1
|
Charles N, Blank U. IgE-Mediated Activation of Mast Cells and Basophils in Health and Disease. Immunol Rev 2025; 331:e70024. [PMID: 40165512 DOI: 10.1111/imr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Type 2-mediated immune responses protect the body against environmental threats at barrier surfaces, such as large parasites and environmental toxins, and facilitate the repair of inflammatory tissue damage. However, maladaptive responses to typically nonpathogenic substances, commonly known as allergens, can lead to the development of allergic diseases. Type 2 immunity involves a series of prototype TH2 cytokines (IL-4, IL-5, IL-13) and alarmins (IL-33, TSLP) that promote the generation of adaptive CD4+ helper Type 2 cells and humoral products such as allergen-specific IgE. Mast cells and basophils are integral players in this network, serving as primary effectors of IgE-mediated responses. These cells bind IgE via high-affinity IgE receptors (FcεRI) expressed on their surface and, upon activation by allergens, release a variety of mediators that regulate tissue responses, attract and modulate other inflammatory cells, and contribute to tissue repair. Here, we review the biology and effector mechanisms of these cells, focusing primarily on their role in mediating IgE responses in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Nicolas Charles
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS EMR8252, Faculté de Médecine Site Bichat, Paris, France
- Laboratoire d'Excellence Inflamex, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Lu J, Spencer M, Zou Z, Traver M, Brzostowski J, Sun PD. FcγRI FG-loop functions as a pH sensitive switch for IgG binding and release. Front Immunol 2023; 14:1100499. [PMID: 36814926 PMCID: PMC9940316 DOI: 10.3389/fimmu.2023.1100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Understanding the molecular mechanism underlying the hierarchic binding between FcγRs and IgG antibodies is critical for therapeutic antibody engineering and FcγR functions. The recent determination of crystal structures of FcγRI-Fc complexes, however, resulted in two controversial mechanisms for the high affinity receptor binding to IgG. Here, we describe high resolution structures of a bovine FG-loop variant of FcγRI in complex with the Fc fragment of IgG1 crystallized in three different conditions at neutral pH, confirming the characteristic FG loop-Fc interaction is critical to the high affinity immunoglobulin binding. We showed that the FcγRI D2-domain FG-loop functioned as a pH-sensing switch for IgG binding. Further live cell imaging of FcγRI-mediated internalization of immune complexes showed a pH sensitive temporal-spatial antibody-antigen uptake and release. Taken together, we demonstrate that the structures of FcγRI-Fc crystallized at neutral and acidic pH, respectively, represent the high and low affinity binding states of the receptor for IgG uptake and release. These results support a role for FcγRI in antigen delivery, highlight the importance of Fc glycan in antibody binding to the high affinity receptor and provide new insights to future antibody engineering.
Collapse
Affiliation(s)
- Jinghua Lu
- Structural Immunology Section, Lab of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Matthew Spencer
- Structural Immunology Section, Lab of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Zhongcheng Zou
- Structural Immunology Section, Lab of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Maria Traver
- Lymphocyte Activation Section, Lab of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Joseph Brzostowski
- Lymphocyte Activation Section, Lab of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Peter D Sun
- Structural Immunology Section, Lab of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
3
|
IL-4 controls activated neutrophil FcγR2b expression and migration into inflamed joints. Proc Natl Acad Sci U S A 2020; 117:3103-3113. [PMID: 31980518 PMCID: PMC7022208 DOI: 10.1073/pnas.1914186117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neutrophils are the most abundant immune cells found in actively inflamed joints of patients with rheumatoid arthritis (RA), and most animal models for RA depend on neutrophils for the induction of joint inflammation. Exogenous IL-4 and IL-13 protect mice from antibody-mediated joint inflammation, although the mechanism is not understood. Neutrophils display a very strong basal expression of STAT6, which is responsible for signaling following exposure to IL-4 and IL-13. Still, the role of IL-4 and IL-13 in neutrophil biology has not been well studied. This can be explained by the low neutrophil surface expression of the IL-4 receptor α-chain (IL-4Rα), essential for IL-4- and IL-13-induced STAT6 signaling. Here we identify that colony stimulating factor 3 (CSF3), released during acute inflammation, mediates potent STAT3-dependent neutrophil IL-4Rα up-regulation during sterile inflammatory conditions. We further demonstrate that IL-4 limits neutrophil migration to inflamed joints, and that CSF3 combined with IL-4 or IL-13 results in a prominent neutrophil up-regulation of the inhibitory Fcγ receptor (FcγR2b). Taking these data together, we demonstrate that the IL-4 and CSF3 pathways are linked and play important roles in regulating proinflammatory neutrophil behavior.
