1
|
Li Y, Leung PS, Zhang W, Zhang S, Liu Z, Kurth M, Patterson AD, Gershwin ME, Song J. Immunobiology of bile and cholangiocytes. J Autoimmun 2025; 151:103376. [PMID: 39892203 DOI: 10.1016/j.jaut.2025.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
The biliary tract is now recognized as an immune organ, and within the biliary tract, both bile and cholangiocytes play a key role in maintaining immune defense and homeostasis. First, immunoreactive proteins such as secretory IgA provide local antimicrobial effects. Second, bile acids (BAs) protect the biliary tree from immune-related injury through receptor signaling, mainly via the membrane-bound receptor TGR5 on cholangiocytes. Third, the biliary microbiota, similar to the intestinal microbiota, contributes to sustaining a stable physiobiological microenvironment. Fourth, cholangiocytes actively modulate the expression/release of adhesion molecules and cytokines/chemokines and are involved in antigen presentation; additionally, cholangiocyte senescence and apoptosis also influence immune responses. Conversely, aberrant bile composition, altered BA profiles, imbalances in the biliary microbiota, and cholangiocyte dysfunction are associated with immune-mediated cholangiopathies, including primary biliary cholangitis, primary sclerosing cholangitis, and biliary atresia. While current therapeutic agents that modulate BA homeostasis and receptor signaling have shown promise in preclinical and clinical studies, future research on biliary/intestinal microbiota and cholangiocyte function should focus on developing novel therapeutic strategies for treating cholangiopathies.
Collapse
Affiliation(s)
- Yang Li
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Patrick Sc Leung
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Weici Zhang
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Shucheng Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Zhenning Liu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Mark Kurth
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, 16802, USA
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Junmin Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China.
| |
Collapse
|
2
|
Moreno-Gonzalez M, Hampton K, Ruiz P, Beasy G, Nagies FSP, Parker A, Lazenby J, Bone C, Alava-Arteaga A, Patel M, Hellmich C, Luri-Martin P, Silan E, Philo M, Baker D, Rushbrook SM, Hildebrand F, Rushworth SA, Beraza N. Regulation of intestinal senescence during cholestatic liver disease modulates barrier function and liver disease progression. JHEP Rep 2024; 6:101159. [PMID: 39314550 PMCID: PMC11418120 DOI: 10.1016/j.jhepr.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 09/25/2024] Open
Abstract
Background & Aims Senescence has been reported to have differential functions in cholangiocytes and hepatic stellate cells (HSCs) during human and murine cholestatic disease, being detrimental in biliary cells and anti-fibrotic in HSCs. Cholestatic liver disease is associated with loss of intestinal barrier function and changes in the microbiome, the mechanistic cause of which is undetermined. Methods Intestinal samples were analysed from controls and patients with primary sclerosing cholangitis, as well as wild-type (WT) and p16-3MR transgenic mice. Cholestatic liver disease was induced by bile duct ligation (BDL) and DDC diet feeding. Fexaramine was used as an intestinal-restricted FXR agonist and antibiotics were given to eliminate the intestinal microbiome. Senescent cells were eliminated in p16-3MR mice with ganciclovir and in WT mice with the senolytic drug ABT-263. In vitro studies were done in intestinal CaCo-2 cells and organoids were generated from intestinal crypts isolated from mice. Results Herein, we show increased senescence in intestinal epithelial cells (IECs) in patients with primary sclerosing cholangitis and in mice after BDL and DDC diet feeding. Intestinal senescence was increased in response to reduced exposure to bile acids and increased presence of lipopolysaccharide in vitro and in vivo during cholestatic liver disease. Senescence of IECs was associated with lower proliferation but increased intestinal stem cell activation, as supported by increased organoid growth from intestinal stem cells. Elimination of senescent cells with genetic and pharmacological approaches exacerbated liver injury and fibrosis during cholestatic liver disease, which was associated with increased IEC apoptosis and permeability. Conclusions Senescence occurs in IECs during cholestatic disease and the elimination of senescent cells has a detrimental impact on the gut-liver axis. Our results point to cell-specific rather than systemic targeting of senescence as a therapeutic approach to treat cholestatic liver disease. Impact and implications Cholestatic liver disease associates with the dysregulation of intestinal barrier function, while the mechanisms mediating the disruption of the gut-liver axis remain largely undefined. Here, we demonstrate that senescence, a cellular response to stress, is activated in intestinal cells during cholestatic liver disease in humans and mice. Mechanistically, we demonstrate that the reduction of bile acids and the increased presence of bacterial products mediate the activation of intestinal senescence during cholestatic liver disease. Importantly, the elimination of these senescent cells promotes further damage to the intestine that aggravates liver disease, with increased tissue damage and fibrosis. Our results provide evidence that therapeutic strategies to treat cholestatic liver disease by eliminating senescent cells may have unwanted effects in the intestine and support the need to develop cell/organ-specific approaches.
