1
|
Pham TD, Verlander JW, Chen C, Pech V, Kim HI, Kim YH, Weiner ID, Milne GL, Zent R, Bock F, Brown D, Eaton A, Wall SM. Angiotensin II acts through Rac1 to upregulate pendrin: role of NADPH oxidase. Am J Physiol Renal Physiol 2024; 326:F202-F218. [PMID: 38059296 PMCID: PMC11198991 DOI: 10.1152/ajprenal.00139.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Angiotensin II increases apical plasma membrane pendrin abundance and function. This study explored the role of the small GTPase Rac1 in the regulation of pendrin by angiotensin II. To do this, we generated intercalated cell (IC) Rac1 knockout mice and observed that IC Rac1 gene ablation reduced the relative abundance of pendrin in the apical region of intercalated cells in angiotensin II-treated mice but not vehicle-treated mice. Similarly, the Rac1 inhibitor EHT 1864 reduced apical pendrin abundance in angiotensin II-treated mice, through a mechanism that does not require aldosterone. This IC angiotensin II-Rac1 signaling cascade modulates pendrin subcellular distribution without significantly changing actin organization. However, NADPH oxidase inhibition with APX 115 reduced apical pendrin abundance in vivo in angiotensin II-treated mice. Moreover, superoxide dismutase mimetics reduced Cl- absorption in angiotensin II-treated cortical collecting ducts perfused in vitro. Since Rac1 is an NADPH subunit, Rac1 may modulate pendrin through NADPH oxidase-mediated reactive oxygen species production. Because pendrin gene ablation blunts the pressor response to angiotensin II, we asked if pendrin blunts the angiotensin II-induced increase in kidney superoxide. Although kidney superoxide was similar in vehicle-treated wild-type and pendrin knockout mice, it was lower in angiotensin II-treated pendrin-null kidneys than in wild-type kidneys. We conclude that angiotensin II acts through Rac1, independently of aldosterone, to increase apical pendrin abundance. Rac1 may stimulate pendrin, at least partly, through NADPH oxidase. This increase in pendrin abundance contributes to the increment in blood pressure and kidney superoxide content seen in angiotensin II-treated mice.NEW & NOTEWORTHY This study defines a new signaling mechanism by which angiotensin II modulates oxidative stress and blood pressure.
Collapse
Affiliation(s)
- Truyen D Pham
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, Florida, United States
| | - Chao Chen
- Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, Florida, United States
| | - Vladimir Pech
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Hailey I Kim
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Young Hee Kim
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, Florida, United States
- Nephrology and Hypertension Section, Gainesville Veterans Affairs Medical Center, Gainesville, Florida, United States
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs Hospital, Nashville, Tennessee, United States
| | - Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs Hospital, Nashville, Tennessee, United States
| | - Dennis Brown
- Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Amity Eaton
- Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Susan M Wall
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
2
|
Murad H, Rafeeq M. Cheminformatics approach for identification of N-HyMenatPimeMelly as a novel potential ligand against RAS and renal chloride channel. J Biomol Struct Dyn 2023; 42:12836-12850. [PMID: 37882351 DOI: 10.1080/07391102.2023.2273439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
Some angiotensin receptor (AR) blockers interfere with the renal chloride channel (ClC-K), which plays an important role in urine concentration. Identifying ligands targeting this channel, whether activating or blocking, is highly desirable because it could open the way for interventions that modulate their activity. In this study, the Asinex (BioDesign) complete library was screened to identify a compound with favorable physicochemical and pharmacokinetic properties, which have both AR blocking and ClC-Ka-modulating activities to present it as a novel potential oral candidate which could be useful for treatment of salt-sensitive hypertension without major ClC-K affection. A compound, N-{[4-Hydroxy-1-(2-methyl-1,6-naphthyridin-4-yl)-4-piperidinyl]methyl}-N-methyl-L-lysinamide (N-HyMenatPimeMelly) (Chem Spider ID 68416221), was identified as a potent potential oral ligand of the renin-angiotensin system (RAS) and ClC-Ka with docking scores ranging from -10.978 to -7.324 with the four selected proteins (4YAY: AR type 1, 2PFI: Cytoplasmic domain of ClC-Ka, 6JOD: AR type 2 and 6M0J: Angiotensin-converting enzyme 2). The protein-ligand complex was used to perform molecular dynamics (MD) simulation for 100 ns. The QikProp and SwissADME tools' results showed that the compound has ADME/T and drug-likeness properties, which are within the permissible ranges for 95% of known drugs. The density functional theory (DFT) analysis and MD simulation extended the study toward computational validation. Throughout the study, N-HyMenatPimeMelly has shown good interactions and stable performance in MD simulation and DFT analysis. The whole analysis has produced promising results, and N-HyMenatPimeMelly can be treated as a novel potential RAS and ClC-K oral ligand, however, experimental validation is needed before human use.