1
|
Lao J, Zhu H, You Q, Nie M, Lal Pathak J. Updates on the role of leukocyte cell-derived chemotaxin-2 in inflammation regulation and immunomodulation. Cytokine 2024; 181:156697. [PMID: 39024680 DOI: 10.1016/j.cyto.2024.156697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Leukocyte cell-derived chemotaxin-2 (LECT2), originally identified as a novel neutrophil chemokine, is a multifunctional secreted factor primarily produced in hepatocytes. However, many studies have shown that LECT2 is a pleiotropic protein that not only exerts chemotaxis properties as a cytokine but also plays an important role in inflammatory regulation and immune regulation. Pathogens such as bacteria and the role of the host immune system are key factors in the inflammatory response. In antibacterial, LECT2 can directly destroy bacterial structure or affect the normal metabolism of bacteria to inactivate bacteria and can also achieve this effect by activating immune cells and regulating cytokines. In immunomodulation, LECT2 has neutrophil chemotactic activity and regulates the quantities of Natural killer T (NKT) cells, regulatory T cells, monocytes/macrophages, granulocytes, and/or the expression of associated cytokines, thereby influencing their effect in immune reaction. Inflammation and immune regulation are closely related to a variety of diseases, such as bacterial infection, liver cirrhosis, dermatitis, coronary atherosclerotic heart disease, and so on. This review summarizes the basic and clinical studies of LECT2 in antibacterial effects and its effects on immune cells to explore the mechanism of LECT in inflammatory regulation and immune regulation in physiological and pathological conditions better.
Collapse
Affiliation(s)
- Jiaying Lao
- School of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Haohui Zhu
- School of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Qianhui You
- School of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Min Nie
- Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China; Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China.
| | - Janak Lal Pathak
- Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China.
| |
Collapse
|
2
|
Ha JH, Xu Y, Sekhon H, Zhao W, Wilkens S, Ren D, Loh SN. Mimicking kidney flow shear efficiently induces aggregation of LECT2, a protein involved in renal amyloidosis. J Biol Chem 2024; 300:107231. [PMID: 38537700 PMCID: PMC11040205 DOI: 10.1016/j.jbc.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Aggregation of leukocyte cell-derived chemotaxin 2 (LECT2) causes ALECT2, a systemic amyloidosis that affects the kidney and liver. Previous studies established that LECT2 fibrillogenesis is accelerated by the loss of its bound zinc ion and stirring/shaking. These forms of agitation create heterogeneous shear conditions, including air-liquid interfaces that denature proteins, that are not present in the body. Here, we determined the extent to which a more physiological form of mechanical stress-shear generated by fluid flow through a network of narrow channels-drives LECT2 fibrillogenesis. To mimic blood flow through the kidney, where LECT2 and other proteins form amyloid deposits, we developed a microfluidic device consisting of progressively branched channels narrowing from 5 mm to 20 μm in width. Shear was particularly pronounced at the branch points and in the smallest capillaries. Aggregation was induced within 24 h by shear levels that were in the physiological range and well below those required to unfold globular proteins such as LECT2. EM images suggested the resulting fibril ultrastructures were different when generated by laminar flow shear versus shaking/stirring. Importantly, results from the microfluidic device showed the first evidence that the I40V mutation accelerated fibril formation and increased both the size and the density of the aggregates. These findings suggest that kidney-like flow shear, in combination with zinc loss, acts in combination with the I40V mutation to trigger LECT2 amyloidogenesis. These microfluidic devices may be of general use for uncovering mechanisms by which blood flow induces misfolding and amyloidosis of circulating proteins.
Collapse
Affiliation(s)
- Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Yikang Xu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
| | - Harsimranjit Sekhon
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Wenhan Zhao
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York, USA; Department of Biology, Syracuse University, Syracuse, New York, USA.