Collapse
Affiliation(s)
- Mar Moreno-Gonzalez
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Katherine Hampton
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Paula Ruiz
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Gemma Beasy
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Falk SP. Nagies
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Aimee Parker
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - James Lazenby
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Caitlin Bone
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ane Alava-Arteaga
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Meha Patel
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Charlotte Hellmich
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Haematology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Pablo Luri-Martin
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ece Silan
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Mark Philo
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - David Baker
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Simon M. Rushbrook
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Falk Hildebrand
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Stuart A. Rushworth
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Naiara Beraza
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
3
|
Hayashi M, Abe K, Sugaya T, Takahata Y, Fujita M, Takahashi A, Ohira H. A low baseline serum myostatin concentration is associated with poor clinical outcome in patients with primary biliary cholangitis. J Gastroenterol Hepatol 2024; 39:2069-2076. [PMID: 38816894 DOI: 10.1111/jgh.16639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND AND AIM Primary biliary cholangitis (PBC) is an autoimmune-mediated cholestatic liver disease that can progress to biliary cirrhosis and liver-related death. The associations between baseline myostatin levels and clinical outcomes in PBC patients are unknown. We aimed to clarify the influence of myostatin levels on the clinical outcomes of PBC patients. METHODS A total of 119 PBC patients were analyzed in this study. Myostatin levels were measured in stored sera before ursodeoxycholic acid treatment, and their associations with the clinical features and prognosis of PBC patients were analyzed. We analyzed the correlation between serum myostatin and chemokines/cytokines. RESULTS Serum myostatin was significantly lower in PBC patients (2343 pg/mL) than in healthy controls (4059 pg/mL, P < 0.001). The prevalence of patients with low myostatin levels increased according to the severity of histological fibrosis. The serum myostatin concentration was negatively correlated with the IL-6 and leucine-rich α2 glycoprotein levels, but the chemokine concentration was not correlated with the myostatin concentration. Low myostatin in PBC patients was associated with shorter survival without liver-related complications (hazard ratio [HR], 3.598; 95% confidence interval [CI], 1.27-10.1; P = 0.015) and shorter transplant-free survival (HR, 3.129; 95% CI, 1.02-9.56; P = 0.045) independent of pretreatment GLOBE score. Patients with both high pretreatment GLOBE scores and low myostatin levels had poor prognoses (log-rank test: P < 0.001). CONCLUSIONS A low serum myostatin concentration at diagnosis was associated with poor clinical outcomes. Assessment of circulating myostatin levels may improve the prediction of outcomes in patients with PBC.
