1
|
Jeanne Dit Fouque K, Lavanant H, Zirah S, Hegemann JD, Fage CD, Marahiel MA, Rebuffat S, Afonso C. General rules of fragmentation evidencing lasso structures in CID and ETD. Analyst 2018; 143:1157-1170. [DOI: 10.1039/c7an02052j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lasso peptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by a mechanically interlocked structure in which the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring.
Collapse
Affiliation(s)
| | | | - S. Zirah
- Muséum National d'Histoire Naturelle
- Sorbonne Universités
- Centre national de la Recherche scientifique
- Laboratoire Molécules de Communication et Adaptation des Microorganismes
- UMR 7245 CNRS-MNHN
| | - J. D. Hegemann
- Roger Adams Laboratory
- Department of Chemistry
- University of Illinois at Urbana–Champaign
- Urbana
- USA
| | - C. D. Fage
- Department of Chemistry
- Biochemistry; LOEWE Center for Synthetic Microbiology
- Philipps-University Marburg
- Marburg
- Germany
| | - M. A. Marahiel
- Department of Chemistry
- Biochemistry; LOEWE Center for Synthetic Microbiology
- Philipps-University Marburg
- Marburg
- Germany
| | - S. Rebuffat
- Muséum National d'Histoire Naturelle
- Sorbonne Universités
- Centre national de la Recherche scientifique
- Laboratoire Molécules de Communication et Adaptation des Microorganismes
- UMR 7245 CNRS-MNHN
| | - C. Afonso
- Normandie Univ
- UNIROUEN
- INSA Rouen
- CNRS
- COBRA
| |
Collapse
|
2
|
Takahashi H, Sekiya S, Nishikaze T, Kodera K, Iwamoto S, Wada M, Tanaka K. Hydrogen Attachment/Abstraction Dissociation (HAD) of Gas-Phase Peptide Ions for Tandem Mass Spectrometry. Anal Chem 2016; 88:3810-6. [DOI: 10.1021/acs.analchem.5b04888] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hidenori Takahashi
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Sadanori Sekiya
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Takashi Nishikaze
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Kei Kodera
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Motoi Wada
- Graduate
School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Koichi Tanaka
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
3
|
Bythell BJ. Cα hydrogen atom transfer in post-cleavage radical-cation complexes: short and steep versus long winding road. J Phys Chem A 2014; 118:10797-803. [PMID: 25329622 DOI: 10.1021/jp507865h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recently, I explored structurally straightforward pathways to Cα hydrogen atom, H(•), transfer reactions in the radical cation complex following electron capture/transfer of a series of polyprotonated peptides (J. Phys. Chem. A 2013, 117, 1189-1196). Here, I extend my analysis to incorporate detailed rearrangement processes potentially occurring prior to H(•) transfer. This comprises intracomplex isomerization of the initial iminol-terminated (-C(OH)═NH) form of the cn' species to the energetically more favorable, amide-terminated form (-C(O)-NH2) prior to Cα H(•) abstraction by the zm(•) species. The data indicate that the previously published H(•) transfer barriers are more energetically demanding than those of this multistep alternative. The rate-determining step is typically the intracomplex iminol isomerization, consistent with the substantial energetic favorability of the amide form of the cn species. The barriers to H(•) transfer still rise steeply as a function of the charge state. In agreement with experiment, evidence for product separation without H(•) transfer at a higher charge state is also provided.
Collapse
Affiliation(s)
- Benjamin J Bythell
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis , St. Louis, Missouri 63121, United States
| |
Collapse
|
4
|
Asakawa D, Wada Y. Electron transfer dissociation mass spectrometry of peptides containing free cysteine using group XII metals as a charge carrier. J Phys Chem B 2014; 118:12318-25. [PMID: 25271566 DOI: 10.1021/jp502818u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electron transfer dissociation (ETD) has been used for peptide sequencing. Since ETD preferentially produces the c'/z(•) fragment pair, peptide sequencing is generally performed by interpretation of mass differences between series of consecutive c' and z(•) ions. However, the presence of free cysteine residues in a precursor promotes peptide bond cleavage, hindering interpretation of the ETD spectrum. In the present study, the divalent group XII metals, such as Zn(2+), Cd(2+) and Hg(2+), were used as charge carriers to produce metal-peptide complexes. The thiol group is deprotonated by complexation with the group XII metal. The formation of b and y' ions was successfully suppressed by using the zinc-peptide complex as a precursor, indicating Zn(2+)-aided ETD to be a useful method for sequencing of cysteine-containing peptides. By contrast, ETD of Cd(2+)- and Hg(2+)-peptide complexes mainly led to SH2 loss and radical cation formation, respectively. These processes were mediated by recombination energy between the metal cation and an electron. The presence of monovalent cadmium and neutral mercury in ETD products was confirmed by MS(3) analysis with collision-induced dissociation.