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hussam Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Misbahudin Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Kui M, Pluznick JL, Zaidman NA. The transcription factor Foxi1 promotes expression of V-ATPase and Gpr116 in M-1 cells. Am J Physiol Renal Physiol 2023; 324:F267-F273. [PMID: 36603001 PMCID: PMC9942906 DOI: 10.1152/ajprenal.00272.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
The diverse functions of each nephron segment rely on the coordinated action of specialized cell populations that are uniquely defined by their transcriptional profile. In the collecting duct, there are two critical and distinct cell populations: principal cells and intercalated cells. Principal cells play key roles in the regulation of water, Na+, and K+, whereas intercalated cells are best known for their role in acid-base homeostasis. Currently, there are no in vitro systems that recapitulate the heterogeneity of the collecting ducts, which limits high-throughput and replicate investigations of genetic and physiological phenomena. Here, we demonstrated that the transcription factor Foxi1 is sufficient to alter the transcriptional identity of M-1 cells, a murine cortical collecting duct cell line. Specifically, overexpression of Foxi1 induces the expression of intercalated cell transcripts including Gpr116, Atp6v1b1, Atp6v1g3, Atp6v0d2, Slc4a9, and Slc26a4. These data indicate that overexpression of Foxi1 differentiates M-1 cells toward a non-A, non-B type intercalated cell phenotype and may provide a novel in vitro tool to study transcriptional regulation and physiological function of the renal collecting duct.NEW & NOTEWORTHY Transfection of M-1 cells with the transcription factor Foxi1 generates cells that express V-ATPase and Gpr116 as well as other genes associated with renal intercalated cells. This straightforward and novel in vitro system could be used to study processes including transcriptional regulation and cell specification and differentiation in renal intercalated cells.
Collapse
Affiliation(s)
- Mackenzie Kui
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Nathan A Zaidman
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| |
Collapse
|
4
|
Urbanek K, Cappetta D, Bellocchio G, Coppola MA, Imbrici P, Telesca M, Donniacuo M, Riemma MA, Mele E, Cianflone E, Naviglio S, Conte E, Camerino GM, Mele M, Bucci M, Castaldo G, De Luca A, Rossi F, Berrino L, Liantonio A, De Angelis A. Dapagliflozin protects the kidney in a non-diabetic model of cardiorenal syndrome. Pharmacol Res 2023; 188:106659. [PMID: 36646190 DOI: 10.1016/j.phrs.2023.106659] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Cardiorenal syndrome encompasses a spectrum of disorders involving heart and kidney dysfunction, and sharing common risk factors, such as hypertension and diabetes. Clinical studies have shown that patients with and without diabetes may benefit from using sodium-glucose cotransporter 2 inhibitors to reduce the risk of heart failure and ameliorate renal endpoints. Because the underlying mechanisms remain elusive, we investigated the effects of dapagliflozin on the progression of renal damage, using a model of non-diabetic cardiorenal disease. Dahl salt-sensitive rats were fed a high-salt diet for five weeks and then randomized to dapagliflozin or vehicle for the following six weeks. After treatment with dapagliflozin, renal function resulted ameliorated as shown by decrease of albuminuria and urine albumin-to-creatinine ratio. Functional benefit was accompanied by a decreased accumulation of extracellular matrix and a reduced number of sclerotic glomeruli. Dapagliflozin significantly reduced expression of inflammatory and endothelial activation markers such as NF-κB and e-selectin. Upregulation of pro-oxidant-releasing NADPH oxidases 2 and 4 as well as downregulation of antioxidant enzymes were also counteracted by drug treatment. Our findings also evidenced the modulation of both classic and non-classic renin-angiotensin-aldosterone system (RAAS), and effects of dapagliflozin on gene expression of ion channels/transporters involved in renal homeostasis. Thus, in a non-diabetic model of cardiorenal syndrome, dapagliflozin provides renal protection by modulating inflammatory response, endothelial activation, fibrosis, oxidative stress, local RAAS and ion channels.