Collapse
Affiliation(s)
- Manabu Hayashi
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Kazumichi Abe
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Tatsuro Sugaya
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Yosuke Takahata
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Masashi Fujita
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
4
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Current Landscape and Evolving Therapies for Primary Biliary Cholangitis. Cells 2024; 13:1580. [PMID: 39329760 PMCID: PMC11429758 DOI: 10.3390/cells13181580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disorder characterized by progressive cholestatic that, if untreated, can progress to liver fibrosis, cirrhosis and liver decompensation requiring liver transplant. Although the pathogenesis of the disease is multifactorial, there is a consensus that individuals with a genetic predisposition develop the disease in the presence of specific environmental triggers. A dysbiosis of intestinal microbiota is increasingly considered among the potential pathogenic factors. Cholangiocytes, the epithelial cells lining the bile ducts, are the main target of a dysregulated immune response, and cholangiocytes senescence has been recognized as a driving mechanism, leading to impaired bile duct function, in disease progression. Bile acids are also recognized as playing an important role, both in disease development and therapy. Thus, while bile acid-based therapies, specifically ursodeoxycholic acid and obeticholic acid, have been the cornerstone of therapy in PBC, novel therapeutic approaches have been developed in recent years. In this review, we will examine published and ongoing clinical trials in PBC, including the recently approved peroxisome-proliferator-activated receptor (PPAR) agonist, elafibranor and seladelpar. These novel second-line therapies are expected to improve therapy in PBC and the development of personalized approaches.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
5
|
Jalan-Sakrikar N, Guicciardi ME, O’Hara SP, Azad A, LaRusso NF, Gores GJ, Huebert RC. Central role for cholangiocyte pathobiology in cholestatic liver diseases. Hepatology 2024:01515467-990000000-01022. [PMID: 39250501 PMCID: PMC11890218 DOI: 10.1097/hep.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Cholangiopathies comprise a spectrum of chronic intrahepatic and extrahepatic biliary tract disorders culminating in progressive cholestatic liver injury, fibrosis, and often cirrhosis and its sequela. Treatment for these diseases is limited, and collectively, they are one of the therapeutic "black boxes" in clinical hepatology. The etiopathogenesis of the cholangiopathies likely includes disease-specific mediators but also common cellular and molecular events driving disease progression (eg, cholestatic fibrogenesis, inflammation, and duct damage). The common pathways involve cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, which are central to the pathogenesis of these disorders. Current information suggests that cholangiocytes function as a signaling "hub" in biliary tract-associated injury. Herein, we review the pivotal role of cholangiocytes in cholestatic fibrogenesis, focusing on the crosstalk between cholangiocytes and portal fibroblasts and HSCs. The proclivity of these cells to undergo a senescence-associated secretory phenotype, which is proinflammatory and profibrogenic, and the intrinsic intracellular activation pathways resulting in the secretion of cytokines and chemokines are reviewed. The crosstalk between cholangiocytes and cells of the innate (neutrophils and macrophages) and adaptive (T cells and B cells) immune systems is also examined in detail. The information will help consolidate information on this topic and guide further research and potential therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Steven P. O’Hara
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Adiba Azad
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| |
Collapse
|
6
|
Jin P, Duan X, Li L, Zhou P, Zou C, Xie K. Cellular senescence in cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e542. [PMID: 38660685 PMCID: PMC11042538 DOI: 10.1002/mco2.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A "one-two-punch" therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Xirui Duan
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Lei Li
- Department of Anorectal SurgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Zhou
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Cheng‐Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Ke Xie
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
7
|
Floreani A, Gabbia D, De Martin S. Primary biliary cholangitis: primary autoimmune disease or primary secretory defect. Expert Rev Gastroenterol Hepatol 2023; 17:863-870. [PMID: 37515436 DOI: 10.1080/17474124.2023.2242771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/15/2023] [Accepted: 07/27/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease characterized by the immune-mediated destruction of small and medium intrahepatic bile ducts, involving predominantly females. PBC has long been described as an autoimmune liver disease, also because it is very often associated with many autoimmune conditions. More recently, another pathogenic mechanism exploring the damage of cholangiocytes has been hypothesized, i.e. a defect in the biliary umbrella which is physiologically responsible for the exchange of the ions Cl- and HCO3- and maintains the integrity of glycocalyx. To provide a state-of-the-art analysis of this topic, a systematic review of literature in PubMed, Scopus, and Science Direct was conducted (inclusive dates: 1986-2023). AREA COVERED Although the etiology remains unknown, pathogenesis consists of a complex immune-mediated process resulting from a genetic susceptibility. PBC can be triggered by an immune-mediated response to an autoantigen, which leads to a progressive destruction of bile ducts and eventually to a progressive fibrosis with cirrhosis. The defect in the 'bicarbonate umbrella' acts as a protection against the toxic hydrophobic bile acids, leading to a toxic composition of bile. EXPERT OPINION This review offers a summary of the current knowledge about the pathogenesis of PBC, indicating that this is probably based on the mutual relationship between the immune insult and the unbalanced secretory mechanisms.