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
3
|
Kuzan A, Maksymowicz K, Królewicz E, Lindner-Pawłowicz K, Zatyka P, Wojnicz P, Nowaczyński M, Słomczyński A, Sobieszczańska M. Association between Leukocyte Cell-Derived Chemotaxin 2 and Metabolic and Renal Diseases in a Geriatric Population: A Pilot Study. J Clin Med 2023; 12:7544. [PMID: 38137613 PMCID: PMC10744026 DOI: 10.3390/jcm12247544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
LECT2 is not a routine diagnostic marker for any disease, but it has been associated with many pathologies, including systemic amyloidosis, rheumatoid arthritis, diabetes, atherosclerosis, and metabolic syndrome. With human aortic sections (n = 22) and sera from geriatric subjects (n = 79), we analyzed the relationships that could be observed between this protein and other parameters related to metabolic diseases. As a result, we observed a relatively high (r~0.8, p < 0.05) positive correlation between SRA and LECT2 and a negative correlation between EGFR and LECT2 (r~-0.4, p < 0.05). We observed LECT2 expression in macrophages, myocytes, and other aortic cells, with a tendency to be overexpressed in developed atherosclerotic plaques. We conclude that LECT2 exerts its chemotactic effects not only as a protein synthesized in the liver and secreted and circulating in the blood but also as a locally expressed protein within atherosclerotic plaque development. The LECT2-EGFR correlation suggests an association of this protein with loss of normal renal function. This fact can be associated with LECT2 amyloidosis, although it should be verified whether in the geriatric population there is indeed a widespread accumulation of LECT2 with the progression of aging or whether it is rather a marker of general deterioration of renal function.
Collapse
Affiliation(s)
- Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Krzysztof Maksymowicz
- Department of Forensic Medicine, Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland;
| | - Emilia Królewicz
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Karolina Lindner-Pawłowicz
- Clinical Department of Geriatrics, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.L.-P.); (M.S.)
| | - Piotr Zatyka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.Z.); (M.N.); (A.S.)
| | - Piotr Wojnicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.Z.); (M.N.); (A.S.)
| | - Maciej Nowaczyński
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.Z.); (M.N.); (A.S.)
| | - Adam Słomczyński
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.Z.); (M.N.); (A.S.)
| | - Małgorzata Sobieszczańska
- Clinical Department of Geriatrics, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.L.-P.); (M.S.)
| |
Collapse
|
4
|
Richards LS, Flores MD, Zink S, Schibrowsky NA, Sawaya MR, Rodriguez JA. Cryo-EM structure of a human LECT2 amyloid fibril reveals a network of polar ladders at its core. Structure 2023; 31:1386-1393.e3. [PMID: 37657439 PMCID: PMC11456264 DOI: 10.1016/j.str.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
ALECT2 systemic amyloidosis is associated with deposition of the leukocyte cell-derived chemotaxin-2 (LECT2) protein in the form of fibrils. In ALECT2 amyloidosis, ALECT2 fibrils deposit in the glomerulus, resulting in renal failure. Patients lack effective treatment options outside of renal transplant or dialysis. The structure of globular LECT2 has been determined but structures of ALECT2 amyloid fibrils remain unknown. Using single-particle cryo-EM, we find that recombinant human LECT2 forms robust twisting fibrils with canonical amyloid features. ALECT2 fibrils contain two mating protofilaments spanning residues 55-75 of the LECT2 sequence. The geometry of the ALECT2 fibril displays features in line with other pathogenic amyloids. Its core is tightly packed and stabilized by both hydrophobic contacts and hydrogen-bonded uncharged polar residues. The robustness of ALECT2 fibril cores is illustrated by their resistance to denaturants and proteases. This ALECT2 fibril structure presents a potential new target for treatments against ALECT2 systemic amyloidosis.
