1
|
McCabe M, Bhattacharyya R, Sereda R, Santiago-Fernández O, Khawaja RR, Diaz A, Lindenau K, Ozturk DG, Garner TP, Sidoli S, Cuervo AM, Gavathiotis E. Small molecule disruption of RARα/NCoR1 interaction inhibits chaperone-mediated autophagy in cancer. EMBO Mol Med 2025:10.1038/s44321-025-00254-y. [PMID: 40490560 DOI: 10.1038/s44321-025-00254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 05/10/2025] [Accepted: 05/16/2025] [Indexed: 06/11/2025] Open
Abstract
Chaperone-mediated autophagy (CMA), a type of selective degradation of cytosolic proteins in lysosomes, is commonly upregulated in cancer cells, contributing to their survival and growth. The lack of a specific target for CMA inhibition has limited CMA blockage to genetic manipulations or global lysosomal function inhibition. Here, using genetic modulation, transcriptional analysis, and functional studies, we demonstrate a regulatory role for the interaction of the retinoic acid receptor alpha (RARα) and its corepressor, the nuclear receptor corepressor 1 (NCoR1), on CMA in non-small cell lung cancer (NSCLC). By targeting the disruption of the NCoR1/RARα complex with a structure-based screening strategy, we identified compound CIM7, a potent and selective CMA inhibitor that has no effect on macroautophagy. CIM7 preferentially inhibits CMA in NSCLC cells over normal cells, reduces tumor growth in NSCLC cells, and demonstrates efficacy in an in vivo xenograft mouse model with no observed toxicity in blood or major tissues. These findings reveal a druggable mechanism for selective CMA inhibition and a first-in-class CMA inhibitor as a potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Mericka McCabe
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Rajanya Bhattacharyya
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Rebecca Sereda
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Olaya Santiago-Fernández
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Rabia R Khawaja
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Kristen Lindenau
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Deniz Gulfem Ozturk
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Thomas P Garner
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
2
|
Qiao L, Hu J, Qiu X, Wang C, Peng J, Zhang C, Zhang M, Lu H, Chen W. LAMP2A, LAMP2B and LAMP2C: similar structures, divergent roles. Autophagy 2023; 19:2837-2852. [PMID: 37469132 PMCID: PMC10549195 DOI: 10.1080/15548627.2023.2235196] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
LAMP2 (lysosomal associated membrane protein 2) is one of the major protein components of the lysosomal membrane. There currently exist three LAMP2 isoforms, LAMP2A, LAMP2B and LAMP2C, and they vary in distribution and function. LAMP2A serves as a receptor and channel for transporting cytosolic proteins in a process called chaperone-mediated autophagy (CMA). LAMP2B is required for autophagosome-lysosome fusion in cardiomyocytes and is one of the components of exosome membranes. LAMP2C is primarily implicated in a novel type of autophagy in which nucleic acids are taken up into lysosomes for degradation. In this review, the current evidence for the function of each LAMP2 isoform in various pathophysiological processes and human diseases, as well as their possible mechanisms, are comprehensively summarized. We discuss the evolutionary patterns of the three isoforms in vertebrates and provide technical guidance on investigating these isoforms. We are also concerned with the newly arising questions in this particular research area that remain unanswered. Advances in the functions of the three LAMP2 isoforms will uncover new links between lysosomal dysfunction, autophagy and human diseases.Abbreviation: ACSL4: acyl-CoA synthetase long-chain family member 4; AD: Alzheimer disease; Ag: antigens; APP: amyloid beta precursor protein; ATG14: autophagy related 14; AVSF: autophagic vacuoles with unique sarcolemmal features; BBC3/PUMA: BCL2 binding component 3; CCD: C-terminal coiled coil domain; CMA: chaperone-mediated autophagy; CVDs: cardiovascular diseases; DDIT4/REDD1: DNA damage inducible transcript 4; ECs: endothelial cells; ER: endoplasmic reticulum; ESCs: embryonic stem cells; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GBA/β-glucocerebrosidase: glucosylceramidase beta; GSCs: glioblastoma stem cells; HCC: hepatocellular carcinoma; HD: Huntington disease; HSCs: hematopoietic stem cells; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; IL3: interleukin 3; IR: ischemia-reperfusion; LAMP2: lysosomal associated membrane protein 2; LDs: lipid droplets; LRRK2: leucine rich repeat kinase 2; MA: macroautophagy; MHC: major histocompatibility complex; MST1: macrophage stimulating 1; NAFLD: nonalcoholic fatty liver disease; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NLRP3: NLR family pyrin domain containing 3; PARK7: Parkinsonism associated deglycase; PD: Parkinson disease; PEA15/PED: proliferation and apoptosis adaptor protein 15; PKM/PKM2: pyruvate kinase M1/2; RA: rheumatoid arthritis; RARA: retinoic acid receptor alpha; RCAN1: regulator of calcineurin 1; RCC: renal cell carcinoma; RDA: RNautophagy and DNautophagy; RNAi: RNA interference; RND3: Rho Family GTPase 3; SG-NOS3/eNOS: deleterious glutathionylated NOS3; SLE: systemic lupus erythematosus; TAMs: tumor-associated macrophages; TME: tumor microenvironment; UCHL1: ubiquitin C-terminal hydrolase L1; VAMP8: vesicle associated membrane protein 8.