Collapse
Affiliation(s)
- Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131 Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy; Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Lecce-Monteroni, Monteroni di Lecce, 73047 Lecce, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Maria Antonietta Coppola
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Giulia Maria Camerino
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Marco Mele
- University Hospital Policlinico Riuniti, Viale Pinto 1, 71100 Foggia, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131 Naples, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy.
| |
Collapse
|
5
|
Stavniichuk A, Pyrshev K, Tomilin VN, Kordysh M, Zaika O, Pochynyuk O. Modus operandi of ClC-K2 Cl - Channel in the Collecting Duct Intercalated Cells. Biomolecules 2023; 13:177. [PMID: 36671562 PMCID: PMC9855527 DOI: 10.3390/biom13010177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The renal collecting duct is known to play a critical role in many physiological processes, including systemic water-electrolyte homeostasis, acid-base balance, and the salt sensitivity of blood pressure. ClC-K2 (ClC-Kb in humans) is a Cl--permeable channel expressed on the basolateral membrane of several segments of the renal tubule, including the collecting duct intercalated cells. ClC-Kb mutations are causative for Bartters' syndrome type 3 manifested as hypotension, urinary salt wasting, and metabolic alkalosis. However, little is known about the significance of the channel in the collecting duct with respect to the normal physiology and pathology of Bartters' syndrome. In this review, we summarize the available experimental evidence about the signaling determinants of ClC-K2 function and the regulation by systemic and local factors as well as critically discuss the recent advances in understanding the collecting-duct-specific roles of ClC-K2 in adaptations to changes in dietary Cl- intake and maintaining systemic acid-base homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
6
|
Pyrshev K, Khayyat NH, Stavniichuk A, Tomilin VN, Zaika O, Ramkumar N, Pochynyuk O. ClC-K2 Cl - channel allows identification of A- and B-type of intercalated cells in split-opened collecting ducts. FASEB J 2022; 36:e22275. [PMID: 35349181 PMCID: PMC9014849 DOI: 10.1096/fj.202200160r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 11/11/2022]
Abstract
The collecting duct is a highly adaptive terminal part of the nephron, which is essential for maintaining systemic homeostasis. Principal and intercalated cells perform different physiological tasks and exhibit distinctive morphology. However, acid-secreting A- and base secreting B-type of intercalated cells cannot be easily separated in functional studies. We used BCECF-sensitive intracellular pH (pHi ) measurements in split-opened collecting ducts followed by immunofluorescent microscopy in WT and intercalated cell-specific ClC-K2-/- mice to demonstrate that ClC-K2 inhibition enables to distinguish signals from A- and B-intercalated cells. We show that ClC-K2 Cl- channel is expressed on the basolateral side of intercalated cells, where it governs Cl- -dependent H+ /HCO3- transport. ClC-K2 blocker, NPPB, caused acidification or alkalization in different subpopulations of intercalated cells in WT but not ClC-K2-/- mice. Immunofluorescent assessment of the same collecting ducts revealed that NPPB increased pHi in AE1-positive A-type and decreased pHi in pendrin-positive B-type of intercalated cells. Induction of metabolic acidosis led to a significantly augmented abundance and H+ secretion in A-type and decreased proton transport in B-type of intercalated cells, whereas metabolic alkalosis caused the opposite changes in intercalated cell function, but did not substantially change their relative abundance. Overall, we show that inhibition of ClC-K2 can be employed to discriminate between A- and B-type of intercalated cells in split-opened collecting duct preparations. We further demonstrate that this method can be used to independently monitor changes in the functional status and abundance of A- and B-type in response to systemic acid/base stimuli.