Collapse
Affiliation(s)
- Logan S Richards
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Maria D Flores
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Samantha Zink
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Natalie A Schibrowsky
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jose A Rodriguez
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Ha JH, Xu Y, Sekhon H, Wilkens S, Ren D, Loh SN. Mimicking Kidney Flow Shear Efficiently Induces Aggregation of LECT2, a Protein Involved in Renal Amyloidosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548788. [PMID: 37503176 PMCID: PMC10369975 DOI: 10.1101/2023.07.13.548788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Aggregation of leukocyte cell-derived chemotaxin 2 (LECT2) causes ALECT2, a systemic amyloidosis that affects the kidney and liver. Homozygosity of the I40V LECT2 mutation is believed to be necessary but not sufficient for the disease. Previous studies established that LECT2 fibrillogenesis is greatly accelerated by loss of its single bound zinc ion and stirring or shaking. These forms of agitation are often used to facilitate protein aggregation, but they create heterogeneous shear conditions, including air-liquid interfaces that denature proteins, that are not present in the body. Here, we determined the extent to which a more physiological form of mechanical stress-shear generated by fluid flow through a network of artery and capillary-sized channels-drives LECT2 fibrillogenesis. To mimic blood flow through the human kidney, where LECT2 and other proteins form amyloid deposits, we developed a microfluidic device consisting of progressively branched channels narrowing from 5 mm to 20 μm in width. Flow shear was particularly pronounced at the branch points and in the smallest capillaries, and this induced LECT2 aggregation much more efficiently than conventional shaking methods. EM images suggested the resulting fibril structures were different in the two conditions. Importantly, results from the microfluidic device showed the first evidence that the I40V mutation accelerated fibril formation and increased both size and density of the aggregates. These findings suggest that kidney-like flow shear, in combination with zinc loss, acts in combination with the I40V mutation to trigger LECT2 amyloidogenesis. These microfluidic devices may be of general use for uncovering the mechanisms by which blood flow induces misfolding and amyloidosis of circulating proteins.
Collapse
Affiliation(s)
- Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Yikang Xu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244
| | - Harsimranjit Sekhon
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244
- Department of Biology, Syracuse University, Syracuse, NY 13244
| | - Stewart N. Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
6
|
Richards LS, Flores MD, Zink S, Schibrowsky NA, Sawaya MR, Rodriguez JA. Cryo-EM Structure of a Human LECT2 Amyloid Fibril Reveals a Network of Polar Ladders at its Core. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527771. [PMID: 36798409 PMCID: PMC9934627 DOI: 10.1101/2023.02.08.527771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
ALECT2 is a type of systemic amyloidosis caused by deposition of the leukocyte cell-derived chemotaxin-2 (LECT2) protein in the form of fibrils. In ALECT2, LECT2 fibril deposits can be found in the glomerulus, resulting in renal failure. Affected patients lack effective treatment options outside of renal transplant or dialysis. While the structure of LECT2 in its globular form has been determined by X-ray crystallography, structures of LECT2 amyloid fibrils remain unknown. Using single particle cryo-EM, we now find that human LECT2 forms robust twisting fibrils with canonical amyloid features. At their core, LECT2 fibrils contain two mating protofilaments, the ordered core of each protofilament spans residues 55-75 of the LECT2 sequence. The overall geometry of the LECT2 fibril displays features in line with other pathogenic amyloids. Its core is tightly packed and stabilized by a network of hydrophobic contacts and hydrogen-bonded uncharged polar residues, while its outer surface displays several charged residues. The robustness of LECT2 fibril cores is illustrated by their limited dissolution in 3M urea and their persistence after treatment with proteinase K. As such, the LECT2 fibril structure presents a potential new target for treatments against ALECT2.
Collapse
Affiliation(s)
- Logan S. Richards
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Maria D. Flores
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Samantha Zink
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Natalie A. Schibrowsky
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Michael R. Sawaya
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Jose A. Rodriguez
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Xu H, Jia Y, Wang X, Wang H, Yu J, Hao W. Renal amyloidogenic leukocyte chemotactic factor 2 combined with IgA nephropathy: A case report. Medicine (Baltimore) 2022; 101:e29638. [PMID: 35866785 PMCID: PMC9302286 DOI: 10.1097/md.0000000000029638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Amyloidogenic leukocyte chemotactic factor 2 (ALECT2) was recently considered as a new clinicopathologic type of amyloid, which frequently affects kidney in adults and results in different degrees of renal insufficiency and failure with or without proteinuria. Here, we present a case of combining LECT2-associated renal amyloidosis with immunoglobulin (Ig)A nephropathy. PATIENT CONCERNS A 71-year-old Chinese man presented with edema of both lower extremities. DIAGNOSES There was pale eosinophilic material strongly positive for the Congo red stain in interstitium with demonstrated apple green birefringence under polarized light. Immunofluorescent stain was positive for IgA deposits (4+), IgG deposits (2+), C3 deposits (3+) within the mesangium and capillary wall. Immunohistochemistry was positive for κ (+), λ (2+) in mesangial area, and LECT2 (2+) in the interstitium. On electron microscopy, there were electron-dense deposits within mesangial area and subendothelial and randomly orientated and nonbranching fibrils 10 nm in size found in the interstitium areas. Liquid chromatography tandem mass spectrometry was performed on peptides extracted from Congo red-positive, microdissected areas of the paraffin-embedded kidney specimen. LECT 2-associated renal amyloidosis with IgA nephropathy was pathologically confirmed by renal biopsy. INTERVENTIONS Steroids (60 mg/d) were used to treat IgA nephropathy daily. Antihypertensive treatment was switched to an angiotensin-converting enzyme inhibitor. OUTCOMES One year after diagnosis, creatine remained stable in the normal range, and 24-hour proteinuria decreased to 2.9 g. LESSONS To date, ALECT2 has still not been comprehensively investigated. The findings of this research provide insights for concurrent IgA nephropathy with ALECT2.