Collapse
Affiliation(s)
- Annarosa Floreani
- Scientific Institute for Research, Hospitalization and Healthcare, Negrar, Verona, Italy
- University of Padova, Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Schlegel A, Mergental H, Fondevila C, Porte RJ, Friend PJ, Dutkowski P. Machine perfusion of the liver and bioengineering. J Hepatol 2023; 78:1181-1198. [PMID: 37208105 DOI: 10.1016/j.jhep.2023.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 05/21/2023]
Abstract
With the increasing number of accepted candidates on waiting lists worldwide, there is an urgent need to expand the number and the quality of donor livers. Dynamic preservation approaches have demonstrated various benefits, including improving liver function and graft survival, and reducing liver injury and post-transplant complications. Consequently, organ perfusion techniques are being used in clinical practice in many countries. Despite this success, a proportion of livers do not meet current viability tests required for transplantation, even with the use of modern perfusion techniques. Therefore, devices are needed to further optimise machine liver perfusion - one promising option is to prolong machine liver perfusion for several days, with ex situ treatment of perfused livers. For example, stem cells, senolytics, or molecules targeting mitochondria or downstream signalling can be administered during long-term liver perfusion to modulate repair mechanisms and regeneration. Besides, today's perfusion equipment is also designed to enable the use of various liver bioengineering techniques, to develop scaffolds or for their re-cellularisation. Cells or entire livers can also undergo gene modulation to modify animal livers for xenotransplantation, to directly treat injured organs or to repopulate such scaffolds with "repaired" autologous cells. This review first discusses current strategies to improve the quality of donor livers, and secondly reports on bioengineering techniques to design optimised organs during machine perfusion. Current practice, as well as the benefits and challenges associated with these different perfusion strategies are discussed.
Collapse
Affiliation(s)
- Andrea Schlegel
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, Milan, 20122, Italy; Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, Switzerland
| | - Hynek Mergental
- The Liver Unit, Queen Elizabeth University Hospital Birmingham, United Kingdom
| | - Constantino Fondevila
- Hepatopancreatobiliary Surgery & Transplantation, General & Digestive Surgery Service, Hospital Universitario La Paz, IdiPAZ, CIBERehd, Madrid, Spain
| | - Robert J Porte
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB & Transplant Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Peter J Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, Switzerland.
| |
Collapse
|
9
|
Gee LMV, Barron-Millar B, Leslie J, Richardson C, Zaki MYW, Luli S, Burgoyne RA, Cameron RIT, Smith GR, Brain JG, Innes B, Jopson L, Dyson JK, McKay KRC, Pechlivanis A, Holmes E, Berlinguer-Palmini R, Victorelli S, Mells GF, Sandford RN, Palmer J, Kirby JA, Kiourtis C, Mokochinski J, Hall Z, Bird TG, Borthwick LA, Morris CM, Hanson PS, Jurk D, Stoll EA, LeBeau FEN, Jones DEJ, Oakley F. Anti-Cholestatic Therapy with Obeticholic Acid Improves Short-Term Memory in Bile Duct-Ligated Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:11-26. [PMID: 36243043 DOI: 10.1016/j.ajpath.2022.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/03/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022]
Abstract
Patients with cholestatic liver disease, including those with primary biliary cholangitis, can experience symptoms of impaired cognition or brain fog. This phenomenon remains unexplained and is currently untreatable. Bile duct ligation (BDL) is an established rodent model of cholestasis. In addition to liver changes, BDL animals develop cognitive symptoms early in the disease process (before development of cirrhosis and/or liver failure). The cellular mechanisms underpinning these cognitive symptoms are poorly understood. Herein, the study explored the neurocognitive symptom manifestations, and tested potential therapies, in BDL mice, and used human neuronal cell cultures to explore translatability to humans. BDL animals exhibited short-term memory loss and showed reduced astrocyte coverage of the blood-brain barrier, destabilized hippocampal network activity, and neuronal senescence. Ursodeoxycholic acid (first-line therapy for most human cholestatic diseases) did not reverse symptomatic or mechanistic aspects. In contrast, obeticholic acid (OCA), a farnesoid X receptor agonist and second-line anti-cholestatic agent, normalized memory function, suppressed blood-brain barrier changes, prevented hippocampal network deficits, and reversed neuronal senescence. Co-culture of human neuronal cells with either BDL or human cholestatic patient serum induced cellular senescence and increased mitochondrial respiration, changes that were limited again by OCA. These findings provide new insights into the mechanism of cognitive symptoms in BDL animals, suggesting that OCA therapy or farnesoid X receptor agonism could be used to limit cholestasis-induced neuronal senescence.
