1
|
Foged MM, Recazens E, Chollet S, Lisci M, Allen GE, Zinshteyn B, Boutguetait D, Münch C, Mootha VK, Jourdain AA. Cytosolic N6AMT1-dependent translation supports mitochondrial RNA processing. Proc Natl Acad Sci U S A 2024; 121:e2414187121. [PMID: 39503847 PMCID: PMC11588129 DOI: 10.1073/pnas.2414187121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/03/2024] [Indexed: 11/27/2024] Open
Abstract
Mitochondrial biogenesis relies on both the nuclear and mitochondrial genomes, and imbalance in their expression can lead to inborn errors of metabolism, inflammation, and aging. Here, we investigate N6AMT1, a nucleo-cytosolic methyltransferase that exhibits genetic codependency with mitochondria. We determine transcriptional and translational profiles of N6AMT1 and report that it is required for the cytosolic translation of TRMT10C (MRPP1) and PRORP (MRPP3), two subunits of the mitochondrial RNAse P enzyme. In the absence of N6AMT1, or when its catalytic activity is abolished, RNA processing within mitochondria is impaired, leading to the accumulation of unprocessed and double-stranded RNA, thus preventing mitochondrial protein synthesis and oxidative phosphorylation, and leading to an immune response. Our work sheds light on the function of N6AMT1 in protein synthesis and highlights a cytosolic program required for proper mitochondrial biogenesis.
Collapse
Affiliation(s)
- Mads M. Foged
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Emeline Recazens
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Sylvain Chollet
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - Miriam Lisci
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| | - George E. Allen
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Geneva 41211, Switzerland
| | - Boris Zinshteyn
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Doha Boutguetait
- Institute of Molecular Systems Medicine, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main60590, Germany
| | - Christian Münch
- Institute of Molecular Systems Medicine, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main60590, Germany
| | - Vamsi K. Mootha
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- HHMI, Massachusetts General Hospital Boston, MA02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Systems Biology, Harvard Medical School, Boston, MA02115
| | - Alexis A. Jourdain
- Department of Immunobiology, University of Lausanne, Epalinges1066, Switzerland
| |
Collapse
|
2
|
Prince CR, Lin IN, Feaga HA. The evolution and functional significance of the programmed ribosomal frameshift in prfB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614795. [PMID: 39386688 PMCID: PMC11463598 DOI: 10.1101/2024.09.24.614795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Release Factor 2 (RF2) is one of two peptide release factors that terminate translation in bacteria. In Escherichia coli, the gene encoding RF2, prfB, contains an in-frame premature RF2-specific stop codon. Therefore, a programmed ribosomal frameshift is required to translate full-length RF2. Here, we investigate the diversity of prfB frameshifting through bioinformatic analyses of >12,000 genomes. We present evidence that prfB frameshifting autoregulates RF2 levels throughout the bacterial domain since (i) the prfB in-frame stop codon is always TGA or TAA, both of which are recognized by RF2, and never the RF1-specific TAG stop codon, and (ii) species that lack the autoregulatory programmed frameshift likely need higher RF2 levels since, on average, they have significantly higher RF2-specific stop codon usage. Overexpression of prfB without the autoregulatory frameshift motif is toxic to Bacillus subtilis, an organism with intermediate RF2-specific stop codon usage. We did not detect the programmed frameshift in any Actinobacteriota. Consistent with this finding, we observed very low frameshift efficiency at the prfB frameshift motif in the Actinobacterium Mycobacterium smegmatis. Our work provides a more complete picture of the evolution of the RF2 programmed frameshifting motif, and its usage to prevent toxic overexpression of RF2.
Collapse
Affiliation(s)
| | - Isabella N. Lin
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
3
|
Krüger A, Kovalchuk D, Shiriaev D, Rorbach J. Decoding the Enigma: Translation Termination in Human Mitochondria. Hum Mol Genet 2024; 33:R42-R46. [PMID: 38779770 PMCID: PMC11112381 DOI: 10.1093/hmg/ddae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondrial translation is a complex process responsible for the synthesis of essential proteins involved in oxidative phosphorylation, a fundamental pathway for cellular energy production. Central to this process is the termination phase, where dedicated factors play a pivotal role in ensuring accurate and timely protein production. This review provides a comprehensive overview of the current understanding of translation termination in human mitochondria, emphasizing structural features and molecular functions of two mitochondrial termination factors mtRF1 and mtRF1a.
