1
|
Shi B, Matsui T, Qian S, Weiss TM, Nicholl ID, Callaway DJE, Bu Z. An ensemble of cadherin-catenin-vinculin complex employs vinculin as the major F-actin binding mode. Biophys J 2023; 122:2456-2474. [PMID: 37147801 PMCID: PMC10323030 DOI: 10.1016/j.bpj.2023.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
The cell-cell adhesion cadherin-catenin complexes recruit vinculin to the adherens junction (AJ) to modulate the mechanical couplings between neighboring cells. However, it is unclear how vinculin influences the AJ structure and function. Here, we identified two patches of salt bridges that lock vinculin in the head-tail autoinhibited conformation and reconstituted the full-length vinculin activation mimetics bound to the cadherin-catenin complex. The cadherin-catenin-vinculin complex contains multiple disordered linkers and is highly dynamic, which poses a challenge for structural studies. We determined the ensemble conformation of this complex using small-angle x-ray and selective deuteration/contrast variation small-angle neutron scattering. In the complex, both α-catenin and vinculin adopt an ensemble of flexible conformations, but vinculin has fully open conformations with the vinculin head and actin-binding tail domains well separated from each other. F-actin binding experiments show that the cadherin-catenin-vinculin complex binds and bundles F-actin. However, when the vinculin actin-binding domain is removed from the complex, only a minor fraction of the complex binds to F-actin. The results show that the dynamic cadherin-catenin-vinculin complex employs vinculin as the primary F-actin binding mode to strengthen AJ-cytoskeleton interactions.
Collapse
Affiliation(s)
- Bright Shi
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York; PhD Programs in Chemistry and Biochemistry, CUNY Graduate Center, New York
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | - Shuo Qian
- Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | - Iain D Nicholl
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - David J E Callaway
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York.
| | - Zimei Bu
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York; PhD Programs in Chemistry and Biochemistry, CUNY Graduate Center, New York.
| |
Collapse
|
2
|
Reitz C, Tavassoli M, Kim D, Shah S, Lakin R, Teng A, Zhou YQ, Li W, Hadipour-Lakmehsari S, Backx P, Emili A, Oudit G, Kuzmanov U, Gramolini A. Proteomics and phosphoproteomics of failing human left ventricle identifies dilated cardiomyopathy-associated phosphorylation of CTNNA3. Proc Natl Acad Sci U S A 2023; 120:e2212118120. [PMID: 37126683 PMCID: PMC10175742 DOI: 10.1073/pnas.2212118120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023] Open
Abstract
The prognosis and treatment outcomes of heart failure (HF) patients rely heavily on disease etiology, yet the majority of underlying signaling mechanisms are complex and not fully elucidated. Phosphorylation is a major point of protein regulation with rapid and profound effects on the function and activity of protein networks. Currently, there is a lack of comprehensive proteomic and phosphoproteomic studies examining cardiac tissue from HF patients with either dilated dilated cardiomyopathy (DCM) or ischemic cardiomyopathy (ICM). Here, we used a combined proteomic and phosphoproteomic approach to identify and quantify more than 5,000 total proteins with greater than 13,000 corresponding phosphorylation sites across explanted left ventricle (LV) tissue samples, including HF patients with DCM vs. nonfailing controls (NFC), and left ventricular infarct vs. noninfarct, and periinfarct vs. noninfarct regions of HF patients with ICM. Each pair-wise comparison revealed unique global proteomic and phosphoproteomic profiles with both shared and etiology-specific perturbations. With this approach, we identified a DCM-associated hyperphosphorylation cluster in the cardiomyocyte intercalated disc (ICD) protein, αT-catenin (CTNNA3). We demonstrate using both ex vivo isolated cardiomyocytes and in vivo using an AAV9-mediated overexpression mouse model, that CTNNA3 phosphorylation at these residues plays a key role in maintaining protein localization at the cardiomyocyte ICD to regulate conductance and cell-cell adhesion. Collectively, this integrative proteomic/phosphoproteomic approach identifies region- and etiology-associated signaling pathways in human HF and describes a role for CTNNA3 phosphorylation in the pathophysiology of DCM.