Collapse
Affiliation(s)
- Lucy M V Gee
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ben Barron-Millar
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire Richardson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marco Y W Zaki
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Biochemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Saimir Luli
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel A Burgoyne
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rainie I T Cameron
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Graham R Smith
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John G Brain
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Barbara Innes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura Jopson
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Jessica K Dyson
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Katherine R C McKay
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexandros Pechlivanis
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Stella Victorelli
- Department of Physiology and Biomedical Engineering, Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - George F Mells
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Richard N Sandford
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jeremy Palmer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A Kirby
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Joao Mokochinski
- MRC London Institute of Medical Sciences, London, United Kingdom
| | - Zoe Hall
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher M Morris
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter S Hanson
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | | | - Fiona E N LeBeau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David E J Jones
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
10
|
Secretin alleviates biliary and liver injury during late-stage primary biliary cholangitis via restoration of secretory processes. J Hepatol 2023; 78:99-113. [PMID: 35987275 DOI: 10.1016/j.jhep.2022.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Primary biliary cholangitis (PBC) is characterised by ductopenia, ductular reaction, impairment of anion exchanger 2 (AE2) and the 'bicarbonate umbrella'. Ductulo-canalicular junction (DCJ) derangement is hypothesised to promote PBC progression. The secretin (Sct)/secretin receptor (SR) axis regulates cystic fibrosis transmembrane receptor (CFTR) and AE2, thus promoting choleresis. We evaluated the role of Sct/SR signalling on biliary secretory processes and subsequent injury in a late-stage PBC mouse model and human samples. METHODS At 32 weeks of age, female and male wild-type and dominant-negative transforming growth factor beta receptor II (late-stage PBC model) mice were treated with Sct for 1 or 8 weeks. Bulk RNA-sequencing was performed in isolated cholangiocytes from mouse models. RESULTS Biliary Sct/SR/CFTR/AE2 expression and bile bicarbonate levels were reduced in late-stage PBC mouse models and human samples. Sct treatment decreased bile duct loss, ductular reaction, inflammation, and fibrosis in late-stage PBC models. Sct reduced hepatic bile acid levels, modified bile acid composition, and restored the DCJ and 'bicarbonate umbrella'. RNA-sequencing identified that Sct promoted mature epithelial marker expression, specifically anterior grade protein 2 (Agr2). Late-stage PBC models and human samples exhibited reduced biliary mucin 1 levels, which were enhanced by Sct treatment. CONCLUSION Loss of Sct/SR signalling in late-stage PBC results in a faulty 'bicarbonate umbrella' and reduced Agr2-mediated mucin production. Sct restores cholangiocyte secretory processes and DCJ formation through enhanced mature cholangiocyte phenotypes and bile duct growth. Sct treatment may be beneficial for individuals with late-stage PBC. IMPACT AND IMPLICATIONS Secretin (Sct) regulates biliary proliferation and bicarbonate secretion in cholangiocytes via its receptor, SR, and in mouse models and human samples of late-stage primary biliary cholangitis (PBC), the Sct/SR axis is blunted along with loss of the protective 'bicarbonate umbrella'. We found that both short- and long-term Sct treatment ameliorated ductular reaction, immune cell influx, and liver fibrosis in late-stage PBC mouse models. Importantly, Sct treatment promoted bicarbonate and mucin secretion and hepatic bile acid efflux, thus reducing cholestatic and toxic bile acid-associated injury in late-stage PBC mouse models. Our work perpetuates the hypothesis that PBC pathogenesis hinges on secretory defects, and restoration of secretory processes that promote the 'bicarbonate umbrella' may be important for amelioration of PBC-associated damage.