Collapse
Affiliation(s)
- Hongzhao Xu
- Department of Nephrology, the first affiliated hospital of Jilin University, Changchun 130021, China
| | - Ye Jia
- Department of Nephrology, the first affiliated hospital of Jilin University, Changchun 130021, China
| | - Xueyao Wang
- Department of Nephrology, the first affiliated hospital of Jilin University, Changchun 130021, China
| | - Hui Wang
- Laboratory of Electron Microscopy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Jinyu Yu
- Department of Pathology, the first affiliated hospital of Jilin University, Changchun 130021, China
| | - Wu Hao
- Department of Nephrology, the first affiliated hospital of Jilin University, Changchun 130021, China
- *Correspondence: Wu Hao, Department of Nephrology, the first affiliated hospital of Jilin University, Changchun 130021, China (e-mail: )
| |
Collapse
|
8
|
Xie Y, Fan K, Guan S, Hu Y, Gao Y, Zhou W. LECT2: A pleiotropic and promising hepatokine, from bench to bedside. J Cell Mol Med 2022; 26:3598-3607. [PMID: 35656863 PMCID: PMC9258709 DOI: 10.1111/jcmm.17407] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/12/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
LECT2 (leucocyte cell-derived chemotaxin 2) is a 16-kDa protein mainly produced by hepatocytes. It was first isolated in PHA-activated human T-cell leukaemia SKW-3 cells and originally identified as a novel neutrophil chemotactic factor. However, many lines of studies suggested that LECT2 was a pleiotropic protein, it not only functioned as a cytokine to exhibit chemotactic property, but also played multifunctional roles in some physiological conditions and pathological abnormalities, involving liver regeneration, neuronal development, HSC(haematopoietic stem cells) homeostasis, liver injury, liver fibrosis, hepatocellular carcinoma, metabolic disorders, inflammatory arthritides, systemic sepsis and systemic amyloidosis. Among the above studies, it was discovered that LECT2 could be a promising molecular biomarker and therapeutic target. This review summarizes LECT2-related receptors and pathways, basic and clinical researches, primarily in mice and human, for a better comprehension and management of these diseases in the future.
