a Bruker Daltonics ion trap-MS, FTICR-MS, and Waters Synapt-QTOF- MS systems. Applications are presented for mass spectrometric identifications and affinity (K(D)) determinations of the neurodegenerative polypeptides, ß-amyloid (Aß), and pathophysiological and physiological synucleins (α- and ß-synucleins), two key polypeptide systems for Alzheimer's disease and Parkinson's disease, respectively. Moreover, first in vivo applications of αSyn polypeptides from brain homogenate show the feasibility of on-line affinity-MS to the direct analysis of biological material. These results demonstrate on-line SAW-bioaffinity-MS as a powerful tool for structural and quantitative analysis of biopolymer interactions.
Collapse
Affiliation(s)
- Stefan Slamnoiu
- Laboratory of Analytical Chemistry and Steinbeis Center for Biopolymer Structure Analysis, University of Konstanz, 78457, Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tsikas D, Duncan MW. Mass spectrometry and 3-nitrotyrosine: strategies, controversies, and our current perspective. MASS SPECTROMETRY REVIEWS 2014; 33:237-76. [PMID: 24167057 DOI: 10.1002/mas.21396] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 05/11/2023]
Abstract
Reactive-nitrogen species (RNS) such as peroxynitrite (ONOO(-)), that is, the reaction product of nitric oxide ((•)NO) and superoxide (O2(-•)), nitryl chloride (NO2Cl) and (•)NO2 react with the activated aromatic ring of tyrosine to form 3-nitrotyrosine. This modification, which has been known for more than a century, occurs to both the free form of the amino acid (i.e., soluble/free tyrosine) and to tyrosine residues covalently bound within the backbone of peptides and proteins. Nitration of tyrosine is thought to be of biological significance and has been linked to health and disease, but determining its role has proved challenging. Several key questions have been the focus of much of the research activity: (a) to what extent is free/soluble tyrosine nitrated in biological tissues and fluids, and (b) are there specific site(s) of nitration within peptides/proteins and to what extent (i.e., stoichiometry) does this modification occur? These issues have been addressed in a wide range of sample types (e.g., blood, urine, CSF, exhaled breath condensate and various tissues) and a diverse array of physiological/pathophysiological scenarios. The accurate determination of nitrated tyrosine is, however, a stumbling block. Despite extensive study, the extent to which nitration occurs in vivo, the specificity of the nitration reaction, and its importance in health and disease, remain unclear. In this review, we highlight the analytical challenges and discuss the approaches adopted to address them. Mass spectrometry, in combination with either gas chromatography (GC-MS, GC-MS/MS) or liquid chromatography (LC-MS/MS), has played the central role in the analysis of 3-nitrotyrosine and tyrosine-nitrated biological macromolecules. We discuss its unique attributes and highlight the role of stable-isotope labeled 3-nitrotyrosine analogs in both accurate quantification, and in helping to define the biological relevance of tyrosine nitration. We show that the application of sophisticated mass spectrometric techniques is advantageous if not essential, but that this alone is by no means a guarantee of accurate findings. We discuss the important analytical challenges in quantifying 3-nitrotyrosine, possible workarounds, and we attempt to make sense of the disparate findings that have been reported so far.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
13
|
Wang Y, Huang C, Kang Y. Incorporation of ligand–receptor binding‐site models and transistor‐based sensors for resolving dissociation constants and number of binding sites. IET Nanobiotechnol 2014; 8:10-7. [DOI: 10.1049/iet-nbt.2013.0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yu‐Lin Wang
- Institute of Nanoengineering and MicrosystemsNational Tsing Hua UniversityHsinchu 30013Taiwan
| | - Chih‐Cheng Huang
- Institute of Nanoengineering and MicrosystemsNational Tsing Hua UniversityHsinchu 30013Taiwan
| | - Yen‐Wen Kang
- Institute of Nanoengineering and MicrosystemsNational Tsing Hua UniversityHsinchu 30013Taiwan
| |
Collapse
|
14
|
Petre BA. Affinity-mass spectrometry approaches for elucidating structures and interactions of protein-ligand complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:129-51. [PMID: 24952182 DOI: 10.1007/978-3-319-06068-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Affinity-based approaches in combination with mass spectrometry for molecular structure identification in biological complexes such as protein-protein, and protein-carbohydrate complexes have become popular in recent years. Affinity-mass spectrometry involves immobilization of a biomolecule on a chemically activated support, affinity binding of ligand(s), dissociation of the complex, and mass spectrometric analysis of the bound fraction. In this chapter the affinity-mass spectrometric methodologies will be presented for (1) identification of the epitope structures in the Abeta amyloid peptide, (2) identification of oxidative modifications in proteins such as nitration of tyrosine, (3) determination of carbohydrate recognition domains, and as (4) development of a biosensor chip-based mass spectrometric system for concomitant quantification and identification of protein-ligand complexes.