Collapse
|
11
|
Huang LX, Wang ZL, Jin R, Chen HS, Feng B. Incomplete response to ursodeoxycholic acid in primary biliary cholangitis: criteria, epidemiology, and possible mechanisms. Expert Rev Gastroenterol Hepatol 2022; 16:1065-1078. [PMID: 36469627 DOI: 10.1080/17474124.2022.2153672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
INTRODUCTION As a common autoimmune disease with the characteristic of early complication, primary biliary cholangitis (PBC) leads to an increasing number of mortalities among people with end-stage liver disease (ESLD) waiting for liver transplantation. Ursodeoxycholic acid (UDCA) is the only approved first-line medicine for PBC, and a good response to treatment could acquire an ideal prognosis. Patients with poor UDCA response usually have more adverse outcomes and worse survival, therefore, the management of this group become a major consideration. AREAS COVERED Due to the complexity of race and environment for PBC, different criteria for UDCA response exhibit various predictive performances. Factors affecting UDCA response conditions include gender, age, ethnicity, serum indicators, auto-antibodies, and autoimmune comorbidities, while no agreement has been reached. In this review, we mainly focus on cellular senescence, immune-mediated damage, and vitamin D deficiency as possible mechanisms for UDCA non-responders. EXPERT OPINION The pathogenesis of PBC has yet to be clarified. Immunology-related mechanisms and therapy targets ought to be the main effort made for further study. Irrespective of the response condition, UDCA is recommended for routine administration in all PBC patients without contraindication. Ongoing clinical trials of second-line and additional therapy exhibit promising prospects.
Collapse
Affiliation(s)
- Lin-Xiang Huang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, PR China
| | - Zi-Long Wang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, PR China
| | - Rui Jin
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, PR China
| | - Hong-Song Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, PR China
| | - Bo Feng
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, PR China
| |
Collapse
|
12
|
Lascaris B, de Meijer VE, Porte RJ. Normothermic liver machine perfusion as a dynamic platform for regenerative purposes: What does the future have in store for us? J Hepatol 2022; 77:825-836. [PMID: 35533801 DOI: 10.1016/j.jhep.2022.04.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 01/06/2023]
Abstract
Liver transplantation has become an immense success; nevertheless, far more recipients are registered on waiting lists than there are available donor livers for transplantation. High-risk, extended criteria donor livers are increasingly used to reduce the discrepancy between organ demand and supply. Especially for high-risk livers, dynamic preservation using machine perfusion can decrease post-transplantation complications and may increase donor liver utilisation by improving graft quality and enabling viability testing before transplantation. To further increase the availability of donor livers suitable for transplantation, new strategies are required that make it possible to use organs that are initially too damaged to be transplanted. With the current progress in experimental liver transplantation research, (long-term) normothermic machine perfusion may be used in the future as a dynamic platform for regenerative medicine approaches, enabling repair and regeneration of injured donor livers. Currently explored therapeutics such as defatting cocktails, RNA interference, senolytics, and stem cell therapy may assist in the repair and/or regeneration of injured livers before transplantation. This review will provide a forecast of the future utility of normothermic machine perfusion in decreasing the imbalance between donor liver demand and supply by enabling the repair and regeneration of damaged donor livers.