Collapse
|
4
|
Granger V, Peyneau M, Chollet-Martin S, de Chaisemartin L. Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work. Front Immunol 2019; 10:2824. [PMID: 31849989 PMCID: PMC6901596 DOI: 10.3389/fimmu.2019.02824] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) have been initially described as main actors in host defense owing to their ability to immobilize and sometimes kill microorganisms. Subsequent studies have demonstrated their implication in the pathophysiology of various diseases, due to the toxic effects of their main components on surrounding tissues. Several distinct NETosis pathways have been described in response to various triggers. Among these triggers, IgG immune complexes (IC) play an important role since they induce robust NET release upon binding to activating FcγRs on neutrophils. Few in vitro studies have documented the mechanisms of IC-induced NET release and evidence about the partners involved is controversial. In vivo, animal models and clinical studies have strongly suggested the importance of IgG IC-induced NET release for autoimmunity and anaphylaxis. In this review, we will focus on two autoimmune diseases in which NETs are undoubtedly major players, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). We will also discuss anaphylaxis as another example of disease recently associated with IC-induced NET release. Understanding the role of IC-induced NETs in these settings will pave the way for new diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Vanessa Granger
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Marine Peyneau
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Luc de Chaisemartin
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
5
|
Bruggeman CW, Houtzager J, Dierdorp B, Kers J, Pals ST, Lutter R, van Gulik T, den Haan JMM, van den Berg TK, van Bruggen R, Kuijpers TW. Tissue-specific expression of IgG receptors by human macrophages ex vivo. PLoS One 2019; 14:e0223264. [PMID: 31613876 PMCID: PMC6793881 DOI: 10.1371/journal.pone.0223264] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Recently it was discovered that tissue-resident macrophages derive from embryonic precursors, not only from peripheral blood monocytes, and maintain themselves by self-renewal. Most in-vitro studies on macrophage biology make use of in-vitro cultured human monocyte-derived macrophages. Phagocytosis of IgG-opsonized particles by tissue-resident macrophages takes place via interaction with IgG receptors, the Fc-gamma receptors (FcγRs). We investigated the FcγR expression on macrophages both in-vivo and ex-vivo from different human tissues. Upon isolation of primary human macrophages from bone marrow, spleen, liver and lung, we observed that macrophages from all studied tissues expressed high levels of FcγRIII, which was in direct contrast with the low expression on blood monocyte-derived macrophages. Expression levels of FcγRI were highly variable, with bone marrow macrophages showing the lowest and alveolar macrophages the highest expression. Kupffer cells in the liver were the only tissue-resident macrophages that expressed the inhibitory IgG receptor, FcγRIIB. This inhibitory receptor was also found to be expressed by sinusoidal endothelial cells in the liver. In sum, our immunofluorescence data combined with ex-vivo stainings of isolated macrophages indicated that tissue-resident macrophages are remarkably unique and different from monocyte-derived macrophages in their phenotypic expression of IgG receptors. Tissue macrophages show distinct tissue-specific FcγR expression patterns.