Collapse
Affiliation(s)
- Daiki Asakawa
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health , 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | | |
Collapse
|
5
|
Voinov VG, Bennett SE, Beckman JS, Barofsky DF. ECD of tyrosine phosphorylation in a triple quadrupole mass spectrometer with a radio-frequency-free electromagnetostatic cell. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1730-8. [PMID: 25037842 PMCID: PMC4163116 DOI: 10.1007/s13361-014-0956-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/05/2014] [Accepted: 06/26/2014] [Indexed: 05/02/2023]
Abstract
A radio frequency-free electromagnetostatic (EMS) cell devised for electron-capture dissociation (ECD) of ions has been retrofitted into the collision-induced dissociation (CID) section of a triple quadrupole mass spectrometer to enable recording of ECD product-ion mass spectra and simultaneous recording of ECD-CID product-ion mass spectra. This modified instrument can be used to produce easily interpretable ECD and ECD-CID product-ion mass spectra of tyrosine-phosphorylated peptides that cover over 50% of their respective amino-acid sequences and readily identify their respective sites of phosphorylation. ECD fragmentation of doubly protonated, tyrosine-phosphorylated peptides, which was difficult to observe with FT-ICR instruments, occurs efficiently in the EMS cell.
Collapse
Affiliation(s)
- Valery G Voinov
- Department of Chemistry, Oregon State University, Corvallis, OR, 97333, USA,
| | | | | | | |
Collapse
|
6
|
Asakawa D, Takeuchi T, Yamashita A, Wada Y. Influence of metal-peptide complexation on fragmentation and inter-fragment hydrogen migration in electron transfer dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1029-1039. [PMID: 24671694 DOI: 10.1007/s13361-014-0855-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/06/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
The use of metal salts in electrospray ionization (ESI) of peptides increases the charge state of peptide ions, facilitating electron transfer dissociation (ETD) in tandem mass spectrometry. In the present study, K(+) and Ca(2+) were used as charge carriers to form multiply-charged metal-peptide complexes. ETD of the potassium- or calcium-peptide complex was initiated by transfer of an electron to a proton remote from the metal cation, and a c'-z• fragment complex, in which the c' and z• fragments were linked together via a metal cation coordinating with several amino acid residues, was formed. The presence of a metal cation in the precursor for ETD increased the lifetime of the c'-z• fragment complex, eventually generating c• and z' fragments through inter-fragment hydrogen migration. The degree of hydrogen migration was dependent on the location of the metal cation in the metal-peptide complex, but was not reconciled with conformation of the precursor ion obtained by molecular mechanics simulation. In contrast, the location of the metal cation in the intermediate suggested by the ETD spectrum was in agreement with the conformation of "proton-removed" precursors, indicating that the charge reduction of precursor ions by ETD induces conformational rearrangement during the fragmentation process.
Collapse
Affiliation(s)
- Daiki Asakawa
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan,
| | | | | | | |
Collapse
|
7
|
Robb DB, Brown JM, Morris M, Blades MW. Tandem mass spectrometry using the atmospheric pressure electron capture dissociation ion source. Anal Chem 2014; 86:4439-46. [PMID: 24694021 DOI: 10.1021/ac5002959] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atmospheric pressure electron capture dissociation (AP-ECD) is an emerging technique capable of being adopted to virtually any electrospray mass spectrometer, without modification of the main instrument. To date, however, because the electron capture reactions occur in the ion source, AP-ECD has been limited by its apparent inability to select precursors prior to fragmentation, i.e., to perform tandem mass spectrometry (MS/MS) experiments. In this paper we demonstrate a novel AP-ECD-MS/MS method using an AP-ECD source on a Xevo G2-S quadrupole time-of-flight (Q-TOF) mass spectrometer from Waters Micromass. The method takes advantage of the tendency for electron capture reactions to generate charge-reduced "ECnoD" products, species that have captured an electron and have had a covalent bond cleaved yet do not immediately dissociate into separate products and so retain the mass of the precursor ion. In the method, ECnoD products from the AP-ECD source are isolated in the quadrupole mass filter and induced to dissociate through supplemental activation in the collision cell, and then the liberated ECD fragment ions are mass analyzed using the high-resolution TOF. In this manner, true MS/MS spectra may be obtained with AP-ECD even though all of the precursors in the source are subjected to electron capture reactions in parallel. Here, using a late-model Q-TOF instrument otherwise incapable of performing electron-based fragmentation, we present AP-ECD-MS/MS results for a group of model peptides and show that informative, high-sequence-coverage spectra are readily attainable with the method.
