1
|
Quartey JNK, Goss DJ. eIF3d and eIF4G2 mediate an alternative mechanism of cap-dependent but eIF4E-independent translation initiation. J Biol Chem 2025; 301:108317. [PMID: 39971159 PMCID: PMC11968281 DOI: 10.1016/j.jbc.2025.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
Initiation of translation for the majority of eukaryotic mRNAs is mediated by a 5' cap structure to which the eukaryotic initiation factor 4E (eIF4E) binds. Inhibition of the activity of eIF4E by 4EBP-1 does not prevent the translation of a number of cellular capped mRNAs, indicative of the existence of previously unexplored mechanisms for the translation of these capped mRNAs without the requirement of eIF4E. eIF4G2, also known as death-associated protein 5 (DAP5), a homolog of eIFGI that lacks the eIF4E binding domain, utilizes eIF3d (a subunit of eIF3) to promote the translation of a subset of these mRNAs. Using fluorescence anisotropy-based equilibrium binding studies, we provide the first quantitative evidence of the recruitment of eIF3d as well as eIF3d and eIFG2 complexes to a subset of human mRNAs. Our quantitative studies demonstrate the critical role a fully methylated 5' mRNA cap structure plays in the recognition and recruitment of eIF3d, as well as the eIF3d and eIFG2 complex. By using luciferase reporter-based in vitro translation assays, we further show that cap-recognition ability correlates with the efficiency of translation of these mRNAs. Essentially, by preferably utilizing eIF3d and eIFG2, specific mRNA subsets are still able to translate in a cap-dependent manner even when eIF4E is sequestered. Our findings offer new insight into the use of eIF3d and eIF4G2 as an alternative for growth and survival under conditions of cellular stress. This novel mechanism of translation may offer new targets for therapeutic regulation of mRNA translation.
Collapse
Affiliation(s)
- Jacob N K Quartey
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA; Department of Chemistry, Hunter College of the City University of New York, New York, New York, USA
| | - Dixie J Goss
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA; Department of Chemistry, Hunter College of the City University of New York, New York, New York, USA; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA.
| |
Collapse
|
2
|
Mao J, Zhao Q, Guo M, Zhang S, Zhou J. Connecting the dots: Involvement of methyltransferase-like 3, N6-methyladenosine modification, and ferroptosis in the pathogenesis of intracerebral hemorrhage pathogenesis. Exp Neurol 2024; 382:114948. [PMID: 39260591 DOI: 10.1016/j.expneurol.2024.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024]
Abstract
Intracerebral hemorrhage is a profoundly detrimental acute cerebrovascular condition with a low overall survival rate and a high post-onset disability rate. Secondary brain injury that ensues post-ICH is the primary contributor to fatality and disability. Hence, the mitigation of brain injury during intracerebral hemorrhage progression has emerged as a crucial aspect of clinical management. N6-methyladenosine is the most pervasive, abundant, and conserved internal co-transcriptional modification of eukaryotic ribonucleic acid and is predominantly expressed in the nervous system. Methyltransferase-like 3 is a key regulatory protein that is strongly associated with the development of the nervous system and numerous neurological diseases. Ferroptosis, a form of iron-associated cell death, is a typical manifestation of neuronal apoptosis in neurological diseases and plays an important role in secondary brain damage following intracerebral hemorrhage. Therefore, this review aimed to elucidate the connection between m6A modification (particularly methyltransferase-like 3) and ferroptosis in the context of intracerebral hemorrhage to provide new insights for future intracerebral hemorrhage management approaches.