Collapse
Affiliation(s)
- Christine W. Bruggeman
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Julia Houtzager
- Department of Experimental Surgery, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara Dierdorp
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Jesper Kers
- Department of Pathology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Steven T. Pals
- Department of Pathology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - René Lutter
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas van Gulik
- Department of Experimental Surgery, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Timo K. van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W. Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Emma Children's Hospital, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Beutier H, Hechler B, Godon O, Wang Y, Gillis CM, de Chaisemartin L, Gouel-Chéron A, Magnenat S, Macdonald LE, Murphy AJ, Chollet-Martin S, Longrois D, Gachet C, Bruhns P, Jönsson F. Platelets expressing IgG receptor FcγRIIA/CD32A determine the severity of experimental anaphylaxis. Sci Immunol 2019; 3:3/22/eaan5997. [PMID: 29654057 DOI: 10.1126/sciimmunol.aan5997] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 12/04/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022]
Abstract
Platelets are key regulators of vascular integrity; however, their role in anaphylaxis, a life-threatening systemic allergic reaction characterized by the loss of vascular integrity and vascular leakage, remains unknown. Anaphylaxis is a consequence of inappropriate cellular responses triggered by antibodies to generally harmless antigens, resulting in a massive mediator release and rapidly occurring organ dysfunction. Human platelets express receptors for immunoglobulin G (IgG) antibodies and can release potent mediators, yet their contribution to anaphylaxis has not been previously addressed in mouse models, probably because mice do not express IgG receptors on platelets. We investigated the contribution of platelets to IgG-dependent anaphylaxis in human IgG receptor-expressing mouse models and a cohort of patients suffering from drug-induced anaphylaxis. Platelet counts dropped immediately and markedly upon anaphylaxis induction only when they expressed the human IgG receptor FcγRIIA/CD32A. Platelet depletion attenuated anaphylaxis, whereas thrombocythemia substantially worsened its severity. FcγRIIA-expressing platelets were directly activated by IgG immune complexes in vivo and were sufficient to restore susceptibility to anaphylaxis in resistant mice. Serotonin released by activated platelets contributed to anaphylaxis severity. Data from a cohort of patients suffering from drug-induced anaphylaxis indicated that platelet activation was associated with anaphylaxis severity and was accompanied by a reduction in circulating platelet numbers. Our findings identify platelets as critical players in IgG-dependent anaphylaxis and provide a rationale for the design of platelet-targeting strategies to attenuate the severity of anaphylactic reactions.
Collapse
Affiliation(s)
- Héloïse Beutier
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM U1222, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Béatrice Hechler
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand Est, Biologie et Pharmacologie des plaquettes sanguines (BPPS) UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000 Strasbourg, France
| | - Ophélie Godon
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM U1222, Paris, France
| | - Yu Wang
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM U1222, Paris, France.,Université Diderot Paris VII, Paris, France
| | - Caitlin M Gillis
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM U1222, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Luc de Chaisemartin
- Unité Fonctionnelle Auto-immunité et Hypersensibilités, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,UMR996-Inflammation, Chemokines et Immunopathology, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Aurélie Gouel-Chéron
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM U1222, Paris, France.,Département d'Anesthésie-Réanimation, Hôpital Bichat, AP-HP, Paris, France
| | - Stéphanie Magnenat
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand Est, Biologie et Pharmacologie des plaquettes sanguines (BPPS) UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000 Strasbourg, France
| | | | | | | | - Sylvie Chollet-Martin
- Unité Fonctionnelle Auto-immunité et Hypersensibilités, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,UMR996-Inflammation, Chemokines et Immunopathology, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Dan Longrois
- Département d'Anesthésie-Réanimation, Hôpital Bichat, AP-HP, Paris, France.,INSERM UMR1152, Université Paris Diderot Paris 7, Paris, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand Est, Biologie et Pharmacologie des plaquettes sanguines (BPPS) UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000 Strasbourg, France
| | - Pierre Bruhns
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France. .,INSERM U1222, Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France. .,INSERM U1222, Paris, France
| |
Collapse
|
7
|
Kerdiles YM, Almeida FF, Thompson T, Chopin M, Vienne M, Bruhns P, Huntington ND, Raulet DH, Nutt SL, Belz GT, Vivier E. Natural-Killer-like B Cells Display the Phenotypic and Functional Characteristics of Conventional B Cells. Immunity 2018; 47:199-200. [PMID: 28813647 DOI: 10.1016/j.immuni.2017.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/31/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Yann M Kerdiles
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France.
| | - Francisca F Almeida
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Thornton Thompson
- Department of Molecular and Cell Biology and Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, Berkeley, CA 94720-3200 USA
| | - Michael Chopin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Margaux Vienne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Pierre Bruhns
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France
| | - Nicholas D Huntington
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - David H Raulet
- Department of Molecular and Cell Biology and Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, Berkeley, CA 94720-3200 USA
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France; Service d'Immunologie, Hôpital de la Timone, Assistance Publique - Hôpitaux de Marseille, Marseille, France
| |
Collapse
|