Collapse
Affiliation(s)
- Cristine J. Reitz
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Marjan Tavassoli
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Da Hye Kim
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Saumya Shah
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2R3
| | - Robert Lakin
- Department of Biology, York University, Toronto, ONM3J 1P3
| | - Allen C. T. Teng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Yu-Qing Zhou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Wenping Li
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Sina Hadipour-Lakmehsari
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Peter H. Backx
- Department of Biology, York University, Toronto, ONM3J 1P3
| | - Andrew Emili
- Department of Biochemistry, Boston University School of Medicine, Boston, MA02118
- Department of Biology, Boston University School of Medicine, Boston, MA02118
- The Centre for Network Systems Biology, Boston University School of Medicine, Boston, MA02118
| | - Gavin Y. Oudit
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2R3
- Mazankowski Alberta Heart Institute, Edmonton, ABT6G 2B7
| | - Uros Kuzmanov
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| | - Anthony O. Gramolini
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1M8
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ONM5G 1M1
| |
Collapse
|
3
|
Bejar-Padilla V, Cabe JI, Lopez S, Narayanan V, Mezher M, Maruthamuthu V, Conway DE. α-Catenin-dependent vinculin recruitment to adherens junctions is antagonistic to focal adhesions. Mol Biol Cell 2022; 33:ar93. [PMID: 35921161 DOI: 10.1091/mbc.e22-02-0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vinculin is a protein found in both focal adhesions (FAs) and adherens junctions (AJs) which regulates actin connectivity to these structures. Many studies have demonstrated that mechanical perturbations of cells result in enhanced recruitment of vinculin to FAs and/or AJs. Likewise, many other studies have shown "cross-talk" between FAs and AJs. Vinculin itself has been suggested to be a probable regulator of this adhesion cross-talk. In this study we used MDCK as a model system of epithelia, developing cell lines in which vinculin recruitment was reduced or enhanced at AJs. Careful analysis of these cells revealed that perturbing vinculin recruitment to AJs resulted in a reduction of detectable FAs. Interestingly the cross-talk between these two structures was not due to a limited pool of vinculin, as increasing expression of vinculin did not rescue FA formation. Instead, we demonstrate that vinculin translocation between AJs and FAs is necessary for actin cytoskeleton rearrangements that occur during cell migration, which is necessary for large, well-formed FAs. Last, we show using a wound assay that collective cell migration is similarly hindered when vinculin recruitment is reduced or enhanced at AJs, highlighting that vinculin translocation between each compartment is necessary for efficient collective migration.
Collapse
Affiliation(s)
- Vidal Bejar-Padilla
- Biomedical Engineering, Virginia Commonwealth University, Richmond Virginia 23284
| | - Jolene I Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond Virginia 23284
| | - Santiago Lopez
- Biomedical Engineering, Virginia Commonwealth University, Richmond Virginia 23284
| | - Vani Narayanan
- Biomedical Engineering, Virginia Commonwealth University, Richmond Virginia 23284
| | - Mazen Mezher
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk Virginia 23529
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk Virginia 23529
| | - Daniel E Conway
- Biomedical Engineering, Virginia Commonwealth University, Richmond Virginia 23284.,Biomedical Engineering, The Ohio State University.,Center for Cancer Engineering, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus Ohio 43210
| |
Collapse
|
4
|
Serre JM, Lucas B, Martin SCT, Heier JA, Shao X, Hardin J. C. elegans srGAP is an α-catenin M domain-binding protein that strengthens cadherin-dependent adhesion during morphogenesis. Development 2022; 149:dev200775. [PMID: 36125129 PMCID: PMC10655919 DOI: 10.1242/dev.200775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
The cadherin-catenin complex (CCC) is central to embryonic development and tissue repair, yet how CCC binding partners function alongside core CCC components remains poorly understood. Here, we establish a previously unappreciated role for an evolutionarily conserved protein, the slit-robo GTPase-activating protein SRGP-1/srGAP, in cadherin-dependent morphogenetic processes in the Caenorhabditis elegans embryo. SRGP-1 binds to the M domain of the core CCC component, HMP-1/α-catenin, via its C terminus. The SRGP-1 C terminus is sufficient to target it to adherens junctions, but only during later embryonic morphogenesis, when junctional tension is known to increase. Surprisingly, mutations that disrupt stabilizing salt bridges in the M domain block this recruitment. Loss of SRGP-1 leads to an increase in mobility and decrease of junctional HMP-1. In sensitized genetic backgrounds with weakened adherens junctions, loss of SRGP-1 leads to late embryonic failure. Rescue of these phenotypes requires the C terminus of SRGP-1 but also other domains of the protein. Taken together, these data establish a role for an srGAP in stabilizing and organizing the CCC during epithelial morphogenesis by binding to a partially closed conformation of α-catenin at junctions.
Collapse
Affiliation(s)
- Joel M. Serre
- Program in Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bethany Lucas
- Department of Biology, Regis University, 3333 Regis Blvd., Denver, CO 80221, USA
| | - Sterling C. T. Martin
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jonathon A. Heier
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiangqiang Shao
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|