Collapse
Affiliation(s)
- Kyrylo Pyrshev
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Naghmeh Hassanzadeh Khayyat
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anna Stavniichuk
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Viktor N. Tomilin
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, Utah, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
7
|
Polidoro JZ, Luchi WM, Seguro AC, Malnic G, Girardi ACC. Paracrine and endocrine regulation of renal potassium secretion. Am J Physiol Renal Physiol 2022; 322:F360-F377. [DOI: 10.1152/ajprenal.00251.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The seminal studies conducted by Giebisch and colleagues in the 1960s paved the way for understanding the renal mechanisms involved in K+ homeostasis. It was demonstrated that differential handling of K+ in the distal segments of the nephron is crucial for proper K+ balance. Although aldosterone had been classically ascribed as the major ion transport regulator in the distal nephron, thereby contributing to K+ homeostasis, it became clear that aldosterone per se could not explain the kidney's ability to modulate kaliuresis in both acute and chronic settings. The existence of alternative kaliuretic and antikaliuretic mechanisms was suggested by physiological studies in the 1980s but only gained form and shape with the advent of molecular biology. It is now established that the kidneys recruit several endocrine and paracrine mechanisms for adequate kaliuretic response. These mechanisms include the direct effects of peritubular K+, a gut-kidney regulatory axis sensing dietary K+ levels, the kidney secretion of kallikrein during postprandial periods, the upregulation of angiotensin II receptors in the distal nephron during chronic changes in the K+ diet, and the local increase of prostaglandins by low K+ diet. This review discusses recent advances in the understanding of endocrine and paracrine mechanisms underlying the modulation of K+ secretion and how these mechanisms impact kaliuresis and K+ balance. We also highlight important unknowns about the regulation of renal K+ excretion under physiological circumstances.
Collapse
Affiliation(s)
- Juliano Z. Polidoro
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Weverton Machado Luchi
- Department of Internal Medicine, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Antonio Carlos Seguro
- Department of Nephrology (LIM 12), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, University of São Paulo Medical School, São Paulo, Brazil
| | | |
Collapse
|
8
|
Kouyoumdzian NM, Kim G, Rudi MJ, Rukavina Mikusic NL, Fernández BE, Choi MR. Clues and new evidences in arterial hypertension: unmasking the role of the chloride anion. Pflugers Arch 2022; 474:155-176. [PMID: 34966955 DOI: 10.1007/s00424-021-02649-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
The present review will focus on the role of chloride anion in cardiovascular disease, with special emphasis in the development of hypertensive disease and vascular inflammation. It is known that acute and chronic overload of sodium chloride increase blood pressure and have pro-inflammatory and pro-fibrotic effects on different target organs, but it is unknown how chloride may influence these processes. Chloride anion is the predominant anion in the extracellular fluid and its intracellular concentration is dynamically regulated. As the queen of the electrolytes, it is of crucial importance to understand the physiological mechanisms that regulate the cellular handling of this anion including the different transporters and cellular chloride channels, which exert a variety of functions, such as regulation of cellular proliferation, differentiation, migration, apoptosis, intracellular pH and cellular redox state. In this article, we will also review the relationship between dietary, serum and intracellular chloride and how these different sources of chloride in the organism are affected in hypertension and their impact on cardiovascular disease. Additionally, we will discuss the approach of potential strategies that affect chloride handling and its potential effect on cardiovascular system, including pharmacological blockade of chloride channels and non-pharmacological interventions by replacing chloride by another anion.
Collapse
Affiliation(s)
- Nicolás Martín Kouyoumdzian
- Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina.
| | - Gabriel Kim
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Julieta Rudi
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Lucía Rukavina Mikusic
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Marcelo Roberto Choi
- Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Universitario de Ciencias de La Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
| |
Collapse
|