Collapse
Affiliation(s)
- Brînduşa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, Al. I. Cuza University of Iasi, Carol I Boulevard, No. 11, 700506, Iasi, Romania,
| |
Collapse
|
15
|
Daems D, Van Camp G, Fernandez M, Guisez Y, Prinsen E, Nagels L. Use of potentiometric detection in (ultra) high performance liquid chromatography and modelling with adsorption/desorption binding kinetics. Anal Chim Acta 2013; 777:25-31. [DOI: 10.1016/j.aca.2013.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 11/25/2022]
|
16
|
Stigter E, de Jong G, van Bennekom W. Coupling surface-plasmon resonance and mass spectrometry to quantify and to identify ligands. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Huang CC, Lee GY, Chyi JI, Cheng HT, Hsu CP, Hsu YR, Hsu CH, Huang YF, Sun YC, Chen CC, Li SS, Andrew Yeh J, Yao DJ, Ren F, Wang YL. AlGaN/GaN high electron mobility transistors for protein-peptide binding affinity study. Biosens Bioelectron 2013; 41:717-22. [PMID: 23102432 PMCID: PMC7157921 DOI: 10.1016/j.bios.2012.09.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/14/2012] [Accepted: 09/27/2012] [Indexed: 01/09/2023]
Abstract
Antibody-immobilized AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect a short peptide consisting of 20 amino acids. One-binding-site model and two-binding-site model were used for the analysis of the electrical signals, revealing the number of binding sites on an antibody and the dissociation constants between the antibody and the short peptide. In the binding-site models, the surface coverage ratio of the short peptide on the sensor surface is relevant to the electrical signals resulted from the peptide-antibody binding on the HEMTs. Two binding sites on an antibody were observed and two dissociation constants, 4.404×10(-11) M and 1.596×10(-9) M, were extracted from the binding-site model through the analysis of the surface coverage ratio of the short peptide on the sensor surface. We have also shown that the conventional method to extract the dissociation constant from the linear regression of curve-fitting with Langmuir isotherm equation may lead to an incorrect information if the receptor has more than one binding site for the ligand. The limit of detection (LOD) of the sensor observed in the experimental result (~10 pM of the short peptide) is very close to the LOD (around 2.7-3.4 pM) predicted from the value of the smallest dissociation constants. The sensitivity of the sensor is not only dependent on the transistors, but also highly relies on the affinity of the ligand-receptor pair. The results demonstrate that the AlGaN/GaN HEMTs cannot only be used for biosensors, but also for the biological affinity study.
Collapse
Affiliation(s)
- Chih-Cheng Huang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Geng-Yen Lee
- Department of Electrical engineering, National Central University, Jhongli City, Taoyuan County 32001, Taiwan, ROC
| | - Jen-Inn Chyi
- Department of Electrical engineering, National Central University, Jhongli City, Taoyuan County 32001, Taiwan, ROC
| | - Hui-Teng Cheng
- Department of Nephrology, National Taiwan University Hospital, Hsinchu branch, Hsinchu 300, Taiwan, ROC
| | - Chen-Pin Hsu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - You-Ren Hsu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Chia-Hsien Hsu
- Division of Medical Engineering, National Health Research Institutes, MiaoLi, Taiwan, ROC
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Yuh-Chang Sun
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Chih-Chen Chen
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Sheng-Shian Li
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - J. Andrew Yeh
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Da-Jeng Yao
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| | - Fan Ren
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yu-Lin Wang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 300, Taiwan, ROC
| |
Collapse
|
18
|
Paraschiv G, Vincke C, Czaplewska P, Manea M, Muyldermans S, Przybylski M. Epitope structure and binding affinity of single chain llama anti-β-amyloid antibodies revealed by proteolytic excision affinity-mass spectrometry. J Mol Recognit 2012; 26:1-9. [DOI: 10.1002/jmr.2210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/13/2012] [Accepted: 06/20/2012] [Indexed: 01/03/2023]
Affiliation(s)
- Gabriela Paraschiv
- Department of Chemistry, Laboratory of Analytical Chemistry and Biopolymer Structure Analysis; University of Konstanz; 78457; Konstanz; Germany
| | | | | | | | | | - Michael Przybylski
- Department of Chemistry, Laboratory of Analytical Chemistry and Biopolymer Structure Analysis; University of Konstanz; 78457; Konstanz; Germany
| |
Collapse
|
19
|
Petre BA, Ulrich M, Stumbaum M, Bernevic B, Moise A, Döring G, Przybylski M. When is mass spectrometry combined with affinity approaches essential? A case study of tyrosine nitration in proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1831-1840. [PMID: 22907170 DOI: 10.1007/s13361-012-0461-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 07/29/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer's disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8 % and 15 % for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar K(D) values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations.