Collapse
Affiliation(s)
- Lei Qiao
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiayi Hu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaohan Qiu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chunlin Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jieqiong Peng
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huixia Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenqiang Chen
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Mahroum N, Elsalti A, Alwani A, Seida I, Alrais M, Seida R, Esirgun SN, Abali T, Kiyak Z, Zoubi M, Shoenfeld Y. The mosaic of autoimmunity - Finally discussing in person. The 13 th international congress on autoimmunity 2022 (AUTO13) Athens. Autoimmun Rev 2022; 21:103166. [PMID: 35932955 PMCID: PMC9349027 DOI: 10.1016/j.autrev.2022.103166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
While autoimmunity is a branch of medicine linked to every single organ system via direct and indirect pathways, meeting in person to discuss autoimmunity during the 13th international congress on autoimmunity (AUTO13) with participants from all over the world had a very good reason. The mechanisms involved in autoimmune diseases are of extreme importance and in fact critical in understanding the course of diseases as well as selecting proper therapies. COVID-19 has served as a great example of how autoimmunity is deeply involved in the disease and directly correlated to severity, morbidity, and mortality. For instance, initially the term cytokine storm dominated, then COVID-19 was addressed as the new member of the hyperferritinemic syndrome, and also the use of immunosuppressants in patients with COVID-19 throughout the pandemic, all shed light on the fundamental role of autoimmunity. Unsurprisingly, SARS-CoV-2 was called the “autoimmune virus” during AUTO13. Subsequently, the correlation between autoimmunity and COVID-19 vaccines and post-COVID, all were discussed from different autoimmune aspects during the congress. In addition, updates on the mechanisms of diseases, autoantibodies, novel diagnostics and therapies in regard to autoimmune diseases such as antiphospholipid syndrome, systemic lupus erythematosus, systemic sclerosis and others, were discussed in dedicated sessions. Due to the magnificence of the topics discussed, we aimed to bring in our article hereby, the pearls of AUTO13 in terms of updates, new aspects of autoimmunity, and interesting findings. While more than 500 abstract were presented, concluding all the topics was not in reach, hence major findings were summarized.
Collapse
Affiliation(s)
- Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Abdulrahman Elsalti
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Abdulkarim Alwani
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Isa Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mahmoud Alrais
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ravend Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Sevval Nil Esirgun
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Tunahan Abali
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Zeynep Kiyak
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Majdi Zoubi
- Department of Internal Medicine B, HaEmek Medical Center, Afula, Israel, Affiliated to Technion, Faculty of Medicine, Haifa, Israel
| | | |
Collapse
|
5
|
Schall N, Talamini L, Wilhelm M, Jouvin-Marche E, Muller S. P140 Peptide Leads to Clearance of Autoreactive Lymphocytes and Normalizes Immune Response in Lupus-Prone Mice. Front Immunol 2022; 13:904669. [PMID: 35720371 PMCID: PMC9199391 DOI: 10.3389/fimmu.2022.904669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
In systemic lupus erythematosus, T cells display multiple abnormalities. They are abnormally activated, secrete pro-inflammatory cytokines, help B cells to generate pathogenic autoantibodies, and provoke the accumulation of autoreactive memory T cells. P140, a synthetic peptide evaluated in phase-III clinical trials for lupus, binds HSPA8/HSC70 chaperone protein. In vitro and in vivo, it interferes with hyperactivated chaperone-mediated autophagy, modifying overexpression of major histocompatibility complex class II molecules and antigen presentation to autoreactive T cells. Here, we show that in P140-treated lupus mice, abnormalities affecting T and B cells are no longer detectable in secondary lymphoid tissue and peripheral blood. Data indicate that P140 acts by depleting hyper-activated autoreactive T and B cells and restores normal immune homeostasis. Our findings suggest that P140 belongs to a new family of non-immunosuppressive immunoregulators that do not correct T and B cell abnormalities but rather contribute to the clearance of deleterious T and B cells.
Collapse
Affiliation(s)
- Nicolas Schall
- CNRS and Strasbourg University, Unit Biotechnology and Cell signaling, UMR7242/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Laura Talamini
- CNRS and Strasbourg University, Unit Biotechnology and Cell signaling, UMR7242/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Maud Wilhelm
- CNRS and Strasbourg University, Unit Biotechnology and Cell signaling, UMR7242/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Evelyne Jouvin-Marche
- Institute for Advanced Biosciences, Research Centre Université Grenoble Alpes (UGA)-Inserm U1209-CNRS UMR 5309, La Tronche, France
| | - Sylviane Muller
- CNRS and Strasbourg University, Unit Biotechnology and Cell signaling, UMR7242/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France.,University of Strasbourg Institute for Advanced Study, Strasbourg, France
| |
Collapse
|
6
|
Bonam SR, Tranchant C, Muller S. Autophagy-Lysosomal Pathway as Potential Therapeutic Target in Parkinson's Disease. Cells 2021; 10:3547. [PMID: 34944054 PMCID: PMC8700067 DOI: 10.3390/cells10123547] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Cellular quality control systems have gained much attention in recent decades. Among these, autophagy is a natural self-preservation mechanism that continuously eliminates toxic cellular components and acts as an anti-ageing process. It is vital for cell survival and to preserve homeostasis. Several cell-type-dependent canonical or non-canonical autophagy pathways have been reported showing varying degrees of selectivity with regard to the substrates targeted. Here, we provide an updated review of the autophagy machinery and discuss the role of various forms of autophagy in neurodegenerative diseases, with a particular focus on Parkinson's disease. We describe recent findings that have led to the proposal of therapeutic strategies targeting autophagy to alter the course of Parkinson's disease progression.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Sylviane Muller
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
- CNRS and Strasbourg University, Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France
| |
Collapse
|