1
|
Karaceper MD, Villegas MJ, Sadh S, Kawesa S, Strain J, Nair A, Dupuis A, Pothos M, Zheng MH, Kehar M. Prevalence and Risk Factors of Metabolic-Associated Fatty Liver Disease in Children with Down Syndrome at a Tertiary Care Center. J Clin Med 2025; 14:3239. [PMID: 40364270 PMCID: PMC12072516 DOI: 10.3390/jcm14093239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/25/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025] Open
Abstract
Background: The global rise of metabolic-associated fatty liver disease (MAFLD) in children is particularly concerning in high-risk groups such as those with Down Syndrome (DS), who have an elevated risk of obesity and insulin resistance. Despite increasing recognition of MAFLD in pediatric populations, data on its prevalence and risk factors among children with DS in Canada remain limited. Method: This retrospective study reviewed medical records of children with DS at the CHEO Down Syndrome Clinic (2013-2023). A diagnosis of MAFLD required evidence of hepatic steatosis on imaging, lab markers, or biopsy, along with the presence of metabolic risk features. Demographic, laboratory, and diagnostic data were analyzed. Results: Among 503 children with DS (231 females, 271 males; median age: 172 months), 54 (10.7%) had MAFLD. The MAFLD group was older (median age: 205 vs. 163 months, p = 0.0002) and had higher BMI (31.39 vs. 20.5, p < 0.0001). Most cases (47/54) were diagnosed via ultrasound, and 49/54 met MAFLD criteria due to excessive adiposity. Lab results showed a median ALT of 35 U/L, triglycerides of 4.4 mmol/L, and LDL cholesterol of 2.59 mmol/L. FibroScan in 13 children revealed a median transient elastography of 5.3 kPa. BMI was the strongest predictor of MAFLD (OR: 1.2, 95% CI: 1.1-1.2). Conclusions: The DS clinic-based prevalence of MAFLD underscores the need for proactive screening and early intervention. BMI was the strongest predictor, emphasizing targeted management strategies. Further research is needed to refine diagnostic approaches and improve outcomes.
Collapse
Affiliation(s)
- Maria D. Karaceper
- Division of Pediatric Medicine, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (M.D.K.); (A.N.); (A.D.); (M.P.)
| | - Maria-Jose Villegas
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Eastern Ontario, Ottawa, ON K1J 9B7, Canada; (M.-J.V.); (S.S.); (S.K.); (J.S.)
| | - Sanathan Sadh
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Eastern Ontario, Ottawa, ON K1J 9B7, Canada; (M.-J.V.); (S.S.); (S.K.); (J.S.)
| | - Sierra Kawesa
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Eastern Ontario, Ottawa, ON K1J 9B7, Canada; (M.-J.V.); (S.S.); (S.K.); (J.S.)
| | - Jamie Strain
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Eastern Ontario, Ottawa, ON K1J 9B7, Canada; (M.-J.V.); (S.S.); (S.K.); (J.S.)
| | - Asha Nair
- Division of Pediatric Medicine, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (M.D.K.); (A.N.); (A.D.); (M.P.)
| | - Alissa Dupuis
- Division of Pediatric Medicine, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (M.D.K.); (A.N.); (A.D.); (M.P.)
| | - Mary Pothos
- Division of Pediatric Medicine, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (M.D.K.); (A.N.); (A.D.); (M.P.)
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou 325000, China
| | - Mohit Kehar
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Eastern Ontario, Ottawa, ON K1J 9B7, Canada; (M.-J.V.); (S.S.); (S.K.); (J.S.)
| |
Collapse
|
2
|
Zhang Z, Zhao R, Wu X, Ma Y, He Y. Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review). Mol Med Rep 2025; 31:47. [PMID: 39635819 PMCID: PMC11638739 DOI: 10.3892/mmr.2024.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
The cornea is a clear connective tissue membrane at the front of the outer layer of the eyeball wall. It plays a crucial role in the refractive system of the eyeball, making it essential to maintain its transparency. Neovascularization and lymphangiogenesis in the cornea significantly impact corneal transparency and immune privilege. The growth of corneal neovascularization (CNV) and corneal lymphangiogenesis (CL) vessels is interconnected yet independent. Currently, there is a substantial amount of clinical and experimental research on CNV and CL vessels. However, due to the relatively recent focus on CL vessel research compared with CNV research, most scholars tend to concentrate on CNV, with few articles offering a comprehensive comparison and discussion of the two processes. The present review emphasizes the similarities and differences between CNV and CL and summarizes recent research progress on their correlation in animal models, growth characteristics, cytokine effects and related diseases.