Collapse
Affiliation(s)
- Yuan Xie
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- Department of General Surgery IIThe First People's Hospital of ZhaoqingZhaoqingChina
| | - Kai‐Wei Fan
- Department of Cerebrovascular DiseaseThe First People's Hospital of ZhaoqingZhaoqingChina
| | - Shi‐Xing Guan
- Department of Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yang Hu
- Department of Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Wei‐Jie Zhou
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative MedicineZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- Department of Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, First Clinical Medical CollegeSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Li ZY, Wang S, Li DY, Liu D, Wang SX, Yu XJ, Liu G, Zhou FD, Zhao MH. Fibrinogen A Alpha-Chain Amyloidosis in Two Chinese Patients. Front Med (Lausanne) 2022; 9:869409. [PMID: 35572989 PMCID: PMC9096909 DOI: 10.3389/fmed.2022.869409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Fibrinogen A alpha-chain amyloidosis (AFib amyloidosis) is the most common form of hereditary renal amyloidosis in the United Kingdom and Europe, but has rarely been reported in Asia. In this study, we reported two AFib amyloidosis patients in China, reviewing the literature and summarizing main characteristics of AFib amyloidosis in Asia. Methods Two unrelated Chinese patients were diagnosed with AFib amyloidosis by clinical presentation, renal biopsy, mass spectrometry and DNA sequencing in Peking University First Hospital of China from 2014 to 2016. Results Both of the patients presented with proteinuria, edema and hypertension. Renal biopsies of two patients showed extensive amyloid deposits (Congo red positive) in glomeruli, and focal tubulointerstitial amyloid deposits was also found in patient 1. Besides, hepatic involvement of amyloidosis has been detected by liver biopsy in patient 1. By electron microscopy, randomly arranged fibrils in a diameter of 8–12 nm was identified in mesangial matrix and subendothelial area of glomeruli. Immunohistochemistry demonstrated amyloid deposits were strongly positive for fibrinogen Aα in glomeruli and positive for LECT2 in the interstitium of renal medulla and the liver in Patient 1. Unevenly positive staining for both fibrinogen Aα and ApoA-I were found in Patient 2. Fibrinogen Aα was the most abundant amyloidogenic protein in both patients identified by laser microdissection and mass spectrometry-based proteomic analysis. Genetic analysis revealed the fibrinogen A a-chain gene (FGA) mutation in both patients, including a new deletion mutation [c.1639delA (p.Arg547Glyfs*21; NM_000508)] in Patient 2. Genetic analysis of the LECT2 gene in patient 1 revealed a codon change from ATC to GTC at position 172 [c.172A>G (p.Ile58Val; NM_002302)], which is a common polymorphism (SNP rs31517) in all ALECT2 amyloidosis patients. Conclusions We reported two AFib amyloidosis patients in China, one of them coexisted with ALECT2 amyloidosis simultaneously.
Collapse
Affiliation(s)
- Zhen-Yu Li
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, China.,Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Renal Pathological Center, Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Shuang Wang
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, China.,Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Renal Pathological Center, Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Dan-Yang Li
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, China.,Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Renal Pathological Center, Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, China
| | - Su-Xia Wang
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, China.,Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Renal Pathological Center, Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Xiao-Juan Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Renal Pathological Center, Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Gang Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Renal Pathological Center, Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Fu-De Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Renal Pathological Center, Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Renal Pathological Center, Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| |
Collapse
|
10
|
John AM, Sekhon H, Ha JH, Loh SN. Engineering a Fluorescent Protein Color Switch Using Entropy-Driven β-Strand Exchange. ACS Sens 2022; 7:263-271. [PMID: 35006676 DOI: 10.1021/acssensors.1c02239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein conformational switches are widely used in biosensing. They are often composed of an input domain (which binds a target ligand) fused to an output domain (which generates an optical readout). A central challenge in designing such switches is to develop mechanisms for coupling the input and output signals via conformational changes. Here, we create a biosensor in which binding-induced folding of the input domain drives a conformational shift in the output domain that results in a sixfold green-to-yellow ratiometric fluorescence change in vitro and a 35-fold intensiometric fluorescence increase in cultured cells. The input domain consists of circularly permuted FK506 binding protein (cpFKBP) that folds upon binding its target ligand (FK506 or rapamycin). cpFKBP folding induces the output domain, an engineered green fluorescent protein (GFP) variant, to replace one of its β-strands (containing T203 and specifying green fluorescence) with a duplicate β-strand (containing Y203 and specifying yellow fluorescence) in an intramolecular exchange reaction. This mechanism employs the loop-closure entropy principle, embodied by the folding of the partially disordered cpFKBP domain, to couple ligand binding to the GFP color shift. This study highlights the high-energy barriers present in GFP folding which cause β-strand exchange to be slow and are also likely responsible for the shift from the β-strand exchange mechanism in vitro to ligand-induced chromophore maturation in cells. The proof-of-concept design has the advantages of full genetic encodability and potential for modularity. The latter attribute is enabled by the natural coupling of binding and folding and circular permutation of the input domain, which theoretically allows different binding domains to be compatible for insertion into the GFP surface loop.