Collapse
Affiliation(s)
- Damon B Robb
- University of British Columbia , Department of Chemistry, Vancouver, BC V6T 1Z1, Canada
| | | | | | | |
Collapse
|
8
|
Kalli A, Hess S. Electron capture dissociation of hydrogen-deficient peptide radical cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1729-1740. [PMID: 22855421 DOI: 10.1007/s13361-012-0433-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/05/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
Hydrogen-deficient peptide radical cations exhibit fascinating gas phase chemistry, which is governed by radical driven dissociation and, in many cases, by a combination of radical and charge driven fragmentation. Here we examine electron capture dissociation (ECD) of doubly, [M + H](2+•), and triply, [M + 2H](3+•), charged hydrogen-deficient species, aiming to investigate the effect of a hydrogen-deficient radical site on the ECD outcome and characterize the dissociation pathways of hydrogen-deficient species in ECD. ECD of [M + H](2+•) and [M + 2H](3+•) precursor ions resulted in efficient electron capture by the hydrogen-deficient species. However, the intensities of c- and z-type product ions were reduced, compared with those observed for the even electron species, indicating suppression of N-C(α) backbone bond cleavages. We postulate that radical recombination occurs after the initial electron capture event leading to a stable even electron intermediate, which does not trigger N-C(α) bond dissociations. Although the intensities of c- and z-type product ions were reduced, the number of backbone bond cleavages remained largely unaffected between the ECD spectra of the even electron and hydrogen-deficient species. We hypothesize that a small ion population exist as a biradical, which can trigger N-C(α) bond cleavages. Alternatively, radical recombination and N-C(α) bond cleavages can be in competition, with radical recombination being the dominant pathway and N-C(α) cleavages occurring to a lesser degree. Formation of b- and y-type ions observed for two of the hydrogen-deficient peptides examined is also discussed.
Collapse
Affiliation(s)
- Anastasia Kalli
- Proteome Exploration Laboratory, Division of Biology, Beckman Institute, California Institute of Technology, Pasadena, 91125, USA
| | | |
Collapse
|
9
|
Bythell BJ. To Jump or Not To Jump? Cα Hydrogen Atom Transfer in Post-cleavage Radical-Cation Complexes. J Phys Chem A 2012; 117:1189-96. [DOI: 10.1021/jp305277v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin J. Bythell
- Ion Cyclotron Resonance
Program, National High Magnetic Field Laboratory, Florida State University,
1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United
States
| |
Collapse
|
10
|
Pérot-Taillandier M, Zirah S, Rebuffat S, Linne U, Marahiel MA, Cole RB, Tabet JC, Afonso C. Determination of Peptide Topology through Time-Resolved Double-Resonance under Electron Capture Dissociation Conditions. Anal Chem 2012; 84:4957-64. [DOI: 10.1021/ac300607y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Mao Y, Tipton JD, Blakney GT, Hendrickson CL, Marshall AG. Valence Parity to Distinguish c′ and z• Ions from Electron Capture Dissociation/Electron Transfer Dissociation of Peptides: Effects of Isomers, Isobars, and Proteolysis Specificity. Anal Chem 2011; 83:8024-8. [DOI: 10.1021/ac201619t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuan Mao
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32303, United States
| | - Jeremiah D. Tipton
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee Florida 32310-4005, United States
| | - Greg T. Blakney
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee Florida 32310-4005, United States
| | - Christopher L. Hendrickson
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32303, United States
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee Florida 32310-4005, United States
| | - Alan G. Marshall
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32303, United States
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee Florida 32310-4005, United States
| |
Collapse
|