Collapse
Affiliation(s)
- Annika Krüger
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, Solna 171 65, Sweden
| | - Daria Kovalchuk
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, Solna 171 65, Sweden
| | - Dmitrii Shiriaev
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, Solna 171 65, Sweden
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Solnavägen 9, Solna 171 65, Sweden
| |
Collapse
|
4
|
Seely SM, Parajuli NP, De Tarafder A, Ge X, Sanyal S, Gagnon MG. Molecular basis of the pleiotropic effects by the antibiotic amikacin on the ribosome. Nat Commun 2023; 14:4666. [PMID: 37537169 PMCID: PMC10400623 DOI: 10.1038/s41467-023-40416-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Aminoglycosides are a class of antibiotics that bind to ribosomal RNA and exert pleiotropic effects on ribosome function. Amikacin, the semisynthetic derivative of kanamycin, is commonly used for treating severe infections with multidrug-resistant, aerobic Gram-negative bacteria. Amikacin carries the 4-amino-2-hydroxy butyrate (AHB) moiety at the N1 amino group of the central 2-deoxystreptamine (2-DOS) ring, which may confer amikacin a unique ribosome inhibition profile. Here we use in vitro fast kinetics combined with X-ray crystallography and cryo-EM to dissect the mechanisms of ribosome inhibition by amikacin and the parent compound, kanamycin. Amikacin interferes with tRNA translocation, release factor-mediated peptidyl-tRNA hydrolysis, and ribosome recycling, traits attributed to the additional interactions amikacin makes with the decoding center. The binding site in the large ribosomal subunit proximal to the 3'-end of tRNA in the peptidyl (P) site lays the groundwork for rational design of amikacin derivatives with improved antibacterial properties.
Collapse
Affiliation(s)
- Savannah M Seely
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Narayan P Parajuli
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Arindam De Tarafder
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden.
| | - Matthieu G Gagnon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
5
|
Prabhakar A, Pavlov MY, Zhang J, Indrisiunaite G, Wang J, Lawson M, Ehrenberg M, Puglisi JD. Dynamics of release factor recycling during translation termination in bacteria. Nucleic Acids Res 2023; 51:5774-5790. [PMID: 37102635 PMCID: PMC10287982 DOI: 10.1093/nar/gkad286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
In bacteria, release of newly synthesized proteins from ribosomes during translation termination is catalyzed by class-I release factors (RFs) RF1 or RF2, reading UAA and UAG or UAA and UGA codons, respectively. Class-I RFs are recycled from the post-termination ribosome by a class-II RF, the GTPase RF3, which accelerates ribosome intersubunit rotation and class-I RF dissociation. How conformational states of the ribosome are coupled to the binding and dissociation of the RFs remains unclear and the importance of ribosome-catalyzed guanine nucleotide exchange on RF3 for RF3 recycling in vivo has been disputed. Here, we profile these molecular events using a single-molecule fluorescence assay to clarify the timings of RF3 binding and ribosome intersubunit rotation that trigger class-I RF dissociation, GTP hydrolysis, and RF3 dissociation. These findings in conjunction with quantitative modeling of intracellular termination flows reveal rapid ribosome-dependent guanine nucleotide exchange to be crucial for RF3 action in vivo.
Collapse
Affiliation(s)
- Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
- Program in Biophysics, Stanford University, Stanford, CA 94305-5126, USA
| | - Michael Y Pavlov
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Jingji Zhang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Gabriele Indrisiunaite
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Michael R Lawson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| |
Collapse
|
6
|
Antibiotic thermorubin tethers ribosomal subunits and impedes A-site interactions to perturb protein synthesis in bacteria. Nat Commun 2023; 14:918. [PMID: 36806263 PMCID: PMC9938272 DOI: 10.1038/s41467-023-36528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Thermorubin (THB) is a long-known broad-spectrum ribosome-targeting antibiotic, but the molecular mechanism of its action was unclear. Here, our precise fast-kinetics assays in a reconstituted Escherichia coli translation system and 1.96 Å resolution cryo-EM structure of THB-bound 70S ribosome with mRNA and initiator tRNA, independently suggest that THB binding at the intersubunit bridge B2a near decoding center of the ribosome interferes with the binding of A-site substrates aminoacyl-tRNAs and class-I release factors, thereby inhibiting elongation and termination steps of bacterial translation. Furthermore, THB acts as an anti-dissociation agent that tethers the ribosomal subunits and blocks ribosome recycling, subsequently reducing the pool of active ribosomes. Our results show that THB does not inhibit translation initiation as proposed earlier and provide a complete mechanism of how THB perturbs bacterial protein synthesis. This in-depth characterization will hopefully spur efforts toward the design of THB analogs with improved solubility and effectivity against multidrug-resistant bacteria.