Collapse
Affiliation(s)
- Anna Miriam John
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Harsimranjit Sekhon
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| |
Collapse
|
11
|
Lee A, Mason ML, Lin T, Kumar SB, Kowdley D, Leung JH, Muhanna D, Sun Y, Ortega-Anaya J, Yu L, Fitzgerald J, DeVries AC, Nelson RJ, Weil ZM, Jiménez-Flores R, Parquette JR, Ziouzenkova O. Amino Acid Nanofibers Improve Glycemia and Confer Cognitive Therapeutic Efficacy to Bound Insulin. Pharmaceutics 2021; 14:pharmaceutics14010081. [PMID: 35056977 PMCID: PMC8778970 DOI: 10.3390/pharmaceutics14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/04/2022] Open
Abstract
Diabetes poses a high risk for debilitating complications in neural tissues, regulating glucose uptake through insulin-dependent and predominantly insulin-independent pathways. Supramolecular nanostructures provide a flexible strategy for combinatorial regulation of glycemia. Here, we compare the effects of free insulin to insulin bound to positively charged nanofibers comprised of self-assembling amino acid compounds (AACs) with an antioxidant-modified side chain moiety (AAC2) in both in vitro and in vivo models of type 1 diabetes. Free AAC2, free human insulin (hINS) and AAC2-bound-human insulin (AAC2-hINS) were tested in streptozotocin (STZ)-induced mouse model of type 1 diabetes. AAC2-hINS acted as a complex and exhibited different properties compared to free AAC2 or hINS. Mice treated with the AAC2-hINS complex were devoid of hypoglycemic episodes, had improved levels of insulin in circulation and in the brain, and increased expression of neurotransmitter taurine transporter, Slc6a6. Consequently, treatment with AAC2-hINS markedly advanced both physical and cognitive performance in mice with STZ-induced and genetic type 1 diabetes compared to treatments with free AAC2 or hINS. This study demonstrates that the flexible nanofiber AAC2 can serve as a therapeutic platform for the combinatorial treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Aejin Lee
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - McKensie L. Mason
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Tao Lin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Shashi Bhushan Kumar
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Devan Kowdley
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Jacob H. Leung
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Danah Muhanna
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Yuan Sun
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Joana Ortega-Anaya
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (J.O.-A.); (R.J.-F.)
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
| | - A. Courtney DeVries
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Randy J. Nelson
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA;
| | - Zachary M. Weil
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (J.O.-A.); (R.J.-F.)
| | - Jon R. Parquette
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
- Correspondence: ; Tel.: +1-614-292-5034
| |
Collapse
|
12
|
Mann BK, Bhandohal JS, Cobos E, Chitturi C, Eppanapally S. LECT-2 amyloidosis: what do we know? J Investig Med 2021; 70:348-353. [PMID: 34848562 DOI: 10.1136/jim-2021-002149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 01/20/2023]
Abstract
Amyloidosis is a rare group of diseases characterized by abnormal folding of proteins and extracellular deposition of insoluble fibrils. It can be localized to one organ system or can have systemic involvement. The kidney is the most common organ to be involved in systemic amyloidosis often leading to renal failure and the nephrotic syndrome. The two most common types of renal amyloidosis are immunoglobulin light chain-derived amyloidosis (AL) and reactive amyloidosis (AA). A novel form of amyloidosis (ALECT2) derived from leukocyte chemotactic factor 2 (LECT-2) and primarily involving the kidneys was first described by Benson et al in 2008. The liver was subsequently identified as the second most common organ involved in ALECT2 amyloidosis. LECT-2 is a unique protein that can form amyloid deposits even in its unmutated form. Patients with ALECT2 present with minimal proteinuria in contrast to other forms of amyloidosis especially AL and AA. They may present with slightly elevated serum creatinine. Nephrotic syndrome and hematuria are rare. ALECT2 can be found in association with other types of amyloidosis as well as malignancies or autoimmune diseases. ALECT2 may be confused with amyloidosis associated with light and heavy chain monoclonal gammopathy if the immunofluorescence is positive with anti-light chain and anti-AA sera. The other organs involved are the duodenum, adrenal gland, spleen, prostate, gall bladder, pancreas, small bowel, parathyroid gland, heart, and pulmonary alveolar septa, but consistently uninvolved organs included brain and fibroadipose tissue. A renal biopsy along with characteristic features found on immunohistochemistry and mass spectrometry is diagnostic of ALECT2. ALECT2 should be suspected when all markers for AL and AA are negative. Proper diagnosis of ALECT2 can determine need for supportive care versus more aggressive interventions.