Collapse
Affiliation(s)
- Bianca Lascaris
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
13
|
Wu Y, Shen S, Shi Y, Tian N, Zhou Y, Zhang X. Senolytics: Eliminating Senescent Cells and Alleviating Intervertebral Disc Degeneration. Front Bioeng Biotechnol 2022; 10:823945. [PMID: 35309994 PMCID: PMC8924288 DOI: 10.3389/fbioe.2022.823945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the main cause of cervical and lumbar spondylosis. Over the past few years, the relevance between cellular senescence and IVDD has been widely studied, and the senescence-associated secretory phenotype (SASP) produced by senescent cells is found to remodel extracellular matrix (ECM) metabolism and destruct homeostasis. Elimination of senescent cells by senolytics and suppression of SASP production by senomorphics/senostatics are effective strategies to alleviate degenerative diseases including IVDD. Here, we review the involvement of senescence in the process of IVDD; we also discuss the potential of senolytics on eliminating senescent disc cells and alleviating IVDD; finally, we provide a table listing senolytic drugs and small molecules, aiming to propose potential drugs for IVDD therapy in the future.
Collapse
Affiliation(s)
- Yuhao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shiwei Shen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
- *Correspondence: Naifeng Tian, ; Yifei Zhou, ; Xiaolei Zhang,
| |
Collapse
|
14
|
Trussoni CE, O'Hara SP, LaRusso NF. Cellular senescence in the cholangiopathies: a driver of immunopathology and a novel therapeutic target. Semin Immunopathol 2022; 44:527-544. [PMID: 35178659 DOI: 10.1007/s00281-022-00909-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
The cholangiopathies are a group of liver diseases that affect cholangiocytes, the epithelial cells that line the bile ducts. Biliary atresia (BA), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are three cholangiopathies with significant immune-mediated pathogenesis where chronic inflammation and fibrosis lead to obliteration of bile ducts and eventual liver cirrhosis. Cellular senescence is a state of cell cycle arrest in which cells become resistant to apoptosis and profusely secrete a bioactive secretome. Recent evidence indicates that cholangiocyte senescence contributes to the pathogenesis of BA, PBC, and PSC. This review explores the role of cholangiocyte senescence in BA, PBC, and PSC, ascertains how cholangiocyte senescence may promote a senescence-associated immunopathology in these cholangiopathies, and provides the rationale for therapeutically targeting senescence as a treatment option for BA, PBC, and PSC.
Collapse
Affiliation(s)
- Christy E Trussoni
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Steven P O'Hara
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA. .,Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN, 55905, USA.
| |
Collapse
|
15
|
Meadows V, Baiocchi L, Kundu D, Sato K, Fuentes Y, Wu C, Chakraborty S, Glaser S, Alpini G, Kennedy L, Francis H. Biliary Epithelial Senescence in Liver Disease: There Will Be SASP. Front Mol Biosci 2021; 8:803098. [PMID: 34993234 PMCID: PMC8724525 DOI: 10.3389/fmolb.2021.803098] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a pathophysiological phenomenon in which proliferative cells enter cell cycle arrest following DNA damage and other stress signals. Natural, permanent DNA damage can occur after repetitive cell division; however, acute stress or other injuries can push cells into premature senescence and eventually a senescence-associated secretory phenotype (SASP). In recent years, there has been increased evidence for the role of premature senescence in disease progression including diabetes, cardiac diseases, and end-stage liver diseases including cholestasis. Liver size and function change with aging, and presumably with increasing cellular senescence, so it is important to understand the mechanisms by which cellular senescence affects the functional nature of the liver in health and disease. As well, cells in a SASP state secrete a multitude of inflammatory and pro-fibrogenic factors that modulate the microenvironment. Cellular SASP and the associated, secreted factors have been implicated in the progression of liver diseases, such as cholestatic injury that target the biliary epithelial cells (i.e., cholangiocytes) lining the bile ducts. Indeed, cholangiocyte senescence/SASP is proposed to be a driver of disease phenotypes in a variety of liver injuries. Within this review, we will discuss the impact of cholangiocyte senescence and SASP in the pathogenesis of cholestatic disorders.