Collapse
Affiliation(s)
- Junxiang Mao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Quantang Zhao
- Department of Neurosurgery, The Chinese People's Liberation Army Joint Logistics Support Force, No. 940 Hospital, Lanzhou City, Gansu Province, China
| | - Man Guo
- Department of Neurosurgery, The Chinese People's Liberation Army Joint Logistics Support Force, No. 940 Hospital, Lanzhou City, Gansu Province, China
| | - Shenghao Zhang
- Department of Neurosurgery, The Chinese People's Liberation Army Joint Logistics Support Force, No. 940 Hospital, Lanzhou City, Gansu Province, China
| | - Jie Zhou
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
3
|
Quintas A, Harvey R, Horvilleur E, Garland G, Schmidt T, Kalmar L, Dezi V, Marini A, Fulton A, Pöyry TA, Cole C, Turner M, Sawarkar R, Chapman M, Bushell M, Willis A. Eukaryotic initiation factor 4B is a multi-functional RNA binding protein that regulates histone mRNAs. Nucleic Acids Res 2024; 52:12039-12054. [PMID: 39225047 PMCID: PMC11514447 DOI: 10.1093/nar/gkae767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
RNA binding proteins drive proliferation and tumorigenesis by regulating the translation and stability of specific subsets of messenger RNAs (mRNAs). We have investigated the role of eukaryotic initiation factor 4B (eIF4B) in this process and identify 10-fold more RNA binding sites for eIF4B in tumour cells from patients with diffuse large B-cell lymphoma compared to control B cells and, using individual-nucleotide resolution UV cross-linking and immunoprecipitation, find that eIF4B binds the entire length of mRNA transcripts. eIF4B stimulates the helicase activity of eIF4A, thereby promoting the unwinding of RNA structure within the 5' untranslated regions of mRNAs. We have found that, in addition to its well-documented role in mRNA translation, eIF4B additionally interacts with proteins associated with RNA turnover, including UPF1 (up-frameshift protein 1), which plays a key role in histone mRNA degradation at the end of S phase. Consistent with these data, we locate an eIF4B binding site upstream of the stem-loop structure in histone mRNAs and show that decreased eIF4B expression alters histone mRNA turnover and delays cell cycle progression through S phase. Collectively, these data provide insight into how eIF4B promotes tumorigenesis.
Collapse
Affiliation(s)
- Ana Quintas
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Emilie Horvilleur
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Tobias Schmidt
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Veronica Dezi
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alberto Marini
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alexander M Fulton
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Tuija A A Pöyry
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Cameron H Cole
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Martin Turner
- Immunology Programme, Babraham Institute, Babraham Science Campus, Cambridgeshire CB22 3AT, UK
| | - Ritwick Sawarkar
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
4
|
Saintomé C, Monfret O, Doisneau G, Guianvarc'h D. Oligonucleotide-Based Photoaffinity Probes: Chemical Tools and Applications for Protein Labeling. Chembiochem 2024; 25:e202400097. [PMID: 38703401 DOI: 10.1002/cbic.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
A variety of proteins interact with DNA and RNA, including polymerases, histones, ribosomes, transcription factors, and repair enzymes. However, the transient non-covalent nature of these interactions poses challenges for analysis. Introducing a covalent bond between proteins and DNA via photochemical activation of a photosensitive functional group introduced onto nucleic acids offers a means to stabilize these often weak interactions without significantly altering the binding interface. Consequently, photoactivatable oligonucleotides are powerful tools for investigating nucleic acid-protein interactions involved in numerous biological and pathological processes. In this review, we provide a comprehensive overview of the chemical tools developed so far and the different strategies used for incorporating the most commonly used photoreactive reagents into oligonucleotide probes or nucleic acids. Furthermore, we illustrate their application with several examples including protein binding site mapping, identification of protein binding partners, and in cell studies.
Collapse
Affiliation(s)
- Carole Saintomé
- Sorbonne Université, UFR 927, MNHN CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, 75005, Paris, France
| | - Océane Monfret
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, 91405, Orsay, France
| | - Gilles Doisneau
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, 91405, Orsay, France
| | - Dominique Guianvarc'h
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, 91405, Orsay, France
| |
Collapse
|
5
|
Ide NA, Gentry RC, Rudbach MA, Yoo K, Velez PK, Comunale VM, Hartwick EW, Kinz-Thompson CD, Gonzalez RL, Aitken CE. A dynamic compositional equilibrium governs mRNA recognition by eIF3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.581977. [PMID: 38712078 PMCID: PMC11071631 DOI: 10.1101/2024.04.25.581977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Eukaryotic translation initiation factor (eIF) 3 is a multi-subunit protein complex that binds both ribosomes and messenger RNAs (mRNAs) to drive a diverse set of mechanistic steps during translation of an mRNA into the protein it encodes. And yet, a unifying framework explaining how eIF3 performs these numerous activities is lacking. Using single-molecule light scattering microscopy, we demonstrate that Saccharomyces cerevisiae eIF3 is in dynamic exchange between the full complex, subcomplexes, and subunits. By extending our microscopy approach to an in vitro reconstituted eIF3 and complementing it with biochemical assays, we define the subspecies comprising this dynamic compositional equilibrium and show that mRNA binding by eIF3 is not driven by the full complex but instead by the eIF3a subunit within eIF3a-containing subcomplexes. Our findings provide a mechanistic model for the role of eIF3 in mRNA recruitment and establish a mechanistic framework for explaining and investigating the other activities of eIF3.