Collapse
|
7
|
Bao L, Karpenko VV, Forster AC. Rate-limiting hydrolysis in ribosomal release reactions revealed by ester activation. J Biol Chem 2022; 298:102509. [PMID: 36300356 PMCID: PMC9589212 DOI: 10.1016/j.jbc.2022.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Translation terminates by releasing the polypeptide chain in one of two chemical reactions catalyzed by the ribosome. Release is also a target for engineering, as readthrough of a stop codon enables incorporation of unnatural amino acids and treatment of genetic diseases. Hydrolysis of the ester bond of peptidyl-tRNA requires conformational changes of both a class I release factor (RF) protein and the peptidyl transferase center of a large subunit rRNA. The rate-limiting step was proposed to be hydrolysis at physiological pH and an RF conformational change at higher pH, but evidence was indirect. Here, we tested this by activating the ester electrophile at the Escherichia coli ribosomal P site using a trifluorine-substituted amino acid. Quench-flow kinetics revealed that RF1-catalyzed release could be accelerated, but only at pH 6.2-7.7 and not higher pH. This provided direct evidence for rate-limiting hydrolysis at physiological or lower pH and a different rate limitation at higher pH. Additionally, we optimized RF-free release catalyzed by unacylated tRNA or the CCA trinucleotide (in 30% acetone). We determined that these two model release reactions, although very slow, were surprisingly accelerated by the trifluorine analog but to a different extent from each other and from RF-catalyzed release. Hence, hydrolysis was rate limiting in all three reactions. Furthermore, in 20% ethanol, we found that there was significant competition between fMet-ethyl ester formation and release in all three release reactions. We thus favor proposed mechanisms for translation termination that do not require a fully-negatively-charged OH− nucleophile.
Collapse
|
8
|
Parajuli NP, Mandava CS, Pavlov MY, Sanyal S. Mechanistic insights into translation inhibition by aminoglycoside antibiotic arbekacin. Nucleic Acids Res 2021; 49:6880-6892. [PMID: 34125898 PMCID: PMC8266624 DOI: 10.1093/nar/gkab495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
How aminoglycoside antibiotics limit bacterial growth and viability is not clearly understood. Here we employ fast kinetics to reveal the molecular mechanism of action of a clinically used, new-generation, semisynthetic aminoglycoside Arbekacin (ABK), which is designed to avoid enzyme-mediated deactivation common to other aminoglycosides. Our results portray complete picture of ABK inhibition of bacterial translation with precise quantitative characterizations. We find that ABK inhibits different steps of translation in nanomolar to micromolar concentrations by imparting pleotropic effects. ABK binding stalls elongating ribosomes to a state, which is unfavorable for EF-G binding. This prolongs individual translocation step from ∼50 ms to at least 2 s; the mean time of translocation increases inversely with EF-G concentration. ABK also inhibits translation termination by obstructing RF1/RF2 binding to the ribosome. Furthermore, ABK decreases accuracy of mRNA decoding (UUC vs. CUC) by ∼80 000 fold, causing aberrant protein production. Importantly, translocation and termination events cannot be completely stopped even with high ABK concentration. Extrapolating our kinetic model of ABK action, we postulate that aminoglycosides impose bacteriostatic effect mainly by inhibiting translocation, while they become bactericidal in combination with decoding errors.
Collapse
Affiliation(s)
- Narayan Prasad Parajuli
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Chandra Sekhar Mandava
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Michael Y Pavlov
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|