Collapse
Affiliation(s)
- Baldeep Kaur Mann
- Internal Medicine, Kern Medical Center, Bakersfield, California, USA
| | | | | | | | | |
Collapse
|
13
|
Ha JH, Yu X, Carpizo DR, Loh SN. Urea Denaturation, Zinc Binding, and DNA Binding Assays of Mutant p53 DNA-binding Domains and Full-length Proteins. Bio Protoc 2021; 11:e4188. [PMID: 34786438 DOI: 10.21769/bioprotoc.4188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/02/2022] Open
Abstract
In the cell, the thermodynamic stability of a protein - and hence its biological activity - can change dramatically as a result of perturbations in its amino acid sequence and the concentration of stabilizing ligands. This interplay is particularly evident in zinc-binding transcription factors such as the p53 tumor suppressor, whose DNA-binding activity can critically depend on levels of intracellular zinc as well as point mutations that alter either metal binding or folding stability. Separate protocols exist for determining a protein's metal affinity and its folding free energy. These properties, however, are intimately connected, and a technique is needed to integrate these measurements. Our protocols employ common non-fluorescent and fluorescent zinc chelators to control and report on free Zn2+ concentration, respectively, combined with biophysical assays of full-length human p53 and its DNA-binding domain. Fitting the data to equations that contain stability and metal-binding terms results in a more complete picture of how metal-dependent proteins can lose and gain DNA-binding function in a range of physiological conditions. Graphic abstract: Figure 1.Raising intracellular zinc can restore tumor-suppressing function to p53 that has been unfolded by missense mutation or cellular conditions.
Collapse
Affiliation(s)
- Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
| | - Xin Yu
- Department of Surgery, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, United States
| | - Darren R Carpizo
- Department of Surgery, University of Rochester School of Medicine and Dentistry and Wilmot Cancer Center, Rochester, United States
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
| |
Collapse
|
14
|
Zhu S, Bennett S, Li Y, Liu M, Xu J. The molecular structure and role of LECT2 or CHM-II in arthritis, cancer, and other diseases. J Cell Physiol 2021; 237:480-488. [PMID: 34550600 DOI: 10.1002/jcp.30593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/11/2021] [Indexed: 12/20/2022]
Abstract
Leukocyte cell-derived chemotaxin-2 (LECT2 or LECT-2), also called chondromodulin II (ChM-II or CHM2) plays a versatile role in various tissues. It was first identified as a chemotactic factor to promote the migration of neutrophils. It was also reported as a hepatokine to regulate glucose metabolism, obesity, and nonalcoholic fatty liver disease. As a secreted factor, LECT2 binds to several cell surface receptors CD209a, Tie1, and Met to regulate inflammatory reaction, fibrogenesis, vascular invasion, and tumor metastasis in various cell types. As an intracellular molecule, it is associated with LECT2-mediated amyloidosis, in which LECT2 misfolding results in insoluble fibrils in multiple tissues such as the kidney, liver, and lung. Recently, LECT2 was found to be associated with the development of rheumatoid arthritis and osteoarthritis, involving the dysregulation of osteoclasts, mesenchymal stem cells, osteoblasts, chondrocytes, and endothelial cells in the bone microenvironment. LECT2 is implicated in the development of cancers, such as hepatocellular carcinoma via MET-mediated PTP1B/Raf1/ERK signaling pathways and is proposed as a biomarker. The mechanisms by which LECT2 regulates diverse pathogenic conditions in various tissues remain to be fully elucidated. Further research to understand the role of LECT2 in a tissue tropism-dependent manner would facilitate the development of LECT2 as a biomarker for diagnosis and therapeutic target.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yihe Li
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Mei Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|