Collapse
Affiliation(s)
- Nicholas A. Ide
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Riley C. Gentry
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Kyungyoon Yoo
- Biochemistry Program, Vassar College, Poughkeepsie, NY, USA
- Current Address: Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Erik W. Hartwick
- Department of Chemistry, Columbia University, New York, NY, USA
- Current Address: Biochemistry Krios Electron Microscopy Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Colin D. Kinz-Thompson
- Department of Chemistry, Columbia University, New York, NY, USA
- Current Address: Department of Chemistry, Rutgers University-Newark, Newark, NJ, USA
| | | | - Colin Echeverría Aitken
- Biochemistry Program, Vassar College, Poughkeepsie, NY, USA
- Biology Department, Vassar College, Poughkeepsie, NY, USA
| |
Collapse
|
6
|
Brito Querido J, Díaz-López I, Ramakrishnan V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat Rev Mol Cell Biol 2024; 25:168-186. [PMID: 38052923 DOI: 10.1038/s41580-023-00624-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 12/07/2023]
Abstract
The regulation of gene expression is fundamental for life. Whereas the role of transcriptional regulation of gene expression has been studied for several decades, it has been clear over the past two decades that post-transcriptional regulation of gene expression, of which translation regulation is a major part, can be equally important. Translation can be divided into four main stages: initiation, elongation, termination and ribosome recycling. Translation is controlled mainly during its initiation, a process which culminates in a ribosome positioned with an initiator tRNA over the start codon and, thus, ready to begin elongation of the protein chain. mRNA translation has emerged as a powerful tool for the development of innovative therapies, yet the detailed mechanisms underlying the complex process of initiation remain unclear. Recent studies in yeast and mammals have started to shed light on some previously unclear aspects of this process. In this Review, we discuss the current state of knowledge on eukaryotic translation initiation and its regulation in health and disease. Specifically, we focus on recent advances in understanding the processes involved in assembling the 43S pre-initiation complex and its recruitment by the cap-binding complex eukaryotic translation initiation factor 4F (eIF4F) at the 5' end of mRNA. In addition, we discuss recent insights into ribosome scanning along the 5' untranslated region of mRNA and selection of the start codon, which culminates in joining of the 60S large subunit and formation of the 80S initiation complex.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Irene Díaz-López
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
7
|
Tidu A, Martin F. The interplay between cis- and trans-acting factors drives selective mRNA translation initiation in eukaryotes. Biochimie 2024; 217:20-30. [PMID: 37741547 DOI: 10.1016/j.biochi.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Translation initiation consists in the assembly of the small and large ribosomal subunits on the start codon. This important step directly modulates the general proteome in living cells. Recently, genome wide studies revealed unexpected translation initiation events from unsuspected novel open reading frames resulting in the synthesis of a so-called 'dark proteome'. Indeed, the identification of the start codon by the translation machinery is a critical step that defines the translational landscape of the cell. Therefore, translation initiation is a highly regulated process in all organisms. In this review, we focus on the various cis- and trans-acting factors that rule the regulation of translation initiation in eukaryotes. Recent discoveries have shown that the guidance of the translation machinery for the choice of the start codon require sophisticated molecular mechanisms. In particular, the 5'UTR and the coding sequences contain cis-acting elements that trigger the use of AUG codons but also non-AUG codons to initiate protein synthesis. The use of these alternative start codons is also largely influenced by numerous trans-acting elements that drive selective mRNA translation in response to environmental changes.
Collapse
Affiliation(s)
- Antonin Tidu
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Franck Martin
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France.