Collapse
Affiliation(s)
- Zhaochen Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Rongxuan Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xuhui Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yunkun Ma
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yuxi He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
3
|
Uppili B, Faruq M. STRIDE-DB: a comprehensive database for exploration of instability and phenotypic relevance of short tandem repeats in the human genome. Database (Oxford) 2024; 2024:baae020. [PMID: 38602506 PMCID: PMC11008502 DOI: 10.1093/database/baae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/10/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Short Tandem Repeats (STRs) are genetic markers made up of repeating DNA sequences. The variations of the STRs are widely studied in forensic analysis, population studies and genetic testing for a variety of neuromuscular disorders. Understanding polymorphic STR variation and its cause is crucial for deciphering genetic information and finding links to various disorders. In this paper, we present STRIDE-DB, a novel and unique platform to explore STR Instability and its Phenotypic Relevance, and a comprehensive database of STRs in the human genome. We utilized RepeatMasker to identify all the STRs in the human genome (hg19) and combined it with frequency data from the 1000 Genomes Project. STRIDE-DB, a user-friendly resource, plays a pivotal role in investigating the relationship between STR variation, instability and phenotype. By harnessing data from genome-wide association studies (GWAS), ClinVar database, Alu loci, Haploblocks in genome and Conservation of the STRs, it serves as an important tool for researchers exploring the variability of STRs in the human genome and its direct impact on phenotypes. STRIDE-DB has its broad applicability and significance in various research domains like forensic sciences and other repeat expansion disorders. Database URL: https://stridedb.igib.res.in.
Collapse
Affiliation(s)
- Bharathram Uppili
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India
- CSIR-HRDC Campus, Academy for Scientific and Innovative Research, Ghaziabad 201002, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India
| |
Collapse
|
4
|
Miyamura Y, Kamei S, Matsuo M, Yamazaki M, Usuki S, Yasunaga K, Uemura A, Satou Y, Ohguchi H, Minami T. FOXO1 stimulates tip cell-enriched gene expression in endothelial cells. iScience 2024; 27:109161. [PMID: 38444610 PMCID: PMC10914484 DOI: 10.1016/j.isci.2024.109161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Forkhead box O (FOXO) family proteins are expressed in various cells, and play crucial roles in cellular metabolism, apoptosis, and aging. FOXO1-null mice exhibit embryonic lethality due to impaired endothelial cell (EC) maturation and vascular remodeling. However, FOXO1-mediated genome-wide regulation in ECs remains unclear. Here, we demonstrate that VEGF dynamically regulates FOXO1 cytosol-nucleus translocation. FOXO1 re-localizes to the nucleus via PP2A phosphatase. RNA-seq combined with FOXO1 overexpression/knockdown in ECs demonstrated that FOXO1 governs the VEGF-responsive tip cell-enriched genes, and further inhibits DLL4-NOTCH signaling. Endogenous FOXO1 ChIP-seq revealed that FOXO1 binds to the EC-unique tip-enriched genes with co-enrichment of EC master regulators, and the condensed chromatin region as a pioneer factor. We identified new promoter/enhancer regions of the VEGF-responsive tip cell genes regulated by FOXO1: ESM1 and ANGPT2. This is the first study to identify cell type-specific FOXO1 functions, including VEGF-mediated tip cell definition in primary cultured ECs.
Collapse
Affiliation(s)
- Yuri Miyamura
- Divison of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shunsuke Kamei
- Divison of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto 860-0811, Japan
| | - Misaki Matsuo
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaya Yamazaki
- Division of Medical Biochemistry, Graduate School of Medical Science, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto 860-8556, Japan
| | - Keiichiro Yasunaga
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto 860-8556, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiroto Ohguchi
- Division of Disease Epigenetics, IRDA, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takashi Minami
- Divison of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
5
|
NFAT indicates nucleocytoplasmic damped oscillation via its feedback modulator. Biochem Biophys Res Commun 2021; 571:201-209. [PMID: 34332425 DOI: 10.1016/j.bbrc.2021.07.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
Cell signaling and the following gene regulation are tightly regulated to keep homeostasis. NF-κB is a famous key transcription factor for inflammatory cell regulations that obtain a closed feedback loop with IκB. Similarly, we show here, NFAT is also tightly regulated via its downstream target, down syndrome critical region (DSCR)-1. In primary cultured endothelium, either shear stress or VEGF treatment revealed quick NFAT1 nuclear localization following the DSCR-1 transactivation, which in turn induced NFAT1 cytoplasm sequestration. Interestingly, both NFAT and DSCR-1 can be competitive substrates for calcineurin phosphatase and DSCR-1 is known to unstable protein, which caused NFAT1-nucleocytoplasmic damped oscillation via sustained shear stress or VEGF stimulation in endothelial cell (EC)s. To understand the molecular mechanism underlying the NFAT1 oscillation, we built a mathematical model of spatiotemporal regulation of NFAT1 combined with calcineurin and DSCR-1. Theoretically, manipulation of DSCR-1 expression in simulation predicted that DSCR-1 reduction would cause nuclear retention of dephosphorylated NFAT1 and disappearance of NFAT1 oscillation. To confirm this in ECs, DSCR-1 knockdown analysis was performed. DSCR-1 reduction indeed increased dephosphorylated NFAT1 in both the nucleus and cytoplasm, which eventually led to nuclear retention of NFAT1. Taken together, these studies suggest that DSCR-1 is a responsible critical factor for NFAT1 nucleocytoplasmic oscillation in shear stress or VEGF treated ECs. Our mathematical model successfully reproduced the experimental observations of NFAT1 dynamics. Combined mathematical and experimental approaches would provide a quantitative understanding way for the spatiotemporal NFAT1 feedback system.
Collapse
|