1
|
Brewer KR, Vanoye CG, Huang H, Clowes Moster KR, Desai RR, Hayes JB, Burnette DT, George AL, Sanders CR. Integrative analysis of KCNQ1 variants reveals molecular mechanisms of type 1 long QT syndrome pathogenesis. Proc Natl Acad Sci U S A 2025; 122:e2412971122. [PMID: 39969993 PMCID: PMC11873829 DOI: 10.1073/pnas.2412971122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Loss-of-function (LOF) pathogenic variants in KCNQ1 encoding a cardiac potassium channel predispose to sudden cardiac death in type 1 congenital long QT syndrome (LQT1). To determine the spectrum of molecular mechanisms responsible for this life-threatening condition, we used an integrative approach to determine the biophysical, functional, and trafficking properties of 61 KCNQ1 variants distributed throughout all domains of the channel. Impaired trafficking to the plasma membrane was the most common cause of LOF across all channel domains, often but not always coinciding with protein instability. However, many LOF variants, particularly in transmembrane domains, trafficked normally, but when coexpressed with KCNE1 exhibited impaired conductance, altered voltage dependence, or abnormal gating kinetics, highlighting diverse pathogenic mechanisms. This indicates a need for personalized treatment approaches for LQT1. Use of our data to benchmark variant pathogenicity prediction methods demonstrated that prediction accuracy depends on the exact mechanism of pathogenicity associated with a given variant.
Collapse
Affiliation(s)
- Kathryn R. Brewer
- Department of Biochemistry, Vanderbilt University, Nashville, TN37240
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
| | - Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Hui Huang
- Department of Biochemistry, Vanderbilt University, Nashville, TN37240
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
| | - Katherine R. Clowes Moster
- Department of Biochemistry, Vanderbilt University, Nashville, TN37240
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
| | - Reshma R. Desai
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - James B. Hayes
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN37240
| | - Dylan T. Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN37240
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Charles R. Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN37240
- Center for Structural Biology, Vanderbilt University, Nashville, TN37240
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
2
|
Luu DD, Ramesh N, Kazan IC, Shah KH, Lahiri G, Mana MD, Ozkan SB, Van Horn WD. Evidence that the cold- and menthol-sensing functions of the human TRPM8 channel evolved separately. SCIENCE ADVANCES 2024; 10:eadm9228. [PMID: 38905339 PMCID: PMC11192081 DOI: 10.1126/sciadv.adm9228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a temperature- and menthol-sensitive ion channel that contributes to diverse physiological roles, including cold sensing and pain perception. Clinical trials targeting TRPM8 have faced repeated setbacks predominantly due to the knowledge gap in unraveling the molecular underpinnings governing polymodal activation. A better understanding of the molecular foundations between the TRPM8 activation modes may aid the development of mode-specific, thermal-neutral therapies. Ancestral sequence reconstruction was used to explore the origins of TRPM8 activation modes. By resurrecting key TRPM8 nodes along the human evolutionary trajectory, we gained valuable insights into the trafficking, stability, and function of these ancestral forms. Notably, this approach unveiled the differential emergence of cold and menthol sensitivity over evolutionary time, providing a fresh perspective on complex polymodal behavior. These studies provide a paradigm for understanding polymodal behavior in TRPM8 and other proteins with the potential to enhance our understanding of sensory receptor biology and pave the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Dustin D. Luu
- School of Molecular Sciences and The Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Nikhil Ramesh
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - I. Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Karan H. Shah
- School of Molecular Sciences and The Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Gourab Lahiri
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Miyeko D. Mana
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - S. Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Wade D. Van Horn
- School of Molecular Sciences and The Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
3
|
Phul S, Kuenze G, Vanoye CG, Sanders CR, George AL, Meiler J. Predicting the functional impact of KCNQ1 variants with artificial neural networks. PLoS Comput Biol 2022; 18:e1010038. [PMID: 35442947 PMCID: PMC9060377 DOI: 10.1371/journal.pcbi.1010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/02/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022] Open
Abstract
Recent advances in experimental and computational protein structure determination have provided access to high-quality structures for most human proteins and mutants thereof. However, linking changes in structure in protein mutants to functional impact remains an active area of method development. If successful, such methods can ultimately assist physicians in taking appropriate treatment decisions. This work presents three artificial neural network (ANN)-based predictive models that classify four key functional parameters of KCNQ1 variants as normal or dysfunctional using PSSM-based evolutionary and/or biophysical descriptors. Recent advances in predicting protein structure and variant properties with artificial intelligence (AI) rely heavily on the availability of evolutionary features and thus fail to directly assess the biophysical underpinnings of a change in structure and/or function. The central goal of this work was to develop an ANN model based on structure and physiochemical properties of KCNQ1 potassium channels that performs comparably or better than algorithms using only on PSSM-based evolutionary features. These biophysical features highlight the structure-function relationships that govern protein stability, function, and regulation. The input sensitivity algorithm incorporates the roles of hydrophobicity, polarizability, and functional densities on key functional parameters of the KCNQ1 channel. Inclusion of the biophysical features outperforms exclusive use of PSSM-based evolutionary features in predicting activation voltage dependence and deactivation time. As AI is increasingly applied to problems in biology, biophysical understanding will be critical with respect to 'explainable AI', i.e., understanding the relation of sequence, structure, and function of proteins. Our model is available at www.kcnq1predict.org.
Collapse
Affiliation(s)
- Saksham Phul
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Charles R. Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, Leipzig University, Leipzig, Germany
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Blandin CE, Gravez BJ, Hatem SN, Balse E. Remodeling of Ion Channel Trafficking and Cardiac Arrhythmias. Cells 2021; 10:cells10092417. [PMID: 34572065 PMCID: PMC8468138 DOI: 10.3390/cells10092417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/08/2023] Open
Abstract
Both inherited and acquired cardiac arrhythmias are often associated with the abnormal functional expression of ion channels at the cellular level. The complex machinery that continuously traffics, anchors, organizes, and recycles ion channels at the plasma membrane of a cardiomyocyte appears to be a major source of channel dysfunction during cardiac arrhythmias. This has been well established with the discovery of mutations in the genes encoding several ion channels and ion channel partners during inherited cardiac arrhythmias. Fibrosis, altered myocyte contacts, and post-transcriptional protein changes are common factors that disorganize normal channel trafficking during acquired cardiac arrhythmias. Channel availability, described notably for hERG and KV1.5 channels, could be another potent arrhythmogenic mechanism. From this molecular knowledge on cardiac arrhythmias will emerge novel antiarrhythmic strategies.
Collapse
Affiliation(s)
- Camille E. Blandin
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
| | - Basile J. Gravez
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
| | - Stéphane N. Hatem
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
- ICAN—Institute of Cardiometabolism and Nutrition, Institute of Cardiology, Pitié-Salpêtrière Hospital, Sorbonne University, F-75013 Paris, France
| | - Elise Balse
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
- Correspondence:
| |
Collapse
|