| |
Collapse
|
8
|
Ding L, Wang R, Zheng Q, Shen D, Wang H, Lu Z, Luo W, Xie H, Ren L, Jiang M, Yu C, Zhou Z, Lin Y, Lu H, Xue D, Su W, Xia L, Neuhaus J, Cheng S, Li G. circPDE5A regulates prostate cancer metastasis via controlling WTAP-dependent N6-methyladenisine methylation of EIF3C mRNA. J Exp Clin Cancer Res 2022; 41:187. [PMID: 35650605 PMCID: PMC9161465 DOI: 10.1186/s13046-022-02391-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/15/2022] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNA (circRNA) is a novel class noncoding RNA (ncRNA) that plays a critical role in various cancers, including prostate cancer (PCa). However, the clinical significance, biological function, and molecular mechanisms of circRNAs in prostate cancer remain to be elucidated. Methods A circRNA array was performed to identified the differentially expressed circRNAs. circPDE5A was identified as a novel circRNA which downregulated in clinical samples. Functionally, the in vitro and in vivo assays were applied to explore the role of circPDE5A in PCa metastasis. Mechanistically, the interaction between circPDE5A and WTAP was verified using RNA pulldown followed by mass spectrometry, RNA Immunoprecipitation (RIP) assays. m6A methylated RNA immunoprecipitation sequencing (MeRIP-seq) was then used to identified the downstream target of circPDE5A. Chromatin immunoprecipitation assay (ChIP) and dual-luciferase reporter assay were used to identified transcriptional factor which regulated circPDE5A expression. Results circPDE5A was identified downregulated in PCa tissues compared to adjacent normal tissue and was negatively correlated with gleason score of PCa patients. circPDE5A inhibits PCa cells migration and invasion both in vitro and in vivo. circPDE5A blocks the WTAP-dependent N6-methyladenisine (m6A) methylation of eukaryotic translation initiation factor 3c (EIF3C) mRNA by forming the circPDE5A-WTAP complex, and finally disrupts the translation of EIF3C. Moreover, the circPDE5A-dependent decrease in EIF3C expression inactivates the MAPK pathway and then restrains PCa progression. Conclusions Our findings demonstrate that FOXO4-mediated upregulation of circPDE5A controls PCa metastasis via the circPDE5A-WTAP-EIF3C-MAPK signaling pathway and could serve as a potential therapeutic targer for PCa. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02391-5.
Collapse
|
9
|
Hayek H, Eriani G, Allmang C. eIF3 Interacts with Selenoprotein mRNAs. Biomolecules 2022; 12:biom12091268. [PMID: 36139107 PMCID: PMC9496622 DOI: 10.3390/biom12091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The synthesis of selenoproteins requires the co-translational recoding of an in-frame UGASec codon. Interactions between the Selenocysteine Insertion Sequence (SECIS) and the SECIS binding protein 2 (SBP2) in the 3'untranslated region (3'UTR) of selenoprotein mRNAs enable the recruitment of the selenocysteine insertion machinery. Several selenoprotein mRNAs undergo unusual cap hypermethylation and are not recognized by the translation initiation factor 4E (eIF4E) but nevertheless translated. The human eukaryotic translation initiation factor 3 (eIF3), composed of 13 subunits (a-m), can selectively recruit several cellular mRNAs and plays roles in specialized translation initiation. Here, we analyzed the ability of eIF3 to interact with selenoprotein mRNAs. By combining ribonucleoprotein immunoprecipitation (RNP IP) in vivo and in vitro with cross-linking experiments, we found interactions between eIF3 and a subgroup of selenoprotein mRNAs. We showed that eIF3 preferentially interacts with hypermethylated capped selenoprotein mRNAs rather than m7G-capped mRNAs. We identified direct contacts between GPx1 mRNA and eIF3 c, d, and e subunits and showed the existence of common interaction patterns for all hypermethylated capped selenoprotein mRNAs. Differential interactions of eIF3 with selenoprotein mRNAs may trigger specific translation pathways independent of eIF4E. eIF3 could represent a new player in the translation regulation and hierarchy of selenoprotein expression.
Collapse
Affiliation(s)
- Hassan Hayek
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
- Department of Microbiology, Immunology, and Inflammation, Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Gilbert Eriani
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Christine Allmang
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
- Correspondence:
| |
Collapse
|
10
|
Auparakkitanon S, Wilairat P. Universal scanning-free initiation of eukaryote protein translation-a new normal. Biomol Concepts 2021; 12:129-131. [PMID: 34496168 DOI: 10.1515/bmc-2021-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 11/15/2022] Open
Abstract
A unique feature of eukaryote initiation of protein translation is a so-called scanning of 5'-untranslated region (5'-UTR) by a ribosome initiation complex to enable bound Met-tRNAi access to the initiation codon located further downstream. Here, we propose a universal scanning-free translation initiation model that is independent of 5'-UTR length and applicable to both 5'-m7G (capped) and uncapped mRNAs.
Collapse
Affiliation(s)
- Saranya Auparakkitanon
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Prapon Wilairat
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| |
Collapse
|