Collapse
Affiliation(s)
- Vik Meadows
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | | | - Debjyoti Kundu
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | - Keisaku Sato
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | - Yessenia Fuentes
- Clinical and Translational Sciences Institute, STEM GEHCS Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| |
Collapse
|
16
|
Baiocchi L, Glaser S, Francis H, Kennedy L, Felli E, Alpini G, Gracia‐Sancho J. Impact of Aging on Liver Cells and Liver Disease: Focus on the Biliary and Vascular Compartments. Hepatol Commun 2021; 5:1125-1137. [PMID: 34278165 PMCID: PMC8279468 DOI: 10.1002/hep4.1725] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The aging process is represented by the time-dependent decay in physiologic functions of living beings. Major interest has been focused in recent years on the determinants of this progressive condition due to its correlative relationship with the onset of diseases. Several hallmark features have been observed in aging, such as genetic alterations, mitochondrial impairment, and telomere shortening. At the cellular level, a senescent phenotype has been identified in response to aging that is characterized by a flat appearance, proliferative arrest, and production of specific molecules. The net effect of these cells in the course of diseases is an argument of debate. In fact, while the onset of a senescent phenotype may prevent tumor spreading, these cells appear to support pathological processes in some conditions. Several studies are now focused on clarifying the specific molecular pathways of aging/senescence in different cells, tissues, or organs. Biliary and vascular components, within the liver, have emerged as important determinants of some form of liver disease. In this review we summarize the most recent achievements on aging/senescence, focusing on the biliary and vascular liver system. Conclusion: Several findings, in both preclinical animal models and on human liver specimens, converge in supporting the presence of specific aging hallmarks in the diseases involving these hepatic compartments.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Hepatology UnitDepartment of MedicineUniversity of Tor VergataRomeItaly
| | - Shannon Glaser
- Medical PhysiologyTexas A&M College of MedicineBryanTXUSA
| | - Heather Francis
- Hepatology and MedicineIndiana UniversityIndianapolisINUSA
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Lindsey Kennedy
- Hepatology and MedicineIndiana UniversityIndianapolisINUSA
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Eric Felli
- HepatologyDepartment of Biomedical ResearchInselspitalBernSwitzerland
| | - Gianfranco Alpini
- Hepatology and MedicineIndiana UniversityIndianapolisINUSA
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Jordi Gracia‐Sancho
- Liver Vascular BiologyIDIBAPS Biomedical Research Institute and CIBEREHDBarcelonaSpain
- HepatologyDepartment of Biomedical ResearchInselspitalBernSwitzerland
| |
Collapse
|
17
|
Sasaki M, Sato Y, Nakanuma Y. Interferon-induced protein with tetratricopeptide repeats 3 may be a key factor in primary biliary cholangitis. Sci Rep 2021; 11:11413. [PMID: 34075171 PMCID: PMC8169865 DOI: 10.1038/s41598-021-91016-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulating studies suggest that senescent biliary epithelial cells (BECs) produce senescence-associated secretory phenotypes (SASPs) and play various roles in the pathogenesis of primary biliary cholangitis (PBC) and other cholangiopathies. We examined comprehensive profiles of senescent BECs and its contribution to the pathogenesis of PBC taking advantage of microarray analysis. cDNA microarray analysis revealed that 1841 genes including CCL2, IFIT3, CPQ were commonly up-regulated in senescent BECs cultured in serum depleted media or media with glycochenodeoxycholic acid. Knockdown of IFIT3 significantly suppressed cellular senescence (p < 0.01) and significantly increased apoptosis (p < 0.01) in BECs treated with serum depletion or glycochenodeoxycholic acid. Significantly increased expression of IFIT3 was seen in senescent BECs in small bile ducts showing cholangitis and in ductular reactions in PBC, compared to control livers (p < 0.01). An inadequate response to UDCA was inversely correlated to the increased expression of IFIT3 in small bile duct in PBC (p < 0.05). In conclusion, the expression of various genes related to immunity and inflammation including SASPs were increased in senescent BECs. Upregulated IFIT3 in senescent BECs may be associated with the pathogenesis of PBC and may be a possible therapeutic target in PBC.
Collapse
Affiliation(s)
- Motoko Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasuni Nakanuma
- Department of Pathology, Fukui Saiseikai Hospital, Fukui, 918-8503, Japan
| |
Collapse
|