Collapse
Affiliation(s)
- Brînduşa-Alina Petre
- Steinbeis Research and Transfer Center for Biopolymer Analysis, Department of Chemistry, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Vlad C, Lindner K, Karreman C, Schildknecht S, Leist M, Tomczyk N, Rontree J, Langridge J, Danzer K, Ciossek T, Petre A, Gross ML, Hengerer B, Przybylski M. Autoproteolytic fragments are intermediates in the oligomerization/aggregation of the Parkinson's disease protein alpha-synuclein as revealed by ion mobility mass spectrometry. Chembiochem 2011; 12:2740-4. [PMID: 22162214 DOI: 10.1002/cbic.201100569] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Indexed: 12/29/2022]
Abstract
Gas-phase protein separation by ion mobility: With its ability to separate the Parkinson's disease protein α-synuclein and its autoproteolytic products-despite the small concentrations of the latter-ion-mobility MS has enabled the characterization of intermediate fragments in in vitro oligomerization-aggregation. In particular, a possible key fragment, the highly aggregating C-terminal fragment, αSyn(72-140), has been revealed.
Collapse
Affiliation(s)
- Camelia Vlad
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Moise A, André S, Eggers F, Krzeminski M, Przybylski M, Gabius HJ. Toward Bioinspired Galectin Mimetics: Identification of Ligand-Contacting Peptides by Proteolytic-Excision Mass Spectrometry. J Am Chem Soc 2011; 133:14844-7. [DOI: 10.1021/ja201967v] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Adrian Moise
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Frederike Eggers
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Mickael Krzeminski
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Michael Przybylski
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 München, Germany
| |
Collapse
|
22
|
Landreh M, Astorga-Wells J, Johansson J, Bergman T, Jörnvall H. New developments in protein structure-function analysis by MS and use of hydrogen-deuterium exchange microfluidics. FEBS J 2011; 278:3815-21. [DOI: 10.1111/j.1742-4658.2011.08215.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Dr Guşanu M, Petre BA, Przybylski M. Epitope motif of an anti-nitrotyrosine antibody specific for tyrosine-nitrated peptides revealed by a combination of affinity approaches and mass spectrometry. J Pept Sci 2011; 17:184-91. [PMID: 21308874 DOI: 10.1002/psc.1298] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/08/2010] [Accepted: 08/17/2010] [Indexed: 01/19/2023]
Abstract
Nitration of tyrosine residues has been shown to be an important oxidative modification in proteins and has been suggested to play a role in several diseases such as atherosclerosis, asthma, lung and neurodegenerative diseases. Detection of nitrated proteins has been mainly based on the use of nitrotyrosine-specific antibodies. In contrast, only a small number of nitration sites in proteins have been unequivocally identified by MS. We have used a monoclonal 3-NT-specific antibody, and have synthesized a series of tyrosine-nitrated peptides of prostacyclin synthase (PCS) in which a single specific nitration site at Tyr-430 had been previously identified upon reaction with peroxynitrite17. The determination of antibody-binding affinity and specificity of PCS peptides nitrated at different tyrosine residues (Tyr-430, Tyr-421, Tyr-83) and sequence mutations around the nitration sites provided the identification of an epitope motif containing positively charged amino acids (Lys and/or Arg) N-terminal to the nitration site. The highest affinity to the anti-3NT-antibody was found for the PCS peptide comprising the Tyr-430 nitration site with a K(D) of 60 nM determined for the peptide, PCS(424-436-Tyr-430NO(2) ); in contrast, PCS peptides nitrated at Tyr-421 and Tyr-83 had substantially lower affinity. ELISA, SAW bioaffinity, proteolytic digestion of antibody-bound peptides and affinity-MS analysis revealed highest affinity to the antibody for tyrosine-nitrated peptides that contained positively charged amino acids in the N-terminal sequence to the nitration site. Remarkably, similar N-terminal sequences of tyrosine-nitration sites have been recently identified in nitrated physiological proteins, such as eosinophil peroxidase and eosinophil-cationic protein.
Collapse
Affiliation(s)
- Mihaela Dr Guşanu
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
24
|
Erba EB, Zenobi R. Mass spectrometric studies of dissociation constants of noncovalent complexes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1pc90006d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|